
APIMind: API-driven Assessment of Runtime
Description-to-permission Fidelity in Android Apps

Shaokun Zhang, Hanwen Lei, Yuanpeng Wang, Ding Li†, Yao Guo†, Xiangqun Chen
Key Lab of High-Confidence Software Tech (MOE), School of Computer Science, Peking University, Beijing, China

{skzhang, yuanpeng wang, ding li, yaoguo, cherry}@pku.edu.cn, lei hanwen@stu.pku.edu.cn

Abstract—Assessing description-to-permission fidelity is crit-
ical for safeguarding personal data accessed through sensitive
APIs in Android apps. However, it remains a challenge for
existing methods, both static and dynamic. Static methods are
either infeasible due to various dynamic features (e.g., code
obfuscation, dynamic class loading, and reflection) or too coarse-
grained to understand how sensitive APIs collect privacy data un-
der runtime contexts. Existing dynamic methods lack contextual
understanding regarding sensitive API calls. For example, they
fail to understand which GUI widgets are more likely to trigger
sensitive APIs and ignore the preceding UI contexts that could
reveal the intention of API calls when analyzing their fidelity.

In this paper, we propose an API-driven automated dynamic
analysis tool called APIMind for assessing runtime description-
to-permission fidelity in Android apps. APIMind can discover
sensitive APIs more effectively by utilizing multimodal features
to jointly infer the semantics of GUI widgets and leveraging deep
networks to automatically learn their relationship based on multi-
faceted rewards. Then, it could accurately assess description-to-
permission fidelity by developing an extended tool that considers
dual UI contexts (i.e., preceding and current contexts). We
evaluate the accuracy and efficiency of APIMind using 121 real-
world apps. Experimental results demonstrate that APIMind
can achieve a detection accuracy of 96.1%. Compared to the
competitive baseline, APIMind increases efficiency by 43%. In
addition, based on our proposed tool, we conduct a large-
scale case study of 1013 real Android apps, which reveals the
prevalence of several typical inconsistencies and demonstrates
the effectiveness of our approach in the wild.

I. INTRODUCTION

Mobile devices have become an indispensable part of mod-

ern daily life, with those running Android accounting for

around 84% of the global smartphone market as of 2022 [1].

People often use mobile apps for various purposes, such as

entertainment, shopping, and learning. However, these apps

may also gather and hold a significant amount of sensitive

data, such as contacts, photos, and locations. To ensure user

privacy, the Android system mandates that mobile apps request

permission before accessing sensitive data. Nevertheless, the

question remains: are these permissions truly consistent with

the app’s functionalities and descriptions? If an app requests

unnecessary or excessive permissions, it may use personal data

improperly, resulting in potential risks and losses. Therefore,

assessing description-to-permission fidelity1 is crucial for pro-

tecting personal data in Android apps [2]–[4].

†Corresponding authors.
1Fidelity issues occur when sensitive APIs are not used appropriately in

the activities that involve their context.

Previous efforts to analyze description-to-permission fidelity

fall into two categories: static approaches that perform a

comprehensive source-level review of the APK file [3], [5]–[9]

and dynamic approaches that instrument and explore the app

in the runtime context [2], [10]–[15]. For static approaches,

a straightforward way is to correlate app descriptions with

requested permissions, such as AUTOCOG [3]. However, they

are too coarse-grained to understand how their sensitive data

is collected under runtime contexts. Some studies, such as

FLOWCOG [16], attempt to perform flow-level operations

with existing static analysis tools [6] to analyze the semantics

of sensitive information flows. Nevertheless, static analyses

for Android apps are often infeasible [2], [17], [18] due to the

intense use of dynamic features such as code obfuscation, code

encryption, dynamic class loading, and reflection (especially

in malware apps).

Dynamic analysis techniques mainly include two phases:

one is to trigger sensitive API calls effectively, and the other

is to analyze the legitimacy of sensitive API calls in a given

UI context. APICOG [2] is a representative that leverages a

general testing framework to discover sensitive APIs. They

attempt to correlate a sensitive API call with its UI state and

extract semantics from them using natural language processing

(NLP) models. Based on the extracted semantics, machine

learning models can be used to justify the legitimacy of the

calls. However, they lack contextual understanding regarding

sensitive API calls, which involves two main aspects.

On the one hand, they rely on a general testing framework,

which is not optimized for exploring sensitive API calls. In

other words, they cannot understand which GUI widget is

more prone to trigger sensitive API calls. This could result in

wasted time and missed detections of sensitive APIs. On the

other hand, when determining the legitimacy of a call, only

the current UI context is considered, which limits the detection

capability. They ignore the preceding UI context, such as the

executed widget and its context (e.g., user agreements), which

may describe the purpose or intent behind a sensitive API call.

To address these issues, we propose a novel automated

dynamic analysis tool called APIMind to assess runtime

description-to-permission fidelity in Android apps. APIMind
consists of two major components: Trigger and Fidelity An-

alyzer. Specifically, to address the first issue, we propose

an API-driven automated tool, Trigger, to thoroughly explore

and prioritize activities based on their likelihood of accessing

sensitive APIs. To address the second issue, we propose

427

2023 IEEE 34th International Symposium on Software Reliability Engineering (ISSRE)

2332-6549/23/$31.00 ©2023 IEEE
DOI 10.1109/ISSRE59848.2023.00057

20
23

 IE
EE

 3
4t

h
In

te
rn

at
io

na
l S

ym
po

si
um

 o
n

So
ftw

ar
e

R
el

ia
bi

lit
y

En
gi

ne
er

in
g

(I
SS

R
E)

 |
97

9-
8-

35
03

-1
59

4-
3/

23
/$

31
.0

0
©

20
23

 IE
EE

 |
D

O
I:

10
.1

10
9/

IS
SR

E5
98

48
.2

02
3.

00
05

7

Authorized licensed use limited to: Peking University. Downloaded on December 12,2023 at 03:00:46 UTC from IEEE Xplore. Restrictions apply.

an extension of APICOG, a dual-context Fidelity Analyzer

that examines the legitimacy of a sensitive API call, which

considers both current and preceding UI contexts.

Realizing APIMind mainly involves three challenges, the

first of which is the difficulty of understanding GUI widgets.

One intuitive way is to analyze their visual appearance.

However, it is challenging to extract discriminative and robust

features of GUI widgets because there are many uncertainties

and noises in GUI images, such as widget state changes (e.g.,

a “next” button turns from unavailable to available when data

collection is complete.), and visually similar GUI widgets.

Another possible way is to understand their semantics through

the corresponding meta-attributes. However, many GUI wid-

gets lack any text or content descriptions indicating their

purpose [19]. The second challenge is that the relationship

between semantic features of GUI widgets and sensitive API

calls is unclear.

To address the above challenges, we develop a deep learning

model to jointly infer the semantics of GUI widgets by

leveraging multimodal features, including fine-grained meta-

attributes, visual features, and layout context, which enables a

more comprehensive understanding. Moreover, this model is

designed to explicitly maximize multi-faceted rewards, which

include the API-level reward that prioritizes activities with

more sensitive API calls. This allows the model to learn

meaningful relationships between GUI widgets and sensitive

APIs. The third one is that there are not enough labeled

training samples. Training deep learning models typically

requires a large number of samples, which are scarce in this

scenario. We use a reinforcement learning-based model that

autonomously generates training data and integrates it into the

learning algorithm. This data is generated by simulating user

interactions with GUIs, creating a more diverse set of training

examples, and improving the robustness of the model.

We evaluate the performance and efficiency of APIMind
using 121 realistic apps from the Xiaomi market. The results

demonstrate that APIMind can achieve a detection accuracy

of 96.1%. Regarding efficiency, APIMind exhibits a 43%

improvement compared to the competitive baseline. Based

on our newly proposed tool, we conduct a large-scale case

study involving 1013 real Android apps. Our analysis reveals

the prevalence of several typical inconsistencies: unnecessary

permissions, deceptive agreements, and retaining permissions.

In addition, 82.8% of apps contain at least one inconsistency,

indicating a significant prevalence in Android apps. Further-

more, we have also reported some of the detected inconsis-

tencies to the platform administrator, in order to demonstrate

the effectiveness of our approach.

The contributions of this paper are summarized as follows.

• We propose a novel automated tool called APIMind to

assess runtime description-to-permission fidelity in An-

droid apps. It can trigger sensitive APIs more effectively

by utilizing multimodal features, while leveraging deep

networks to automatically learn their relationship based

on multi-faceted rewards.

• We conduct a large-scale case study on runtime

description-to-permission fidelity in Android apps. Our

findings reveal the prevalence of several typical inconsis-

tencies, which could offer valuable insights into develop-

ing more effective solutions.

• We extensively evaluate our approach using a diverse

range of Android apps gathered from the Xiaomi App

Store. The experimental results demonstrate the accu-

racy and effectiveness of APIMind in assessing runtime

description-to-permission fidelity.

Data Availability: In addition, our tool is publicly available

on GitHub (https://github.com/skzhangPKU/APIMind).

II. BACKGROUND AND MOTIVATION

In this section, we present the background and motivation

of this work. First, we provide the preliminaries of Android

GUI programming and Deep Reinforcement Learning. Then,

we introduce the limitations of current approaches in our task,

which involves two subtasks: Sensitive API Triggering and

Fidelity Assessment.

A. Background

1) Android GUI Programming: Activities constitute funda-

mental components of apps in Android development. Ordinar-

ily, it occupies the entire display, although smaller ones are ap-

plicable for multi-window mode or floating windows. Widgets

are small GUI components that enable users to interact with

apps, such as buttons, text fields, and toggles. A frame GUI

window provides a top-level container for various activities,

providing a structural basis for their rendering and interaction.

Through an Intent object, an activity can be started by another,

with the system controlling the transitions between them. A

GUI transition graph can represent an app’s functionality and

behavior through a directed graph, defined as G = (V,E),
where V denotes the nodes representing individual activities

within the app, and E denotes the edges representing the

available transitions between these nodes.

2) Deep Reinforcement Learning: Deep Reinforcement

Learning (DRL) aims to guide agents to make decisions based

on feedback from the environment by integrating deep learning

and reinforcement learning techniques. Its objective is to learn

an optimal policy, i.e., a mapping from states to actions,

that maximizes the expected cumulative reward. One of the

most well-studied DRL algorithms is the Deep Q-Network

(DQN), proposed by Mnih et al. [20]. The network receives

the current state of the environment as input, yielding an output

Q-value for each possible action. The agent selects its action

by choosing the one with the highest Q-value at each step. To

train the network, DQN employs a replay memory mechanism

to store experience tuples of the form (state, action, reward,

next state). These tuples are randomly sampled during training

to reduce the correlation between successive updates.

B. Motivation

1) Sensitive API Triggering: To efficiently execute widgets

that invoke sensitive API calls, a straightforward way is to use

428

Authorized licensed use limited to: Peking University. Downloaded on December 12,2023 at 03:00:46 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: A motivating example based on the TED and AZLyrics apps. The TED app provides talks from remarkable researchers

on various topics. The AZLyrics app is one of the biggest databases of song lyrics worldwide. Specifically, Figure (a) shows a

detail page for a particular talk, while Figure (b) shows a page with the function to search for lyrics by providing song titles

or artist names.

Fig. 2: An illustrative example of a reading app.

a GUI tester [21] that randomly produces GUI operations [22]

or relies on heuristics [23], [24] to generate them. Unfortu-

nately, these testers are not designed to efficiently identify

sensitive API calls. Therefore, there is an urgent need for a new

testing approach that goes beyond traditional GUI testers. To

achieve this goal, understanding the semantics of GUI widgets

is necessary, which can enable automated tools to generate

more targeted and intelligent GUI operations that reveal sen-

sitive API calls. However, it is particularly challenging due to

the uncertainty of GUI widgets (e.g., the button state changes

from enabled to disabled) and visually similar GUI widgets

(e.g., input boxes look identical for all GUI states). Besides,

for some widgets, even humans have difficulty understanding

them based on vision alone. For instance, in Fig. 1(a), the

meaning representation of the GUI widgets marked by the

orange and light blue boxes is potentially confusing. For

current approaches, like [25]–[32], most tend to comprehend

GUI states as a whole, which is too coarse-grained to infer

the semantics of local widgets.

2) Fidelity Assessment: For fidelity assessment,

APICOG [2] is a representative that checks the legitimacy

of sensitive API calls by correlating them with their current

UI contexts. However, they ignore the preceding UI context,

which may describe the purpose or intention behind a

sensitive API call. Fig. 2 presents an illustrative example. In

this example, the preceding UI context refers to the executed

widget marked by the red box and its adjacent widgets (i.e.,

the user agreement) in Fig. 2(a). The current UI context

refers to the context shown in Fig. 2(b). It shows a prompt

box describing a reading app requesting device identifiers for

account security control and statistics, as shown in Fig. 2(a).

Upon agreeing to the authorization, the user will click the

button marked by the red box in Fig. 2(a), which leads to the

main page displayed in Fig. 2(b). The main page displays a

ranking list of e-books, yet device identifiers are not essential

for this page. Consequently, the APICOG concludes that

there is an inconsistency between the sensitive data collected

and user-expected behaviors. Indeed, however, such access to

sensitive data is compliant because the preceding UI context

claims its intention for legitimate purposes.

III. DESIGN OF APIMind
To automatically assess runtime description-to-permission

fidelity, we present APIMind, a novel automated tool that

detects inconsistencies between contexts and the collected

privacy data in Android apps. Fig. 3 illustrates the workflow

of APIMind. APIMind receives a given APK file as input and

delivers a detailed execution report that highlights any detected

inconsistencies. It comprises two main components: Trigger,

which exhaustively examines activities within the target app

and monitors all attempts to access sensitive APIs, and Fidelity

Analyzer, which detects any possible inconsistencies between

the user-expected behavior and access to sensitive APIs.

A. Trigger
Trigger examines an Android app by conducting a com-

prehensive exploration of its activities. Throughout the exam-

ination, Trigger generates the screenshots, layout files, and

permissions of the activities and sends them to the Fidelity

Analyzer to identify potential inconsistencies. The Trigger

architecture is shown in Fig. 4.

429

Authorized licensed use limited to: Peking University. Downloaded on December 12,2023 at 03:00:46 UTC from IEEE Xplore. Restrictions apply.

Fig. 3: System overview of APIMind.

The goal of Trigger is to efficiently execute widgets that

invoke sensitive API calls. Unlike previous methods [26], [30],

[33], Trigger considers not only visual images perceivable by

a human tester but also fine-grained meta-attribute features

of GUI widgets and layout contexts. Meta-attribute features

can reveal the behavior, appearance, and functionality widgets

provide [34]. For example, in Fig. 1(a), the semantics of GUI

widgets marked with different colored boxes can be inferred

from the texts extracted from the “resource id” attributes,

such as “Queue”, “Like”, “Share”, and “Download”. However,

previous studies [19], [35] reported that there are still many

GUI widgets with missing or incorrect attributes due to the

poor development behaviors of programmers. As shown in

Fig. 1(b), the “text” attribute value of the input box is missing,

and its “resource id” attribute value is “eac-5300” without any

practical implications. This suggests that there is a need to

infer the semantics based on its context, such as surrounding

descriptive texts. In this example, the corresponding text is

“Enter artist name or song title”. Based on the above analysis,

we jointly infer the semantics of GUI widgets using multi-

modal features that simultaneously consider fine-grained meta-

attribute features, visual features, and layout context features.

Another challenge is that the relationship between the

semantic features of GUI widgets in activities and sensi-

tive APIs is unclear in runtime contexts. To address this

challenge, we leverage deep models to automatically extract

such relationships from contexts to understand which GUI

widgets are more likely to trigger sensitive APIs. However,

modeling the complex relationship usually requires a large

number of samples. In the case of triggering sensitive APIs,

it is difficult to obtain such quantities of samples. To address

this issue, we utilize a reinforcement learning-based model

that autonomously generates training data and integrates it

into the learning algorithm. To this end, we model Trigger

as a Reinforcement Learning (RL) agent with a deep learning

Fig. 4: The Trigger process.

model that automatically prioritizes activities based on their

likelihood of invoking sensitive APIs. Thus, Trigger can focus

on activities related to sensitive APIs.
Specifically, Trigger is an RL agent based on DQN [36]

that navigates through the transition graph of activities in an

Android app. Its main component is the Q-Network, which

predicts the reward for each available action based on the

current state. The Q-Network is implemented as a feedforward

neural network, which can effectively model the intricate

dependencies among activities and sensitive APIs, owing to

its ability to approximate complex functions [37]. Next, we

will introduce the core components of Trigger, including

cross-modal aggregation, multi-faceted reward, and its training

details.
1) Cross-modal Aggregation: The architecture of the Q-

Network comprises three dense layers, as depicted in Equa-

tion 1.

f(X) = F3(σ(F2(σ(F1(X; Θ1)); Θ2)); Θ3) (1)

where Θ∗ is learnable weights, F∗ denotes the linear trans-

formation performed by the dense layer, σ is the activation

function, and X is a compressed encoding of the state,

represented as a cross-modal aggregation of distinct features.

Specifically, the Q-network incorporates three types of inputs

for an activity, including meta-attribute features, visual seman-

tic features, and layout context features. These features are

fused to obtain a state representation using a concat-attention

layer [38].
Meta-attribute features. A GUI widget includes many

meta-attributes, such as texts and placeholders. The place-

holder attribute refers to a short prompt describing the field’s

expected value (e.g., a brief description of the desired format

or a sample value). These attributes can be easily extracted

from dumped layout files. We feed the attributes into a pre-

trained multilingual sentence embedding model, Sentence-

Transformer [39], which produces a 768-dimensional feature

vector.
Visual semantic features. GUI states of activities are the

most sensory observation a human tester perceives from a

mobile device. To obtain visual features, we send the GUI

screenshot to AugNet [40], an unsupervised visual representa-

tion network that generates a 768-dimensional feature vector.

The AugNet model is trained on a large-scale public mobile

GUI dataset RICO [41] containing over 66k unique samples.

Although this model is trained from different apps, it is benefi-

cial for understanding activities and widgets because extracted

visual features are considered globally distinguishable [42].
Layout context features. As mentioned earlier, the layout

context helps to infer the semantics of GUI widgets. Following

previous research [43], we use a self-supervised embedding

model LayoutAutoEncoder [44] to extract layout context fea-

tures from the hierarchy of activities, resulting in a numerical

vector with 64 dimensions. Specifically, it comprises a two-

step process. The first step is to assign each pixel of a GUI

screenshot to a different category based on the characteristics

of the widget to which it belongs. The second is to encode the

430

Authorized licensed use limited to: Peking University. Downloaded on December 12,2023 at 03:00:46 UTC from IEEE Xplore. Restrictions apply.

layout as a bitmap and extract its structural semantics using

autoencoders.

2) Multi-faceted Reward: The Q-Network aims to forecast

the likelihood of upcoming activities invoking sensitive APIs.

This can be achieved by accomplishing two sub-objectives:

(1) exploring more activities that involve sensitive APIs and

(2) discovering additional new activities. To this end, a multi-

faceted reward system is designed to jointly address these

two sub-objectives. The multi-faceted reward comprises three

segments, i.e., the API-level reward, the activity-level reward,

and the widget-level reward. Specifically, the API-level reward

satisfies the first sub-objective by prioritizing activities with a

greater frequency of sensitive API requests. On the other hand,

the remaining two rewards concentrate on accomplishing the

second sub-objective by discovering additional new activities.

Formally, the multi-faceted reward is defined as:

Ri = αRp
i + βRa

i + γRw
i (2)

where Rp
i , Ra

i , and Rw
i denote the API-level reward, activity-

level reward, and widget-level reward, respectively, and α,

β, and γ are weighting factors that determine the respective

significance of individual items.

We define the API-level reward Rp
i as the count of

unique sensitive APIs invoked by an activity. The activity-
level reward is defined by Equation 3, which enables the

Trigger to prioritize activities that exhibit significant differ-

ences. Specifically, the variable definitions in Equation 3 are

as follows: X represents the current activity screenshot, Y
corresponds to the screenshot of the succeeding activity in the

GUI transition graph, τ is the distance threshold, EB is the

embedded model AugNet [40] that transforms screenshots to

numerical vectors, and dist(·, ·) is the Euclidean metric.

Ra
i =

{
1, if dist(EB(X), EB(Y)) > τ

0, otherwise
(3)

The widget-level reward is defined as Equation 4, which

balances two preferences: visiting activities with more unvis-

ited widgets and operating widgets with lower visit frequency.

Rw
i = M × (

UNsa

N
+

1

V Fow
) (4)

where V Fow denotes the visiting frequency of operated wid-

gets, UNsa represents the number of unvisited widgets in the

succeeding activity, and M and N are scaling factors to ensure

their comparability

The underlying idea behind the widget-level reward is

that transitions between activities are frequently initiated by

widget operations, such as a button click. Consequently, an

activity with more unvisited widgets increases the likelihood

of transiting to a new one. Therefore, we integrate the widget-

level reward with the activity-level reward to effectively guide

the Trigger to new activities.

3) Trigger Learning: Algorithm 1 summarizes the learning

process of the Trigger. The details are as follows. When

training an app, Trigger first checks the existence of the

Algorithm 1: The APIMind Learning Process.

Input: AUT; DQN model M; Time budget T.
Output: Trained behavior model M;

1 if M not exist then
2 M ← initializeNewModel();

3 Initialize replay buffer D ← ∅;
4 u0 ← launch(AUT);
5 s0 ← fuseMultiModal(u0);
6 for t = 0,T do
7 at ← selectAction(st,M);
8 ut+1, widgetStats, apiTrig ← execute(AUT, at);
9 rpt ← calcAPIReward(apiTrig);

10 rat ← calcActivityReward(ut,ut+1);
11 rwt ← calcWidgetReward(widgetStats);
12 rt ← calcImmediateReward(rpt , rat , rwt);
13 st+1 ← fuseMultiModal(ut+1);
14 D ← D∪ (st, at, rt, st+1);
15 B ← randomSampleBatch(D);
16 M ← updateModel(B,M);
17 st+1 ← st;

behavior model. If no such model exists, a new model is

created (Line 2). The replay buffer is initialized to store past

experiences (Line 3). Then, Trigger launches the app under

test (AUT) to access the first UI page (Line 4). Taking the

page’s GUI screenshot and layout file as input, the algorithm

extracts multi-modal features, including visual features, layout

context features, and fine-grained meta-attribute features, from

them as the initial state (Line 5).

Next, the iterative processing continues until the time budget

is exhausted (Lines 6-17). For each iteration, the algorithm

leverages deep models to predict the reward values of all

potential actions and selects and executes the one at with

the highest reward (Lines 7-8). After the action execution

step, the resulting information, containing the next UI page,

triggered sensitive API calls, and widget statistics, are used

to calculate the reward rt (Lines 9-12). With the page, the

algorithm converts it to a new state st+1 (Line 13). The above

process produces a 4-tuple (st, at, rt, st+1), which is put

into the buffer. To train the deep model, it randomly samples

a mini-batch from the buffer and updates the model on the

batch using temporal difference learning [45] (Lines 15-17).

B. Fidelity Analyzer

Fidelity Analyzer assesses whether an activity gathers sen-

sitive data beyond what is necessary. It takes a pair <
activity, API > as input while outputting a binary label

indicating whether the semantics of the API align with the

contexts.

We propose an extended APICOG to determine whether the

context is consistent with its collected privacy data. The high-

level idea of the original APICOG [2] is as follows. First,

it fetches the text in the screenshot, text-typed attributes of

GUI widgets, app descriptions, and descriptions of the called

sensitive APIs. It then cleans the raw text and converts them

431

Authorized licensed use limited to: Peking University. Downloaded on December 12,2023 at 03:00:46 UTC from IEEE Xplore. Restrictions apply.

TABLE I: The list of monitored sensitive APIs

Resource Type API Class Monitored API Example Description

Telephony
TelephonyManager,

SmsManager

getLine1Number(), getDeviceId(),

sendTextMessage()

Retrieve sensitive information

related to telephony

Location

Location, Address,

GoogleMap,

LocationManagerService

getLastKnownLocation(),

requestLocationUpdates(),

getLongitude()

Access user’s location information,

including GPS coordinates

Bluetooth
BluetoothDevice,

BluetoothAdapter

getName(), getAddress(),

getBondedDevices()

Potentially track user movement

or identify nearby devices

Microphone

and Camera

AudioRecord,

MediaRecorder, Camera

startRecording(),

start(), takePicture()

Access microphone and camera

to record audio and video

Connectivity

States

WifiManager,

WifiServiceImpl

getScanResults(),

getDhcpInfo(), getWifiState()

Retrieve information about user’s

network connectivity and usage patterns

Application

States

PackageManager,

UsageStatsManager

getInstalledPackages(),

getApplicationInfo(),

queryUsageStats()

Examine the accessibility of installed

antivirus and financial apps to

detect attacks such as phishing

Accounts AccountManager getAccountsByType()
Access and manage user’s

account credentials on the device
Contents ContentProvider query() Manage app data storage

to a group of valid verb-noun pairs using Stanford Parser [46].

Finally, taking these pairs as input, it utilizes a machine

learning model to determine whether they are consistent.

However, as mentioned earlier in Section II-B, the original

APICOG only considers the current UI context and ignores

the preceding context, which limits its detection capabilities.

To address this issue, we propose a dual-context Fidelity

Analyzer which considers preceding and current UI contexts

when determining the legitimacy of a sensitive API call. We

incorporate the preceding context to reduce misjudgments,

as it could reveal the purpose or intention of the sensitive

API call, such as account security control and statistics in

Fig. 2(a). Notably, We use only one preceding activity as

the context because it captures the most recent and relevant

information while reducing noise and redundancy from multi-

ple preceding activities. The preceding context is incorporated

into the model, similar to the current context integrated into

the original APICOG. Apart from the preceding context, we

are consistent with the original APICOG in all other aspects.

In other words, the preceding context is also extracted and

converted into a valid set of verb-noun pairs, which are then

fed into the machine learning model along with other pairs

for fidelity assessment. Due to the page limit, we omit the

details of Fidelity Analyzer, which can be found in the original

APICOG paper [2].

IV. EVALUATION

In this section, we perform extensive experiments to eval-

uate the proposed tool. The evaluation aims to answer the

following research questions.

• RQ1: How effective is APIMind in discovering sensi-
tive API calls?

• RQ2: How effective is APIMind in assessing
description-to-permission fidelity in Android apps?

• RQ3: How do multimodal features affect the perfor-
mance of APIMind?

• RQ4: How prevalent are typical inconsistencies among
apps?

• RQ5: Are the detected inconsistencies helpful to the
administrators?

A. Experiment Setup

Our experiments are conducted on an Ubuntu server version

18.04 LTS, equipped with a CUDA-enabled Nvidia GTX 1080

Ti GPU featuring 11GB memory. All apps are executed on a

Google Pixel 5, a real mobile device with root access running

on Android. We deliberately avoid using an emulator because

if malware detects itself in an emulator environment, it will

block sensitive data leakage [47].

APIMind automates apps through Uiautomator2 [48]. It is

developed and implemented using the Pytorch framework [49].

APIMind utilizes Frida [50] to instrument apps and dynami-

cally monitor sensitive API calls. To achieve this, we develop

JavaScript snippets to interact with the Frida server by inject-

ing them into apps.

Based on the previous research [16], we limit the explo-

ration of each app to a maximum of 20 minutes. Moreover,

the experimental parameters are set as follows. The weight-

ing factors for the API-level, activity-level, and widget-level

rewards are set at 50, 2, and 1, respectively. We set scaling

factors for widget-level rewards as M = 2 and N = 10. We

set the distance threshold τ to 2. A small-scale experiment is

conducted to establish best practices, upon which all hyper-

parameters for APIMind are determined. Moreover, we recruit

three senior software engineering undergraduates familiar with

Android app development to label the samples by majority

voting.

We employ a systematic approach to construct the

dataset for the experiments. Our first step is to develop a

crawler that could get hold of apps from the Xiaomi app

store(https://app.mi.com/download/{id}). Our crawler gener-

ates app links with “id” values between 1 and 1000. After

eliminating the invalid links, the resulting dataset consist of

432

Authorized licensed use limited to: Peking University. Downloaded on December 12,2023 at 03:00:46 UTC from IEEE Xplore. Restrictions apply.

Fig. 5: Quantitative results of APIMind, UniRLTest-S, and

UniRLTest in discovering sensitive API calls.

605 apps. We split these into training and testing sets of

484 and 121 apps, respectively. These apps generally vary in

size, ranging from 128KB to 424 MB. Furthermore, based

on previous research [2], [51], [52], we identify a set of

sensitive APIs to be monitored during our experiments, shown

in Table I.

B. RQ1: Effectiveness in discovering sensitive APIs

To demonstrate the effectiveness of our tool in identifying

sensitive APIs, we design a set of experiments to undertake

a thorough evaluation. Specifically, we measure the speed of

invoking sensitive APIs by APIMind and compare it against

two baseline methods. The first one is a state-of-the-art RL

GUI testing framework (UniRLTest) [53] that focuses on

maximizing coverage. It is more recent and efficient than

Droidbot [54], which is the GUI tester used by APICOG. The

second one (UniRLTest-S) is a modified version of UniRLTest
that incorporates the number of sensitive API calls in each

activity into its objective function. This method examines the

validity of our Q-Network design and multi-faceted reward

scheme.

We implement uniform training settings for all the meth-

ods. Specifically, we follow the precedent of previous re-

searchers [16] and conduct training and exploration on each

app for a maximum of 20 minutes. The exploration pro-

cess is repeated three times to guarantee reliable results

because various training experiences could prompt the model

to pursue different strategies [26]. Furthermore, descriptive

statistics, including the mean, standard deviation, and median,

are performed on sensitive API calls identified by the three

methods. By analyzing these metrics, we could compare the

effectiveness of these methods.

Fig. 5 provides the quantitative results of the proposed

approach and other baselines. It can be clearly found that

UniRLTest and UniRLTest-S rarely detect sensitive API calls.

The reasons for this observation are as follows. UniRLTest
adopts a simple reward function, making it challenging to

explore apps with complex business logic effectively. Specif-

ically, the reward function overly emphasizes exploring states

with more unvisited widgets, which can easily cause infi-

nite scrolling operations. Although UniRLTest-S incorporates

sensitive APIs into the reward function, it fails to learn the

relationship between local widgets and sensitive API calls due

to its coarse-grained understanding. The results demonstrate

that these methods are not suitable for discovering sensitive

APIs.

We can observe that APIMind exhibits superior performance

compared to UniRLTest-S and UniRLTest. Specifically, API-
Mind identifies a mean of 2137 sensitive API calls, while

UniRLTest-S and UniRLTest only detect 1495 and 1442,

respectively. This suggests that APIMind achieves a 43%

improvement in efficiency over UniRLTest. This is expected

because it has the explicit goal of triggering sensitive APIs.

With this underlying goal, APIMind can automatically learn

the relationship between widgets and APIs using neural net-

works.

Finally, it is worth mentioning the overlap of sensitive

APIs identified by the three methods. Indeed, APIMind and

UniRLTest-S find 1222 common sensitive API calls (i.e., the

same GUI widgets and contexts). APIMind and UniRLTest
yield 1253 overlaps, while UniRLTest and UniRLTest-S yield

1081 overlaps. An important finding of this analysis is that

UniRLTest-S can only identify 104 missed by APIMind,

whereas APIMind detects 924 missed by UniRLTest-S. This

is mainly due to the consideration of fine-grained features,

allowing APIMind to identify more sensitive APIs. Besides,

UniRLTest-S may get stuck in a cycle of constantly clicking a

GUI widget that can trigger sensitive APIs, while APIMind
solves this problem by limiting the visiting frequency of

widgets.

C. RQ2: Effectiveness in Assessing Description-to-Permission
Fidelity

To evaluate the usefulness of our approach, we perform

a consistency analysis between the contexts and collected

privacy data. Such analysis helps prevent personal data leak-

age, such as sending it to third parties without the user’s

knowledge. To assess the validity of our method, we conduct

a comparison with APICOG, which serves as a baseline

method. In this study, we execute 121 apps in the testing

set and gather accessed activities and sensitive APIs using

Trigger. Subsequently, we conduct manual labeling of 2178

< activity, API > pairs for consistency assessment. Lastly,

we utilize Fidelity Analyzer and APICOG to analyze each pair

and calculate the following metrics, respectively.

accuracy =
TP + TN

TP + FN + TN + FP
(5)

precision =
TP

TP + FP
(6)

recall =
TP

TP + FN
(7)

F1 score =
2× precision× recall

precision+ recall
(8)

433

Authorized licensed use limited to: Peking University. Downloaded on December 12,2023 at 03:00:46 UTC from IEEE Xplore. Restrictions apply.

Fig. 6: Performance comparison of APIMind and APICOG in

assessing description-to-permission fidelity.

where TP, TN, FN, and FP denote true positive, true negative,

false negative, and false positive, respectively.

The experimental results indicate that APIMind outperforms

APICOG in assessing description-to-permission fidelity in An-

droid apps, as shown in Fig. 6. More specifically, the accuracy,

precision, recall, and F1 score of APIMind are 96.1%, 97.0%,

97.9%, and 97.4%, respectively. APICOG achieves lower

results: 92.4%, 93.9%, 95.9%, and 94.9%, respectively. The

main reason is that APIMind considers the preceding UI con-

text, thus achieving higher detection accuracy. An illustrative

example is shown in Fig. 2. The details have been previously

introduced in Section II-B. For recall improvement, we also

use an example to illustrate this. For instance, an app requests

location information in a preceding activity. However, after

the request is denied, it still accesses the location information

necessary for the current activity. APIMind can infer the denial

choice from the preceding context and detect the inconsistency,

while the baseline cannot. Overall, these results demonstrate

the potential usefulness of our tool.

D. RQ3: Effect of Multimodal Features

In this section, we conduct ablation studies of different

feature modalities and investigate their effects on model per-

formance. The numerical results are presented in Fig. 7. Here,

NoVF, NoLC, and NoMA indicate that we eliminate the visual

features, layout context features, and meta-attribute features,

respectively. From Fig. 7, we observe that APIMind exhibits

better performance than NoMA. Specifically, the number of

sensitive APIs identified by APIMind is much higher than that

identified by NoMA, which demonstrates the validity of meta-

attributes in sensitive API triggering. The primary reason is

that meta-attributes can directly reflect the semantics of GUI

widgets, with generalization under different UI contexts.

It can be found that APIMind significantly outperforms

the variant NoLC. More specifically, the number of sensitive

API calls identified by APIMind decreases by 325 compared

with NoLC. The results imply the effectiveness of layout

context features in identifying sensitive API calls. The reason

is that the semantics of GUI widgets can be inferred based on

the runtime context when meta-attributes, such as texts and

content descriptions, are unavailable. For visual features, its

Fig. 7: The ablation analysis of different multimodal features.

impact on model performance is minor relative to the other

two. One potential explanation is that considering the GUI

state as a whole and understanding it based on vision alone

are too coarse-grained to infer the semantics of local widgets.

Overall, the performance of all three variants shows a de-

cline to varying extents. Specifically, APIMind discovers 2178

sensitive API calls, while NoVF, NoLC, and NoMA identify

2033, 1853, and 1708, respectively. The results suggest that

integrating these feature modalities could enhance the overall

performance of APIMind. This discrepancy implies that these

feature modalities significantly affect model performance,

ranked in descending order as meta-attribute features, layout

context features, and visual semantic features.

E. RQ4: Prevalence of Typical Inconsistencies

To investigate the prevalence of typical inconsistencies in

Android apps, we conduct a large-scale case study using

APIMind. Our study involves the collection of 1013 realistic

Android apps from the Xiaomi App Store from September 26

to October 9, 2022. We choose the Xiaomi App Store because

of its popularity and availability of diverse app categories.

Similar to the dataset for evaluating APIMind, we systemat-

ically fetch these apps with IDs ranging from 1000 to 3000.

This indicates there is no overlap between the two datasets.

To obtain more realistic results, we select 1200 apps using a

category-based sampling method and eliminate any that crash

during interactions with Frida. Eventually, our dataset includes

1013 apps across 12 categories, such as sports, health, and

travel.

Our research, based on an examination of 1013 mobile apps,

reveals that 82.8% of them (839 apps) contain at least one

inconsistency. Besides, we manually identify several typical

inconsistencies. We provide further details below.

Unnecessary Permissions. For 68.7% of inconsistencies,

apps collect sensitive data beyond what is necessary for their

intended purposes. An illustrative example is provided in

Fig. 8(a), which displays a region selection page for a food

delivery app. In this instance, the app gathers the device ID,

IMSI, phone number, SIM card serial number, and subscriber

ID, which are unnecessary for the functionalities they present

to users. Note that Android runtime permissions provide

434

Authorized licensed use limited to: Peking University. Downloaded on December 12,2023 at 03:00:46 UTC from IEEE Xplore. Restrictions apply.

Fig. 8: Some concrete examples of apps with inconsistencies.

insufficient protection for these permissions, exposing users

to stealthy data collection practices.

Deceptive Agreements. The second most frequent incon-

sistency is deceptive agreements, accounting for 27%. In this

case, the app may present users with a misleading agreement

that appears to offer them the choice of granting requested

permissions. However, the app may request additional permis-

sions not disclosed in the user agreement or collect sensitive

data it wants without authorization (such as denied or un-

consented). For example, as depicted in Fig. 8(b), the Game
Console app gathered sensitive data before the user agreed to

the privacy policy by clicking the green box.

Retaining Permissions. Lastly, for 4.3% of inconsistencies,

apps may misuse permissions that have been granted legit-

imately. For instance, the My Bentley app asks for location

permission for navigation purposes, which the user approves

by selecting the “While using the app” option highlighted by

the red box, as shown in Fig. 8(c). However, upon reaching

Fig. 8(d), the app goes beyond its scope by abusing the

granted permission to gather location data unnecessarily. Such

access allows the app to track users’ movement continuously,

which is an unexpected behavior.

F. RQ5: Responses from the Administrator

To assess the feasibility of our tool, we randomly select

40 apps with inconsistencies and report them to the Personal

Information Protection Task Force on Apps (PIPTFoA) for

manual assessment. PIPTFoA is a reputable institution created

through a joint effort by four authoritative bodies in China:

the Ministry of Public Security, the Ministry of Industry and

Information Technology, the State Administration for Market

Regulation, and the Cyberspace Administration [55]. This

institution vigilantly regulates and evaluates mobile app data-

gathering practices. Given their limited personnel, we limit our

submissions to 40 apps to avoid overwhelming the PIPTFoA

team and potential service denial.

As of the paper submission deadline, a total of 29 apps

were confirmed for our study. Out of these, eight apps in-

cluded severe violations, while the remaining 21 had minor

infractions. Additionally, 11 apps, apart from those above 29,

resolved their issues in the updated version. These findings

suggest that our tool exhibits significant potential for assessing

description-to-permission fidelity.

TABLE II: The list of apps with severe violations.

Package Name Version Number

com.jianshu.haruki 6.4.8

com.a3733.gamebox 3.6.1173

com.ddcinemaapp 8.6.8

com.horizon.offer 5.5.18

com.ushaqi.zhuishushenqi 4.85.4

com.baidu.lbs.crowdapp 6.1.6

com.cnki.client 8.5.3

com.daodao.note 1.1.4.1

G. Implications and Suggestions

Our study presents evidence of extensive inconsistencies

(82.8% of apps) in Android apps, indicating possible risks of

privacy breaches and other security hazards. In addition, our

findings identify several common types of inconsistencies, pro-

viding meaningful guidance for designing advanced strategies

to safeguard privacy.

We provide several suggestions to address these incon-

sistencies. First, developers should carefully determine the

permissions required for each activity during the development

process. Second, automated tools like APIMind should be

designed and developed to detect such inconsistent behaviors.

Third, access control should be more granular, especially at

the activity level. This indicates that each activity cannot

directly access permissions granted in other activities and must

request them again if necessary. Finally, permission dialogs

435

Authorized licensed use limited to: Peking University. Downloaded on December 12,2023 at 03:00:46 UTC from IEEE Xplore. Restrictions apply.

should include detailed explanations. This enables users to

comprehend better what permissions the app requests.

V. DISCUSSIONS

A. Threats to Validity

Internal Threats. The hyperparameter setting poses the

primary threat to internal validity. Due to limitations of time

and resources, the exhaustive fine-tuning of hyperparameters

is infeasible, implying that the current configuration might

not be optimal. To tackle this issue, we strive to follow the

precedent of past research. Additionally, for cases where there

is no known reference, small-scale experiments are designed

to ensure their best practices.

External Threats. The main threat to external validity is

the limited sample size of apps tested in the experiments.

To address this threat, we implement a systematic method

to build the dataset, which involves retrieving apps from

the Xiaomi app market using an auto-incremental ID allo-

cation. While evaluating a larger pool of apps would be

ideal, our sample includes a large and diverse set of apps

from various categories, suggesting the general applicability

of our methodology. Another potential threat is the bias in

manually annotating < activity, API > pairs. However, prior

research [56] indicates that senior students can act as reliable

proxies in a controlled setting.

B. Limitations

Despite the promising performance of our tool, it still suffers

from some limitations. First, APIMind instruments apps with

Frida to monitor sensitive APIs, but it only supports native

code and Java bytecode, not non-Java code. However, Frida

is replaceable, and APIMind can integrate with future tools

for non-Java code. Second, APIMind uses dynamic analysis,

which may fail to access or test login functionalities. This may

limit the applicability of our approach. Third, APIMind only

employs DQN-based techniques. We plan to explore other RL

architectures in future work.

VI. RELATED WORK

GUI Testing. Random methods, such as Monkey [22] and

Dynodroid [57], were used in the earliest stages to automate

mobile app testing. To improve test comprehensiveness, some

scholars have investigated utilizing state machines [54], [58],

[59] or systematic strategies [60], [61] to produce superior test

cases. There have been studies that deploy machine learning

in GUI testing [25], [27], [31], [62]–[65]. Currently, reinforce-

ment learning techniques are prevalent in testing tasks [25],

[27], [62], [66]. Zhang et al. [53] proposed UniRLTest, a

curiosity-driven reinforcement learning framework to guide

the exploration of unfamiliar functions. Nonetheless, these

testing frameworks are designed to achieve maximum code

or GUI coverage in general but are ineffective in discovering

specific targets like sensitive API calls. Unlike these general

techniques, APIMind is a dynamic approach that understands

GUI widgets at a fine-grained level and correlates API calls

with dual UI contexts (i.e., preceding and current contexts).

NLP Techniques for Android. NLP techniques have been

employed to extract semantics from textual descriptions to

perform the security analysis of mobile apps [2]–[4], [15],

[16], [67]–[74]. For instance, Qu et al. [3] proposed an end-to-

end tool AutoCog to detect whether the requested permissions

are consistent with textual descriptions of apps. Yu et al. [4]

proposed to incorporate privacy policies to enhance detection

performance. However, these methods are too coarse-grained

to determine the consistency between the API-usage purposes

and the app’s actual behavior.

Moreover, Pan et al. proposed FlowCog [16], a system

that can analyze the semantics of information flows and

detect whether they are justified by app behaviors. However,

static analysis methods tend to be practically infeasible and

undesirable due to the intense use of dynamic features such

as code obfuscation, code encryption, dynamic class loading,

and reflection (especially in malware apps). APICOG [2] is a

dynamic analysis framework that can check the legitimacy of

sensitive API calls by correlating them with their runtime UI

contexts and extracting natural language semantics from both

the app and API documentation.

VII. CONCLUDING REMARKS

In this paper, we present APIMind, a novel automated

tool for assessing runtime description-to-permission fidelity in

Android apps. The key idea behind it is to efficiently trigger

sensitive APIs by utilizing multimodal features to jointly infer

the semantics of GUI widgets and leveraging deep networks

to automatically learn their relationship. Furthermore, it can

accurately examine the legitimacy of sensitive API calls by de-

veloping an extended version of an existing tool that considers

dual UI contexts (i.e., preceding and current contexts). Based

on our newly proposed automated testing tool, we conduct a

large-scale case study of 1013 real Android apps. Our find-

ing reveals the prevalence of several typical inconsistencies:

unnecessary permissions, deceptive agreements, and retaining

permissions. Our work indicates that API-driven methods can

help detect more permission-related issues, which shows a

promising direction for privacy-related research for mobile

apps.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their

valuable feedback. This work was supported by the National

Natural Science Foundation of China (62141208, 62172009).

REFERENCES

[1] COUNTERPOINT, “Market share for smartphone oses.”
2022. [Online]. Available: https://www.counterpointresearch.com/
global-smartphone-share/

[2] J. Liu, D. He, D. Wu, and J. Xue, “Correlating ui contexts with sensitive
api calls: Dynamic semantic extraction and analysis,” in 2020 IEEE 31st
International Symposium on Software Reliability Engineering (ISSRE).
IEEE, 2020, pp. 241–252.

[3] Z. Qu, V. Rastogi, X. Zhang, Y. Chen, T. Zhu, and Z. Chen, “Au-
tocog: Measuring the description-to-permission fidelity in android ap-
plications,” in Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security, 2014, pp. 1354–1365.

436

Authorized licensed use limited to: Peking University. Downloaded on December 12,2023 at 03:00:46 UTC from IEEE Xplore. Restrictions apply.

[4] L. Yu, X. Luo, C. Qian, S. Wang, and H. K. Leung, “Enhancing the
description-to-behavior fidelity in android apps with privacy policy,”
IEEE Transactions on Software Engineering, vol. 44, no. 9, pp. 834–854,
2017.

[5] O. Olukoya, L. Mackenzie, and I. Omoronyia, “Security-oriented view
of app behaviour using textual descriptions and user-granted permission
requests,” Computers & Security, vol. 89, p. 101685, 2020.

[6] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel, “Flowdroid: Precise context,
flow, field, object-sensitive and lifecycle-aware taint analysis for android
apps,” Acm Sigplan Notices, vol. 49, no. 6, pp. 259–269, 2014.

[7] P. A. M. Al-Bakri and H. L. Hussein, “Static analysis based behavioral
api for malware detection using markov chain,” The International
Institute for Science, Technology and Education (IISTE), vol. 5, no. 2014,
2014.

[8] A. Sami, B. Yadegari, H. Rahimi, N. Peiravian, S. Hashemi, and
A. Hamze, “Malware detection based on mining api calls,” in Pro-
ceedings of the 2010 ACM symposium on applied computing, 2010, pp.
1020–1025.

[9] Y. Liu, N. Xi, and Y. Zhi, “Nleu: A semantic-based taint analysis
for vetting apps in android,” in 2021 International Conference on
Networking and Network Applications (NaNA). IEEE, 2021, pp. 327–
333.

[10] Y. Li, Y. Guo, and X. Chen, “Peruim: Understanding mobile application
privacy with permission-ui mapping,” in Proceedings of the 2016 ACM
International Joint Conference on Pervasive and Ubiquitous Computing,
2016, pp. 682–693.

[11] V. Rastogi, Y. Chen, and W. Enck, “Appsplayground: automatic security
analysis of smartphone applications,” in Proceedings of the third ACM
conference on Data and application security and privacy, 2013, pp.
209–220.

[12] H. Wang, J. Hong, and Y. Guo, “Using text mining to infer the purpose
of permission use in mobile apps,” in Proceedings of the 2015 ACM
international joint conference on pervasive and ubiquitous computing,
2015, pp. 1107–1118.

[13] D. Liang, R. Chen, and H. Sun, “Droidmonitor: a high-level program-
ming model for dynamic api monitoring on android,” Proc. NSCE. CRC
Press, pp. 93–96, 2014.

[14] W. Fan, Y. Sang, D. Zhang, R. Sun, and Y. Liu, “Droidinjector: A
process injection-based dynamic tracking system for runtime behaviors
of android applications,” Computers & Security, vol. 70, pp. 224–237,
2017.

[15] H. Wang and Y. Guo, “Understanding third-party libraries in mobile app
analysis,” in 2017 IEEE/ACM 39th International Conference on Software
Engineering Companion (ICSE-C). IEEE, 2017, pp. 515–516.

[16] X. Pan, Y. Cao, X. Du, B. He, G. Fang, R. Shao, and Y. Chen,
“{FlowCog}: Context-aware semantics extraction and analysis of infor-
mation flow leaks in android apps,” in 27th USENIX Security Symposium
(USENIX Security 18), 2018, pp. 1669–1685.

[17] F. Pauck, E. Bodden, and H. Wehrheim, “Do android taint analysis
tools keep their promises?” in Proceedings of the 2018 26th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, 2018, pp. 331–341.

[18] H. Wang, Y. Guo, Z. Tang, G. Bai, and X. Chen, “Reevaluating android
permission gaps with static and dynamic analysis,” in 2015 IEEE Global
Communications Conference (GLOBECOM). IEEE, 2015, pp. 1–6.

[19] J. Chen, C. Chen, Z. Xing, X. Xu, L. Zhut, G. Li, and J. Wang, “Unblind
your apps: Predicting natural-language labels for mobile gui components
by deep learning,” in 2020 IEEE/ACM 42nd International Conference
on Software Engineering (ICSE). IEEE, 2020, pp. 322–334.

[20] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
nature, vol. 518, no. 7540, pp. 529–533, 2015.

[21] C. Hu and I. Neamtiu, “Automating gui testing for android applications,”
in Proceedings of the 6th International Workshop on Automation of
Software Test, 2011, pp. 77–83.

[22] Google, “Ui/application exerciser,” 1983. [Online]. Available: http:
//developer.android.com/tools/help/monkey.html

[23] R. Mahmood, N. Mirzaei, and S. Malek, “Evodroid: Segmented evo-
lutionary testing of android apps,” in Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations of Software Engi-
neering, 2014, pp. 599–609.

[24] D. Amalfitano, N. Amatucci, A. R. Fasolino, and P. Tramontana, “Agrip-
pin: a novel search based testing technique for android applications,” in
Proceedings of the 3rd International Workshop on Software Development
Lifecycle for Mobile, 2015, pp. 5–12.

[25] A. Romdhana, A. Merlo, M. Ceccato, and P. Tonella, “Deep reinforce-
ment learning for black-box testing of android apps,” ACM Transactions
on Software Engineering and Methodology, 2022.

[26] R. Tufano, S. Scalabrino, L. Pascarella, E. Aghajani, R. Oliveto, and
G. Bavota, “Using reinforcement learning for load testing of video
games,” arXiv preprint arXiv:2201.06865, 2022.

[27] E. Collins, A. Neto, A. Vincenzi, and J. Maldonado, “Deep rein-
forcement learning based android application gui testing,” in Brazilian
Symposium on Software Engineering, 2021, pp. 186–194.

[28] F. YazdaniBanafsheDaragh and S. Malek, “Deep gui: black-box gui input
generation with deep learning,” in 2021 36th IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 2021,
pp. 905–916.

[29] B. Jiang, W. Wei, L. Yi, and W. Chan, “Droidgamer: Android game
testing with operable widget recognition by deep learning,” in 2021
IEEE 21st International Conference on Software Quality, Reliability and
Security (QRS). IEEE, 2021, pp. 197–206.

[30] J. Eskonen, J. Kahles, and J. Reijonen, “Automating gui testing with
image-based deep reinforcement learning,” in 2020 IEEE International
Conference on Autonomic Computing and Self-Organizing Systems (AC-
SOS). IEEE, 2020, pp. 160–167.

[31] Y. Koroglu, A. Sen, O. Muslu, Y. Mete, C. Ulker, T. Tanriverdi, and
Y. Donmez, “Qbe: Qlearning-based exploration of android applications,”
in 2018 IEEE 11th International Conference on Software Testing,
Verification and Validation (ICST). IEEE, 2018, pp. 105–115.

[32] D. Adamo, M. K. Khan, S. Koppula, and R. Bryce, “Reinforcement
learning for android gui testing,” in Proceedings of the 9th ACM
SIGSOFT International Workshop on Automating TEST Case Design,
Selection, and Evaluation, 2018, pp. 2–8.

[33] F. Y. B. Daragh and S. Malek, “Deep gui: Black-box gui input generation
with deep learning,” in 2021 36th IEEE/ACM International Conference
on Automated Software Engineering (ASE). IEEE, 2021, pp. 905–916.

[34] T. Gu, C. Sun, X. Ma, C. Cao, C. Xu, Y. Yao, Q. Zhang, J. Lu, and
Z. Su, “Practical gui testing of android applications via model abstraction
and refinement,” in 2019 IEEE/ACM 41st International Conference on
Software Engineering (ICSE). IEEE, 2019, pp. 269–280.

[35] S. Zhang, Y. Li, W. Yan, Y. Guo, and X. Chen, “Dependency-aware
form understanding,” in 2021 IEEE 32nd International Symposium on
Software Reliability Engineering (ISSRE). IEEE, 2021, pp. 139–149.

[36] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double q-learning,” in Proceedings of the AAAI conference on
artificial intelligence, vol. 30, no. 1, 2016.

[37] K. Hornik, “Approximation capabilities of multilayer feedforward net-
works,” Neural networks, vol. 4, no. 2, pp. 251–257, 1991.

[38] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” arXiv preprint arXiv:1409.0473,
2014.

[39] N. Reimers and I. Gurevych, “Sentence-bert: Sentence embeddings using
siamese bert-networks,” arXiv preprint arXiv:1908.10084, 2019.

[40] M. Chen, Z. Chang, H. Lu, B. Yang, Z. Li, L. Guo, and Z. Wang,
“Augnet: End-to-end unsupervised visual representation learning with
image augmentation,” 2021.

[41] B. Deka, Z. Huang, C. Franzen, J. Hibschman, D. Afergan, Y. Li,
J. Nichols, and R. Kumar, “Rico: A mobile app dataset for building
data-driven design applications,” in Proceedings of the 30th Annual ACM
Symposium on User Interface Software and Technology, 2017, pp. 845–
854.

[42] B. Wang, G. Li, X. Zhou, Z. Chen, T. Grossman, and Y. Li,
“Screen2words: Automatic mobile ui summarization with multimodal
learning,” in The 34th Annual ACM Symposium on User Interface
Software and Technology, 2021, pp. 498–510.

[43] S. Feiz, J. Wu, X. Zhang, A. Swearngin, T. Barik, and J. Nichols,
“Understanding screen relationships from screenshots of smartphone
applications,” in 27th International Conference on Intelligent User
Interfaces, 2022, pp. 447–458.

[44] T. J.-J. Li, L. Popowski, T. Mitchell, and B. A. Myers, “Screen2vec:
Semantic embedding of gui screens and gui components,” in Proceedings
of the 2021 CHI Conference on Human Factors in Computing Systems,
2021, pp. 1–15.

437

Authorized licensed use limited to: Peking University. Downloaded on December 12,2023 at 03:00:46 UTC from IEEE Xplore. Restrictions apply.

[45] R. S. Sutton, “Learning to predict by the methods of temporal differ-
ences,” Machine learning, vol. 3, pp. 9–44, 1988.

[46] Stanford, “[online].” 2010. [Online]. Available: https://github.com/
dasmith/stanford-corenlp-python

[47] S. Rasthofer, S. Arzt, M. Miltenberger, and E. Bodden, “Harvesting run-
time values in android applications that feature anti-analysis techniques.”
in NDSS, 2016.

[48] OpenATX, “Uiautomator2,” 2017. [Online]. Available: https://github.
com/openatx/uiautomator2/releases

[49] Facebook, “Pytorch,” 2016. [Online]. Available: https://github.com/
pytorch/pytorch

[50] Oleavr, “Frida,” 2016. [Online]. Available: https://github.com/frida/
frida/releases

[51] L. Gong, Z. Li, F. Qian, Z. Zhang, Q. A. Chen, Z. Qian, H. Lin, and
Y. Liu, “Experiences of landing machine learning onto market-scale
mobile malware detection,” in Proceedings of the Fifteenth European
Conference on Computer Systems, 2020, pp. 1–14.

[52] Y. Wu, D. Zou, W. Yang, X. Li, and H. Jin, “Homdroid: detecting
android covert malware by social-network homophily analysis,” in
Proceedings of the 30th ACM SIGSOFT International Symposium on
Software Testing and Analysis, 2021, pp. 216–229.

[53] Z. Zhang, Y. Liu, S. Yu, X. Li, Y. Yun, C. Fang, and Z. Chen,
“Unirltest: universal platform-independent testing with reinforcement
learning via image understanding,” in Proceedings of the 31st ACM
SIGSOFT International Symposium on Software Testing and Analysis,
2022, pp. 805–808.

[54] Y. Li, Z. Yang, Y. Guo, and X. Chen, “Droidbot: a lightweight ui-guided
test input generator for android,” in 2017 IEEE/ACM 39th International
Conference on Software Engineering Companion (ICSE-C). IEEE,
2017, pp. 23–26.

[55] C. government, “Announcement on carrying out special governance
on illegal and irregular collection and use of personal information by
app,” 2019. [Online]. Available: http://www.gov.cn/zhengce/zhengceku/
2019-11/11/content 5450754.htm

[56] I. Salman, A. T. Misirli, and N. Juristo, “Are students representatives of
professionals in software engineering experiments?” in 2015 IEEE/ACM
37th IEEE international conference on software engineering, vol. 1.
IEEE, 2015, pp. 666–676.

[57] A. Machiry, R. Tahiliani, and M. Naik, “Dynodroid: An input generation
system for android apps,” in Proceedings of the 2013 9th Joint Meeting
on Foundations of Software Engineering, 2013, pp. 224–234.

[58] T. Su, G. Meng, Y. Chen, K. Wu, W. Yang, Y. Yao, G. Pu, Y. Liu, and
Z. Su, “Guided, stochastic model-based gui testing of android apps,” in
Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering, 2017, pp. 245–256.

[59] W. Yang, M. R. Prasad, and T. Xie, “A grey-box approach for automated
gui-model generation of mobile applications,” in International Confer-
ence on Fundamental Approaches to Software Engineering. Springer,
2013, pp. 250–265.

[60] K. Mao, M. Harman, and Y. Jia, “Sapienz: Multi-objective automated
testing for android applications,” in Proceedings of the 25th international
symposium on software testing and analysis, 2016, pp. 94–105.

[61] T. Azim and I. Neamtiu, “Targeted and depth-first exploration for
systematic testing of android apps,” in Proceedings of the 2013 ACM
SIGPLAN international conference on Object oriented programming
systems languages & applications, 2013, pp. 641–660.

[62] M. Pan, A. Huang, G. Wang, T. Zhang, and X. Li, “Reinforcement
learning based curiosity-driven testing of android applications,” in
Proceedings of the 29th ACM SIGSOFT International Symposium on
Software Testing and Analysis, 2020, pp. 153–164.

[63] N. P. Borges Jr, M. Gómez, and A. Zeller, “Guiding app testing with
mined interaction models,” in Proceedings of the 5th International
Conference on Mobile Software Engineering and Systems, 2018, pp.
133–143.

[64] J.-W. Lin, R. Jabbarvand, and S. Malek, “Test transfer across mobile
apps through semantic mapping,” in 2019 34th IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 2019,
pp. 42–53.

[65] Y. Li, Z. Yang, Y. Guo, and X. Chen, “Humanoid: A deep learning-
based approach to automated black-box android app testing,” in 2019
34th IEEE/ACM International Conference on Automated Software En-
gineering (ASE). IEEE, 2019, pp. 1070–1073.

[66] H. Spieker, A. Gotlieb, D. Marijan, and M. Mossige, “Reinforcement
learning for automatic test case prioritization and selection in continuous

integration,” in Proceedings of the 26th ACM SIGSOFT International
Symposium on Software Testing and Analysis, 2017, pp. 12–22.

[67] C. Zhang, H. Wang, R. Wang, Y. Guo, and G. Xu, “Re-checking app
behavior against app description in the context of third-party libraries.”
in SEKE, 2018, pp. 665–664.

[68] R. Pandita, X. Xiao, W. Yang, W. Enck, and T. Xie, “{WHYPER}:
Towards automating risk assessment of mobile applications,” in 22nd
USENIX Security Symposium (USENIX Security 13), 2013, pp. 527–
542.

[69] A. Gorla, I. Tavecchia, F. Gross, and A. Zeller, “Checking app behavior
against app descriptions,” in Proceedings of the 36th international
conference on software engineering, 2014, pp. 1025–1035.

[70] J. Huang, X. Zhang, L. Tan, P. Wang, and B. Liang, “Asdroid: Detecting
stealthy behaviors in android applications by user interface and program
behavior contradiction,” in Proceedings of the 36th International Con-
ference on Software Engineering, 2014, pp. 1036–1046.

[71] F. Dong, H. Wang, L. Li, Y. Guo, G. Xu, and S. Zhang, “How do
mobile apps violate the behavioral policy of advertisement libraries?”
in Proceedings of the 19th International Workshop on Mobile Computing
Systems & Applications, 2018, pp. 75–80.

[72] Y. Li, F. Chen, T. J.-J. Li, Y. Guo, G. Huang, M. Fredrikson, Y. Agarwal,
and J. I. Hong, “Privacystreams: Enabling transparency in personal data
processing for mobile apps,” Proceedings of the ACM on Interactive,
Mobile, Wearable and Ubiquitous Technologies, vol. 1, no. 3, pp. 1–26,
2017.

[73] Y. Hu, H. Wang, T. Ji, X. Xiao, X. Luo, P. Gao, and Y. Guo, “Champ:
Characterizing undesired app behaviors from user comments based on
market policies,” in 2021 IEEE/ACM 43rd International Conference on
Software Engineering (ICSE). IEEE, 2021, pp. 933–945.

[74] M. Liu, H. Wang, Y. Guo, and J. Hong, “Identifying and analyzing
the privacy of apps for kids,” in Proceedings of the 17th International
Workshop on Mobile Computing Systems and Applications, 2016, pp.
105–110.

438

Authorized licensed use limited to: Peking University. Downloaded on December 12,2023 at 03:00:46 UTC from IEEE Xplore. Restrictions apply.

