
ReSPlay: Improving Cross-Platform
Record-and-Replay with GUI Sequence Matching

Shaokun Zhanga, Linna Wub,c, Yuanchun Lid, Ziqi Zhanga, Hanwen Leia, Ding Lia†, Yao Guoa†, Xiangqun Chena
a Key Lab of High-Confidence Software Tech (MOE), School of Computer Science, Peking University, Beijing, China

b Key Laboratory of Mobile Application Innovation and Governance Technology, Beijing, China
c CTTL Terminals Labs, China Academy of Information and Communications Technology, Beijing, China

d Institute for AI Industry Research, Tsinghua University, Beijing, China

{skzhang, ziqi zhang, ding li, yaoguo, cherry}@pku.edu.cn, lei hanwen@stu.pku.edu.cn,

wulinna@caict.ac.cn, liyuanchun@air.tsinghua.edu.cn

Abstract—Record-and-replay is an important testing technique
to ensure the quality of mobile applications (apps in short).
State-of-the-art record-and-replay approaches are typically based
on widget matching, which has shown limited effectiveness,
especially on devices with different platforms and resolutions, due
to the difficulty in matching widgets with subtle visual differences.
Our key observation is that, even if two widgets look similar, the
resulting screenshot sequences can still be very different during
execution. Thus, instead of matching GUI widgets directly, we are
able to find the correct replay actions by comparing the resulting
GUI screenshot sequences, which can be better distinguished
across different platforms, thus potentially improving the record-
and-replay efficiency through GUI exploration and comparison.

This paper proposes a general record-and-replay framework
called ReSPlay, which leverages a more robust visual feature,
GUI sequences, to guide replaying more accurately. ReSPlay
pre-trains a deep reinforcement learning model, SDP-Net, offline
from random app traces. Specifically, SDP-Net is trained to
search a particular path from GUI transition graphs to learn
an optimal policy to locate the target operation positions by
maximizing the possibilities to reach the target GUI sequence.
Finally, the trained SDP-Net is used to search for potential event
traces with high rewards and replicate them on the target device
for replay. We evaluate our proposed framework on multiple
real devices. Experimental results show that the overall average
replay accuracy of ReSPlay on devices across different OSes, GUI
styles, and resolutions is 28.12% higher than the state-of-the-art
baselines.

I. INTRODUCTION

Record-and-replay techniques, which automatically rerun

user actions on different mobile devices, can help save de-

velopers from repetitive manual testing [1]. Conventional

attribute-based and pixel-based techniques are focused on

replaying user actions on similar devices, which have limited

application scope [2]–[4]. Recently, researchers have pro-

posed image-based record-and-replay techniques [3], [5]–[12]

to support cross-platform record-and-replay. Although these

techniques look promising, they still suffer from low replay
accuracy issues for cross-platform testing, as their replaying

accuracy rarely tops 60% [3], [5]–[12].

The state-of-the-art image-based cross-platform record-and-

replay techniques have sub-optimal accuracy because they rely

on features that are not robust when dealing with similar GUI

†Corresponding authors.

Fig. 1: Comparison between the core insight of ReSPlay and

existing image-based solutions.

widgets. Existing image-based techniques [3], [5]–[12] directly

match user actions according to visual features of the GUI

widgets (e.g., matching widgets that look similar). However,

since different GUI widgets may look visually similar, current

techniques have a high chance of introducing mismatches

while correlating widget execution, leading to sub-optimal

replay accuracy [2], [8]. A feature that is robust to visually

similar GUI widgets is desired to improve the accuracy of

cross-platform record-and-replay.

In this paper, to improve the accuracy of image-based cross-

platform record-and-replay, we propose ReSPlay, a framework

that leverages image features that are robust to similar GUI

widgets. ReSPlay is fundamentally different from existing

record-and-replay techniques in its design principle: instead of
matching GUI widgets across platforms, ReSPlay attempts to
match the resulting GUI screenshot sequences after executing
a widget on different devices. In other words, unlike existing

techniques that search for the same widget on different plat-

forms, ReSPlay aims to find widgets that can lead to the same

GUI sequences across devices. The general idea of ReSPlay

is shown in Fig. 1. The upper part of Fig. 1 shows the high-

level ideas of existing techniques which match the recorded

GUI widgets ei to their counterpart e′i on the target device. In

comparison, in the lower part of Fig. 1, ReSPlay searches for

an action that leads to the sequence of GUI screenshots (�′i+1

to �′n) on the target device that matches the coming recorded

GUI screenshots (�i+1 to �n) on the source device.

The intuition behind our design is as follows. Matching

GUI widgets is challenging because there may exist multiple

widgets with the same or similar looks, thus making it difficult

to distinguish between them. However, GUI screenshots are
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robust to visually similar GUI widgets because they contain

multiple GUI widgets that are well organized [13]. The prob-

ability for two GUI screenshots to have the same set of GUI

widgets that are organized similarly is much lower than the

probability of two single widgets that look similar. Therefore,

if we consider the resulting GUI screenshots after executing

the intended widget, the chance of making mismatches will be

lower. Furthermore, if we consider a sequence of screenshots,

the chance of making mismatches will decrease further.

Although our intuition of matching the sequence of GUI

screenshots is straightforward, realizing it is conceptually chal-

lenging. The key challenge is how to consider the screenshots

that cannot be seen at the time when a widget execution is

taken. One widget execution can only produce one screenshot,

which is the next GUI screenshot. Subsequent GUI screenshots

cannot be seen before future widget executions are taken.

However, since our approach aims to find the execution

that can lead to the same sequence of GUI screenshots, it

is important to know all subsequent GUI screenshots that

a widget execution may produce, which is computationally

expensive.

To address this challenge, we leverage reinforcement learn-

ing [14], [15], which enables our approach to make decisions

based on unseen screenshots. Specifically, we deploy a DQN

framework that uses a deep neural network to predict a

cumulative reward, which measures the similarity between a

sequence of GUI screenshots generated by an action on the tar-

get device and the sequence of GUI screenshots generated on

the source device. Using the DQN-based RL learning reduces

the computational complexity of searching by compressing all

future GUI screenshots into a neural network, which we can

solve with back-propagation [16], [17].

Besides the research challenges, realizing ReSPlay also

faces two technical challenges. First, the number of training

samples is limited. It is difficult to train the neural network di-

rectly due to the limited number of training samples. ReSPlay

leverages pre-trained models to address this problem [18]–

[20]. Second, the dimension of the output space of the neural

network is too high. ReSPlay leverages the neural network to

predict the coordinates of the next GUI action on the screen.

However, since modern high-resolution screens have millions

of pixels [21], a neural network cannot accurately pinpoint the

GUI action’s coordinate with such a high dimensional output

space. To address this challenge, we first set a fixed output

size greater than or equal to the maximum possible number

of actions in a GUI state and then create a mask to filter out

invalid actions.

We evaluate ReSPlay on six different experimental devices

with various platforms, as well as 12 real-world apps from

different categories. Specifically, we achieve a 17.89% im-

provement in accuracy for cross-OS replay. For cross GUI

styles replay, the average accuracy of ReSPlay is 88.63%,

which improves the accuracy of the baseline methods by

37.47%. For cross-resolution replay, ReSPlay increases the

average accuracy by 28.98% compared to the baseline. Over-

all, ReSPlay consistently improves accuracy over the SOTA

baselines in all cases.

Contributions. Our contributions are summarized as fol-

lows.

• To overcome the challenges in widget matching, we

propose to use the sequence of future GUI screenshots as

a new feature that is robust to distinguish visually similar

widgets.

• We develop and implement a cross-platform record-and-

replay framework called ReSPlay that leverages our new

features with deep reinforcement learning.

• We perform extensive experiments to evaluate the per-

formance of ReSPlay in replaying events on devices

of different platforms. The results demonstrate that our

approach can significantly improve the replay accuracy

of the state-of-the-art baselines for cross-OS, resolution,

and GUI style record-and-replay.

Data Availability: Our tool has been released on GitHub:

https://github.com/skzhangPKU/ReSPlay.

II. BACKGROUND AND RELATED WORK

Record-and-replay has been explored in automated testing

for many years. A variety of techniques have been developed

to replay test scripts on devices with various platforms and OS

versions [2]–[4], [10], [11], [22], [23]. According to the type

of entity used for matching, these techniques can be broadly

categorized into three distinct groups: pixel-based, attributed-

based, and image-based approaches.

A. Pixel-based Mobile Test Record and Replay

Early attempts have been made to replay event traces

based on matching image pixels to the same coordinate on

the same device [1], [4], [24]–[28]. For instance, Gomez et
al. [4] proposed a non-intrusive record-and-replay tool named

RERAN for the Android platform. The limitation of pixel-

based techniques is that they are not robust to changes in

resolutions, screen sizes, GUI styles, and OSes. Thus, they

cannot support cross-platform record-and-replay [2], [3].

B. Attribute-based Mobile Test Record and Replay

People develop attribute-based methods to replay event

traces on devices with the same OS but different resolu-

tions [3], [5]–[7], [28]–[33]. These techniques match the GUI

operation logs to layout files to support record-and-replay. The

problem with attribute-based techniques is that they cannot

support cross-OS record-and-replay because different OSes

have distinct GUI action logs and layout files [2], [34].

C. Image-based Mobile Test Record and Replay

To address the limitations of Pixel-based and Attribute-

based techniques, researchers also propose image understand-

ing techniques to locate target widgets [8]–[12], [35]–[41].

A recent study [2] has shown that image-based techniques

achieve higher accuracy than the other two types. Existing

image-based techniques are either purely visual or hybrid. For

the former, the technique with the highest accuracy in this

type is Sikuli [9], which leverages image recognition methods
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Fig. 2: A motivating example based on the OpenHAB app, including screenshots on iPhone 11 (a and c) and Honor 10 (b, d,

and e). Here, the red box in (a) indicates the recorded widget. The blue and red boxes in (b) indicate the operated widget and

the actual target widget on the replaying device, respectively. Figures (c), (e), and (d) indicate GUI screenshots after operating

the three different widgets, respectively.

to match widgets. For the latter, representative techniques in

this group are LIRAT [2] and MAPIT [39], which combine

widget image features with layout features or meta-attributes.

MAPIT assumes that most GUI widgets have meta-attributes,

which is not true for about 80% of apps revealed by recent

studies on large-scale analysis [34], [42]. Thus, compared with

MAPIT, LIRAT is more generalizable and more suitable for

cross-platform record-and-replay.

The limitation of current image-based approaches is that

they directly match GUI widgets across devices. They may

mismatch widget executions due to similar-looking widgets,

causing errors during replaying [8], [9], [11], [43]. Unlike

these techniques, ReSPlay leverages the future GUI screen-

shots sequences, which are robust to similar GUI widgets,

for cross-platform replay. Therefore, ReSPlay has fewer mis-

matches and higher accuracy.

III. A MOTIVATING EXAMPLE

For illustration, we choose a smart home app with a

community of more than 40K active members and developers,

openHAB [44]. The example is illustrated in Fig. 2, which

shows the scenario of replaying an iOS (iPhone 11) test case

on an Android phone (Honor 10). Fig. 2(a) shows the GUI

screenshot on the source device, in which the red box points

to a widget that leads to the status of all connected devices in

the kitchen (Fig. 2(c)). Fig. 2(b) shows the corresponding GUI

screenshot of Fig. 2(a) on the Android phone, which contains

two widgets (which look the same) marked by blue and red

boxes, which lead to the device status of the toilet (Fig. 2(e))

and the kitchen (Fig. 2(d)), respectively.

a) Challenges: Ideally, to replay an operation on the

widget in the red box in Fig. 2(a), the record-and-replay

tool should execute the widget in the red box in Fig. 2(b).

However, it is challenging for current solutions to identify the

correct widget accurately. Pixel-based techniques fail because

the coordinates of the widget in the red box in Fig. 2(a)

and the one in the red box in Fig. 2(b) are completely

different. Attribute-based techniques cannot match the red box

in Fig. 2(b) to the red box in Fig. 2(a) because it is hard to

match the system attributes of Android to the attributes of iOS.

Finally, image-based methods may mistake the widget in the

blue box in Fig. 2(b) for the one in the red box in Fig. 2(a)

because the two widgets look identical.

b) ReSPlay: Unlike these existing techniques, ReSPlay

does not search for the corresponding widgets in the red box

in Fig. 2(a). Instead, it searches for the correct action that

can lead to Fig. 2(d), which is the corresponding matching

GUI screenshot of Fig. 2(c). Matching the resulting GUI

screenshots yields a higher accuracy because GUI screenshots

contain multiple widgets, so they are more likely to show

detectable visual differences compared to single widgets. For

instance, although the widgets in the blue and red boxes in

Fig. 2(b) are identical, the GUIs that they may lead to are

different (i.e., Fig. 2(e) and Fig. 2(d)). Therefore, ReSPlay can

accurately distinguish between the widgets in the blue and red

boxes in Fig. 2(b) by checking the resulting GUI screenshots

in Fig. 2(e) and Fig. 2(d)1.

IV. OVERVIEW

We first define the necessary terms used in this paper. We

define a GUI state as a screenshot of the mobile device and a

GUI trace as a sequence of GUI states.

The workflow of ReSPlay is shown in Fig. 3. It consists of

two phases: synchronous recording and fine-tuned replaying.

In the recording phase, developers run the record module of

ReSPlay and then operate the target app on the source device

1We only use the next GUI screenshot in Fig. 2 for the clearness of the
presentation. In practice, ReSPlay considers a sequence of future GUI states.
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Fig. 3: The workflow of our proposed framework.

manually. This step generates the GUI screenshots that would

be used for the replaying phase. In the fine-tuned replaying

phase, ReSPlay leverages an offline trained model to search

for potential event traces and replay them on the target device.

The core part of ReSPlay is the Fine-tuned Replaying phase,

which searches for the matched screenshot sequences on the

target device. The general process of the Fine-tuned Replaying

phase is modeled as a reinforcement-learning process: an RL

agent is designed to explore the GUI space by optimizing a

reward. The reward is larger when the explored GUI states

match the given sequence of screenshots. Otherwise, the

reward is lower. We model the process as RL because it

considers future state sequences, leading to more robust feature

matching, and does not require labeled data.

V. DESIGN OF RESPLAY

We discuss the detailed design of the components in Re-

SPlay.

A. Synchronous Recording

The goal of this phase is to record the GUI traces from

the source device. Specifically, ReSPlay records the follow-

ing information: GUI screenshots and widget screenshots. A

widget screenshot is the smallest image region that wraps the

widget in a GUI screenshot. GUI screenshots are used for

two different purposes: one is to check whether test cases are

successfully replayed, and the other is as part of the model

input. ReSPlay records GUI screenshots using an Appium

API [45]. For convenience, ReSPlay also extracts widget

screenshots cropped from GUI screenshots.

B. RL Agent

The RL agent is used to explore the GUI space on the target

device and find the GUI states that match the given input. It

interacts with the environment, which is defined as an entity

that can return a reward and a new GUI state and automatically

updates its search policy for more efficient searching. Our RL

agent takes the DQN architecture. Besides this architecture,

there are DDPG [46], A3C [47], and SAC [48]. However, these

agent architectures are unsuitable for our approach because

they require a longer training time to reach the same accuracy

due to the lack of a cooperation mechanism [49]–[51]. Our

RL agent consists of three components: Q network, action

space, and reward. The RL agent requires an action space

containing all possible actions to transfer between GUI states.

For ReSPlay, the action space is all the possible GUI widgets

a user may execute. The goal of the Q network is to learn an

optimal policy to choose the action with the highest reward

from the action space. The learning process is guided by

the reward, which measures the similarity between the input

screenshot sequence and the current screenshot sequence on

the replay device.

1) Q Network: The structure of the Q network is called

SDP-Net. Its backbone architecture is a pre-trained ResNet

model [52]. The input of SDP-Net is a combined GUI state,

which involves the current GUI state on the replaying device

and the next GUI state on the recording device. The output

is the likelihood of each action that leads to the target

GUI sequence. This likelihood is termed a cumulative future

reward, which includes the immediate reward at each step

in the future. The immediate reward refers to the similarity

score between the GUI states on the recording device and the

replaying device.

A major challenge is the lack of data. Training an accurate

model requires millions of images [53]. However, it is difficult

to get this many images in the context of record-and-replay.

Therefore, ReSPlay leverages a pre-trained model based on

a publicly available mobile GUI dataset [54]. Although this

model is not trained from GUI traces, it is useful for replaying

GUI traces because latent semantic features learned are capa-

ble of distinguishing GUI states [42], [55], [56]. The benefit

of using pre-trained models is that it allows us to achieve an

efficient and robust approach in data-scarce settings. SDP-Net

modifies the pre-trained model by replacing the original output

layer with the output layer of SDP-Net, which is the index of

the next GUI action.

2) Reward Function: Intuitively, the reward is used to mea-

sure the similarity between GUI state sequences. Specifically,

we consider not only the next state but also a sequence of

future GUI states in the reward to improve the robustness to

similar GUI widgets. The reward is defined as follows:

Rt =
∞∑
i=t

γiRi
x (1)

where γi and Ri
x denote the discount factor and immediate

reward at time i, respectively. The discount factor indicates
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how much the RL agent cares about rewards in the distant

future. In particular, it is a cumulative future reward upon
which ReSPlay models subsequent possible GUI sequences.
The key challenge for implementing the reward function is

that we can only obtain a transition tuple, including the

current state and next state, at each step while subsequent

GUIs are unavailable. Since the sequence of future states

is unknown at each step, it must be estimated recursively

using the maximum future reward for the next state as an

approximation. Specifically, the maximum future reward of the

current state is the sum of the immediate reward and that of

the next state. By repeatedly expanding the recursive formula,

one can obtain the sum of the immediate rewards for all future

states. This way, the agent can estimate the value of each

state-action pair by looking ahead and evaluating the expected

return. In other words, ReSPlay also considers potentially the

matching of subsequent GUI states. Even when encountering

similar GUIs, their subsequent GUIs may differ. ReSPlay can

distinguish those GUIs similar to the target GUI based on the

long-term reward that considers future GUI sequences.

The immediate reward Rx consists of the vision-level re-

ward and the word-level reward. The vision-level reward is

necessary but insufficient because it ignores local changes in-

troduced by text in the GUI state. Fig. 4 illustrates an example

of local changes. In this case, Fig. 4(a) and 4(b) cannot be

distinguished solely based on visual similarity because existing

techniques cannot detect subtle differences between the texts

in blue boxes. To address this issue, we propose a word-level

reward that considers the textual differences between GUI

states. Specifically, when considering an operation, the GUI

after taking an action on the recording device is denoted as

X . Correspondingly, the one on the replaying device is denoted

as X̂ . The immediate reward is defined as follows:

Rx(X , X̂ ) =
∑

k∈{w,v}
ΓkRk(X , X̂ ) (2)

where Γ∗ is a penalty factor that regulates the balance of

the effects of visual semantics and text semantics, and Rw

and Rv represent the word-level reward and the vision-level

reward, respectively. The Γ∗ is used to improve the robustness

to noise [57]. The specific details are described as follows.

Fig. 4: Local changes for the Evernote app on one device.

1) Vision-level reward. Vision-level reward measures the

visual differences between GUI states by calculating the

Euclidean distance between their compressed vector represen-

tations. Calculating the Euclidean distance directly on GUI

screenshots is not feasible because it loses dependencies

between pixels, which is important to measure image sim-

ilarities [58], [59]. To capture the dependencies, we extract

meaningful features from images into a vectorized form using

an embedded model. In our framework, we take an unsuper-

vised visual representation model [52], denoted as VBN, as the

embedded model. We use the output of the last hidden layer

of the model as the embedding for two images. This method is

motivated by recent CV techniques [60], [61]. Given two GUI

images X and X̂ dumped from the recording device and the

replaying device, we define the vision-level reward as follows:

Rv(X , X̂ ) = I(sim(V BN(X ), V BN(X̂ )) < δ) (3)

where I represents the indicator function, δ stands for the im-

age similarity threshold, V BN is the embedding function that

compresses a two-dimensional image into a one-dimensional

vector, and sim(·, ·) denotes a similarity metric based on

Euclidean distance. We choose to use the indicator function

since prior studies have shown that a discrete reward function

can help improve accuracy [62], [63].

2)Word-level reward. Word-level reward measures the tex-

tual differences in GUI states by computing the sequence

similarity between the corresponding strings. We design this

reward to capture subtle local changes introduced by texts.

Specifically, we apply optical character recognition (OCR)

technology [64] to extract text from images and then compare

the sequence similarity between them. The word-level reward

can be formulated as follows:

Rw(X , X̂ ) = I(simseq(X , X̂ ) > γ) (4)

simseq(X , X̂ ) = 2 ∗ f ′
T (X) ∩ f ′

T (X̂ )

f ′
T (X) ∪ f ′

T (X̂ )
(5)

where f ′
T (·) denotes the OCR procedure, γ represents the

text similarity threshold, and simseq stands for the sequence

similarity [65]. We choose not to directly extract text from

layout files because multiple GUI states may share a layout

file.

3) Action Space Design: We use all clickable GUI widgets

in a GUI state as action space. Several prior studies [66]–[68]

employ grid division methods, resulting in numerous invalid

regions, such as unresponsive regions post-click. In contrast,

our approach operates directly on all clickable widgets, en-

suring higher efficiency. Nonetheless, one issue arises as each

GUI state may contain a different number of widgets, whereas

the Q network requires a fixed-sized output. To address this

concern, we find the largest number of widgets in an individual

GUI state from the RICO dataset and set it as the action space

size. Specifically, given a GUI state, we create a mask vector

to prevent the Q network from predicting invalid actions.

C. Offline Agent Training

We train the RL agent offline. This is achieved by running a

monkey runner to generate random traces on a set of apps. To

improve GUI coverage, we use manually recorded event traces

from the recording phase as seeds for random mutations [69],

[70]. Notably, we only need to train the RL agent once.

D. Fine-tuned Replaying Phase

During the replaying phase, our approach leverages the

trained RL agent to predict the best possible action leading
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to the target GUI screenshot. Note that our RL agent is fine-

tuned during the replaying. It updates the deep learning models

while replaying new traces. In other words, the accuracy of

ReSPlay increases when it replays more traces. The model

learned by one trace can be reused by new traces.

Fine-tuning is achieved by directly deploying the trained

agent to replay GUI traces on apps under test. Specifically,

the trained agent is used to explore the GUI space on the

apps and search for potential event traces with high rewards.

This experience is stored as a transition tuple and put into

the replay buffer for fine-tuning. After fine-tuning, the trained

agent is used to replay the recorded events accurately on target

devices with different platforms, GUI styles, and resolutions.

VI. EVALUATION

In this section, we conduct extensive experiments to com-

pare our proposed framework with other approaches on mul-

tiple devices with different platforms. The goal of this evalu-

ation is to investigate the following research questions:

• RQ1: How effective is ReSPlay in replaying events on

mobile devices across diverse OSes?

• RQ2: How effective is ReSPlay in replaying events on

mobile devices across different GUI styles?

• RQ3: How effective is ReSPlay in replaying events on

mobile devices across different resolutions?

• RQ4: How does the new feature help in improving replay

accuracy?

A. Framework Implementation

Our framework is implemented to interact with mobile

devices through Appium, an open-source test automation

tool [45]. In the offline training phase, our method is based

on the Deep Q-Network, which is implemented in the Pytorch

framework. The average time overhead of this phase is 3.45

hours. This is a one-time fixed cost to train the agent, which

can be used multiple times on various apps. In particular, we

extract a low-dimensional latent representation of states with

AugNet [52], which is an unsupervised visual representation

model based on ResNet-50 as the backbone. AugNet is fine-

tuned on the mobile GUI dataset Rico [54]. The embedded text

in GUI states is extracted by the Tesseract OCR engine [71].

In the implementation, widget matching is optional but can

accelerate the consecutive replay. In addition, according to

Mohammad et al. [72] and Xiao et al. [73], both δ and γ
in the reward function are set to 0.8 since it achieves the best

results. In cases without established references, we construct

small-scale experiments to determine hyper-parameters based

on best practices. The baselines are established by following

previously reported protocols [2], [9].

We conduct dynamic monitoring at different phases to

evaluate our framework’s time overhead. In the recording

and replaying phases, the time overheads are 2.48 and 7.34

minutes, respectively. For baselines, the time overhead of

Sikuli and LIRAT in the recording phase is 23.75 minutes

and 3.29 minutes, respectively. In the replaying phase, their

time overheads are 2.62 and 3.57 minutes, respectively.

TABLE I: Devices used in the experiments.

Device Model Resolution System

D0 Honor 10 1080×2280 EMUI 10.0.0
D1 Xiaomi 10S 1080×2340 MIUI 12.5.7
D2 Google Pixel 5 1080×2340 Android 11
D3 iPhone 11 828×1792 iOS 14
D4 iPhone 12 1170×2532 iOS 15

D5
Honor 10

(low resolution)
720×1280 EMUI 10.0.0

B. Experimental Setup

We conduct experiments on six real devices with different

versions of iOS and Android. Detailed settings for each device

are listed in Table I. Our experiments cover most mainstream

smartphone brands, which include Apple, Google, Xiaomi, and

Honor. In the United States, they account for about 62% of

the market between August 2021 and August 2022 [74]. The

devices are with different platforms and screen resolutions.

Here, MIUI and EMUI are both customized third-party OSes

with various GUI styles based on Android.

We developed our own benchmarks because the existing

ones [2] are unsuitable for our evaluation. Some apps in the

baseline benchmarks require mandatory updates, which change

their GUI sequences. Furthermore, a few apps have crashed

outright, rendering them unusable for benchmarking purposes.

To determine the experimental subjects, we first identified

10 of the most popular categories in the Google Play store,

according to the market report [75]. Then we selected the

most installed app that has cross-platform versions in each

category as the representative of the category. In addition,

we also selected two open-source apps according to previous

research [2]. We recruited three senior students majoring in

software engineering to design five test scenarios for each

app, with about 15 steps per scenario. Thus, there are 60

testing scenarios and approximately 900 steps for an individual

device. Considering the combination of different devices, our

evaluation has 420 testing scenarios and around 6,300 steps.

To evaluate the effectiveness of our tool, we compare

ReSPlay with two image-based tools for cross-platform replay:

LIRAT [2] and Sikuli [9]. To select appropriate baselines, we

studied 12 papers on image-based methods [2], [7]–[12], [39],

[76]–[79]. There are two categories, pure visual and hybrid

approaches. For the former, the one that achieves the highest

accuracy is Sikuli [9], while for the latter, representative

approaches are LIRAT [2] and MAPIT [39]. We did not

evaluate pixel-based and attribute-based methods because they

have lower replaying accuracy than image-based methods [2].

Besides, MAPTI is not included since the implicit assumptions

are far from the truth reported by recent studies [34], [42].

To measure the effectiveness of ReSPlay, we use step-level

and scenario-level accuracy [2], [3]. These two metrics are

defined in Equation 6 and Equation 7. The step accuracy

is the number of progress steps divided by the actual total

number of steps. However, the step accuracy cannot evaluate

how many times ReSPlay perfectly replays the whole scenario.

To mitigate the side effect, we also use scenario accuracy as

an evaluation criterion. The scenario accuracy is computed as
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TABLE II: Overview of the selected applications. ‘N’ and ‘Y’

represent apps from commercial and open-sourced communi-

ties, respectively. ‘#Activity’ refers to the number of activities.

‘#Install’ shows the number of installs of an app according

to Google Play (‘m’ indicates million). Note that the data of

‘#Install’ is unavailable in the iOS store. ‘-’ indicates apps

downloaded from Github with an unknown number of installs.

App name Category Open #Install #Activity
Keep Health & Fitness N 5m+ 112

Booking Travel N 100m+ 246
Amazon Shopping Shopping N 500m+ 121

Evernote Productivity N 10m+ 286
App Music Music N 50m+ 65

Kindle Books N 100m+ 126
AdGuard Personalization N 5m+ 54

HERE WeGo Tools N 10m+ 9
Tricount Finance N 1m+ 68

WikiPedia News N 50m+ 32
Monkey Development Y - 7

openHAB Lifestyle Y - 14

the fraction of scenarios that have been correctly replayed. A

successful scenario replay means that all steps in the scenario

are replayed correctly. For the correctness of the replay, we

manually check the consistency between GUI screenshots

dumped from the recording device and the replaying device.

step acc =
|Successfully replayed steps|
|Steps needed to be replayed| (6)

scenario acc =
|Successfully replayed scenarios|
|Scenarios needed to be replayed| (7)

C. RQ1: Replaying results on devices across different OSes

We first show the comparison between ReSPlay and the

baselines in cross-platform testing. Here, Honor 10 (D0) and

iPhone 12 (D4) are used to record events while they are

replaying devices of each other. We record 60 scenarios and

about 900 steps on D0 and replay them on D4 and then

vice-versa. We choose iPhone 12 because it is the latest iOS

device at the time of the experiment. We choose Honor 10

because it uses a different OS and has a similar resolution.

Besides, Honor 10 is among the main-stream models across

the world [2]. Using other devices, such as Xiaomi 10S and

Google Pixel 5, also generates similar results, adding little

information to the analysis. Moreover, due to space limitations,

we only present the case of Honor 10. The same holds for

iPhone 12. For the convenience of subsequent description, we

refer to ‘X-to-Y’ as recording event traces on X and replaying

them on Y.

Table III presents detailed evaluation results of selected

apps. Due to space limitations, details of scenario-level ac-

curacy for each application are not reported. Instead, we sum-

marize the results in Fig. 5. In our evaluation, ReSPlay gives

a 17.89% higher accuracy than baselines, according to Fig. 5.

For instance, when replaying event traces on D4, the average

accuracy of ReSPlay for the step-level replay is 17.25% higher

than that of LIRAT and 22.5% higher than that of Sikuli,

respectively. Regarding scenario-level replay on D4, there are

16.67% and 20% improvements in accuracy compared with

Fig. 5: The average replay accuracy of ReSPlay, LIRAT, and

Sikuli on devices across different OSes.

TABLE III: Step-level accuracy of replaying events on devices

across different OSes.

App name
D0-to-D4 D4-to-D0

Sikuli LIRAT ReSPlay Sikuli LIRAT ReSPlay
Keep 36.00% 52.00% 97.33% 8.00% 28.00% 74.67%

Booking 10.96% 12.33% 21.92% 38.36% 38.36% 45.21%
Amazon
Shopping

13.51% 14.86% 39.19% 32.43% 33.78% 37.84%

Evernote 11.59% 13.04% 43.48% 0% 11.59% 30.43%
Apple music 4.05% 6.76% 12.16% 12.16% 14.86% 21.62%

Kindle 11.27% 18.31% 19.72% 7.04% 12.68% 19.72%
AdGuard 1.33% 2.67% 2.67% 2.67% 2.67% 2.67%

HERE WeGo 100% 100% 100% 24.00% 45.33% 92.00%
Monkey 0% 0% 0% 0% 0% 0%

openHAB 12.50% 26.39% 77.78% 12.50% 27.78% 80.56%
Tricount 7.81% 26.56% 67.19% 17.19% 45.31% 76.56%

Wikipedia 2.98% 2.98% 2.98% 1.49% 1.49% 1.49%
Average 18.18% 23.43% 40.68% 13.17% 21.91% 40.44%

LIRAT and Sikuli, respectively. For D4-to-D0, ReSPlay has

the highest accuracy on both step-level and scenario-level.

Specifically, regarding step-level replay, ReSPlay increases the

average accuracy on different devices by 18.53% and 27.27%

for LIRAT and Sikuli, respectively. Regarding scenario-level

replay, the average accuracy of ReSPlay is 16.66% higher than

LIRAT and 21.66% higher than Sikuli.

ReSPlay achieves the best performance because it leverages

GUI screenshot sequences, which contain extra features to

discriminate visually similar GUI widgets that the baseline

techniques cannot differentiate. A representative example is

illustrated in Fig. 2. ReSPlay increases its accuracy by cor-

rectly distinguishing the widget in the red box from the one

in the blue box in Fig. 2(b), while baseline methods cannot.

From Table III, we observe that the cross-OS replay ac-

curacy number of all three approaches is less than 5% on

AdGuard, Monkey, and Wikipedia. The main reason is that

the same apps on different OSes have different images, GUI

designs, and functionalities. For example, in Fig. 6, the An-

droid version of Wiki displays different images from the iOS

version, causing ReSPlay to fail to reach the non-existent

target GUI state due to the missing target widget. Consistent

with our expectations, baselines cannot accurately replay on

Wiki either. Besides, there are discrepancies between D0-to-

D4 and D4-to-D0 because the workloads on the source device

are generated differently by different players.

D. RQ2: Replaying results across different GUI styles

The goal of ReSPlay is to accurately replay recorded traces

for apps that look different on different devices. In practice,

since the Android ecosystem is highly fragmented [80], the
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Fig. 6: The same app displays different images on different

OSes. Figures (a) and (b) are dumped from D4 and D0,

respectively.

same app may look different on different Android devices

due to different GUI styles of vendors. For example, the texts

in the three colored boxes in Fig. 8 have different fonts on

different Android devices. Therefore, in this research question,

we evaluate the performance of ReSPlay on Android systems

with different GUI styles. Specifically, we record test cases

on Honor 10 (D0) and replay them on Xiaomi 10S (D1) and

Google Pixel 5 (D2). D1 and D2 are chosen because they

share the same resolutions with different GUI styles. This is

performed to eliminate any potential influence from business

logic and resolution through a variable control method. More-

over, they represent the latest and flagship devices from their

respective manufacturers at the time of the experiment.

Table IV shows the evaluation results of ReSPlay, LIRAT,

and Sikuli. When replaying scenarios on D1, ReSPlay achieves

an average accuracy of 90.27% on the step-level replay (see

Fig. 7). Correspondingly, the average accuracy of LIRAT is

65.65%, while that of Sikuli is 50.41%. On the scenario-

level replay, the accuracy of ReSPlay is 86.67%, which is

61.67% and 50% higher than Sikuli and LIRAT, respectively.

When replaying scenarios on D2, the step-level accuracy of

ReSPlay is 86.99%, which improves the accuracy of baselines

by 25.79%. On the scenario level, the accuracy of ReSPlay

is 58.33% higher than Sikuli. Compared with LIRAT, the

scenario-level accuracy of ReSPlay is 50% higher.

Fig. 7: The average replay accuracies of ReSPlay, LIRAT, and

Sikuli on devices with different GUI styles.

We notice that ReSPlay achieves the highest performance

in both cases. The results demonstrate the effectiveness of

ReSPlay on devices across different GUI styles. For example,

in Fig. 8(a) and Fig. 8(b), ‘M’ in ‘Manage’, ‘l’ in ‘loyalty’, and

‘Q’ in ‘Questions’ can be different. In these cases, baselines

TABLE IV: Step-level accuracy of replaying events across

different GUI styles.

App name
D0-to-D1 D0-to-D2

Sikuli LIRAT ReSPlay Sikuli LIRAT ReSPlay
Keep 56.00% 86.67% 89.33% 50.67% 84.00% 86.67%

Booking 78.08% 78.08% 82.19% 75.34% 75.34% 79.45%
Amazon
Shopping

8.11% 37.84% 94.59% 2.70% 28.38% 90.54%

Evernote 30.43% 53.62% 78.26% 18.84% 36.23% 63.77%
Apple music 54.05% 68.92% 87.84% 37.84% 66.22% 90.54%

Kindle 39.44% 57.75% 100% 16.90% 54.93% 100%
AdGuard 49.33% 76.00% 100% 48.00% 74.67% 100%

HERE WeGo 25.33% 33.33% 88.00% 14.67% 28.00% 82.67%
Monkey 65.22% 66.67% 76.81% 63.77% 68.12% 78.26%

openHAB 58.33% 77.78% 100% 59.72% 75.00% 90.28%
Tricount 82.81% 82.81% 85.94% 79.69% 79.69% 82.81%

Wikipedia 62.68% 71.65% 100% 50.75% 68.66% 100%
Average 50.41% 65.65% 90.27% 46.42% 61.20% 86.99%

cannot accurately match widgets due to font changes. Instead,

ReSPlay can find the correct action due to the consideration

of possible future GUI sequences.

Fig. 8: Example of font changes. Figures (a) and (b) are

dumped from D0 and D1, respectively.

E. RQ3: Replaying results across different resolutions
Resolution can also affect the size of GUI widgets on

the same screen. It can also affect the accuracy of ReSPlay.

Therefore, in RQ3, we evaluate the effectiveness of ReSPlay

in replaying events on devices across different resolutions.

There are three types of device combinations: (i) iPhone

11 (D3) to iPhone 12 (D4), indicating iOS to iOS replay;

(ii) Honor 10 (D0) to iPhone 11 (D3), representing Android

to iOS replay; (iii) Honor 10 with low resolution (D5) to

Honor 10 with high resolution (D0), representing Android to

Android replay. Table V presents the step-level replay accuracy

of ReSPlay, LIRAT, and Sikuli. For D0-to-D3, the average

accuracy of ReSPlay on the step-level replay is 15.48% higher

than that of LIRAT and 21.31% higher than that of Sikuli.

Regarding the scenario-level replay, there are 13.33% and

15.33% improvements in performance compared with LIRAT

and Sikuli, respectively (see Fig. 9). For D3-to-D4, ReSPlay

achieves an average accuracy of 91.10% on the step-level

replay. Correspondingly, the average accuracy of LIRAT is

52.24%, while that of Sikuli is 40.08%. On the scenario-level

replay, the accuracy of ReSPlay is 81.67%, which is 65% and

55% higher than Sikuli and LIRAT, respectively. For D5-to-

D0, the step-level accuracies of ReSPlay, LIRAT, and Sikuli

are 93.94%, 61.05%, and 26.95%, while the scenario-level

accuracies are 88.33%, 38.33%, and 10%, respectively.
During evaluations, we find that the accuracy of ReSPlay

exceeds 90% for D3-to-D4 and D5-to-D0 (same OS). This
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TABLE V: Step-level accuracy of replaying events on devices across different resolutions.

App name
D0-to-D3 D3-to-D4 D5-to-D0

Sikuli LIRAT ReSPlay Sikuli LIRAT ReSPlay Sikuli LIRAT ReSPlay
Keep 44.00% 57.33% 97.33% 74.32% 81.08% 95.95% 37.33% 77.33% 89.33%

Booking 12.33% 15.07% 19.18% 23.94% 35.21% 100% 31.82% 75.76% 89.39%
Amazon Shopping 16.22% 17.57% 36.49% 14.86% 28.38% 90.54% 4.05% 27.03% 90.54%

Evernote 17.39% 18.84% 40.58% 30.99% 42.25% 100% 23.08% 52.31% 100%
Apple music 4.05% 4.05% 14.86% 38.46% 44.62% 56.92% 27.27% 63.64% 100%

Kindle 14.08% 19.72% 19.72% 56.16% 72.60% 100% 22.22% 76.38% 91.67%
AdGuard 1.33% 4.00% 5.33% 86.67% 86.67% 93.33% 43.66% 74.65% 100%

HERE WeGo 100% 100% 100% 43.66% 43.66% 100% 10.14% 20.29% 100%
Monkey 0% 0% 0% 16.00% 52.00% 94.67% 18.30% 60.60% 87.32%

openHAB 12.50% 33.33% 86.11% 32.84% 37.31% 100% 48.68% 76.32% 100%
Tricount 7.81% 29.69% 76.56% 32.84% 53.73% 85.07% 29.85% 62.69% 92.54%

Wikipedia 2.99% 2.99% 2.99% 30.14% 49.32% 76.71% 26.87% 65.67% 86.57%
Average 19.39% 25.22% 40.70% 40.08% 52.24% 91.10% 26.95% 61.05% 93.94%

result shows the advantage of ReSPlay over baselines. Dif-

ferent resolutions on the same OS mainly affect the size of

widgets displayed. Variability in widget sizes could lead to

a matching failure of baselines because they are sensitive

to any changes of widgets (font, color, size, etc.) [81]. In

contrast, our model achieves better results, which benefits

from robust GUI screenshot sequences. Besides, for D0-to-

D3, the accuracy of ReSPlay is 50.4% and 53.24% lower than

that in the other two cases, respectively. The main reason for

the lower accuracy is the GUI discrepancy between OSes,

as discussed in Section VI-C. Nevertheless, the accuracy of

ReSPlay is still higher than the baselines.

Fig. 9: The average replay accuracies of ReSPlay, LIRAT, and

Sikuli on devices across different resolutions.

F. RQ4: Insight validation

To validate the insights of ReSPlay and understand why

ReSPlay outperforms the baselines, we evaluate whether future

GUI sequences are more robust than conventional widget

screenshots. Specifically, we answer two sub-questions: (1)

do GUI sequences reduce the mismatches during GUI action

matching? (2) can we find no fewer corresponding GUI states

than corresponding GUI widgets across different platforms,

particularly different OSes? The first question evaluates the

effectiveness of our insights. Reducing mismatch in GUI

action matching is the core reason for the high accuracy of

ReSPlay. The second question evaluates the availability of our

insights. ReSPlay only works when it can find corresponding

future GUI sequences across OSes. Fewer corresponding GUI

screenshots than corresponding GUI widgets means ReSPlay

can only be applied to fewer apps than baselines.

To answer the first question, we calculate the proportion of

false matches on each app for ReSPlay, LIRAT, and Sikuli.

Statistics are given by considering approximately 6,300 steps

from different combinations of source and target devices. We

get the ground truth by manual visual inspection. Particularly,

we also measure the probability of mismatch happening in

different steps of a replayed trace. An early step is more

critical than a later step. For instance, a mismatch in the

first step of a replayed trace can lead to mismatches in all

future steps. On the contrary, the mismatch in the last step of

a trace only affects itself. The result is shown in Table VII.

In general, ReSPlay has a magnitude lower average mismatch

rate than baselines. This proves the effectiveness of the GUI

sequences as features for record-and-replay. Specifically, as

shown in Table VI, ReSPlay has a probability of 9.05%,

15.95%, and 18.81% mismatch actions in the first, second,

and third steps of a trace. The baselines have more than 2× of

mismatch rate. This is the main reason why ReSPlay achieves

2× higher accuracy in apps Evernote and openHAB. In these

apps, LIRAT and Sikuli fail to match the correct GUI widgets

in the first three steps, causing the whole trace to fail in the

early stages. Thus, the baselines have lower replay accuracy.

To answer the second question, we count the fraction that a

GUI state or a widget of the source device has its counterpart

on the target device. The counterpart of a GUI state is defined

as the screenshot on the target device that has similar function-

ality and GUI style. Similarly, the counterpart of a GUI widget

is the widget on the target device that has similar functionality.

To calculate the counterpart discovery rate, we recruited 11

undergraduate students to vote on whether a counterpart on the

target device could be found for a GUI state or a widget of the

source device. The conclusion depends on the majority voting.

The numerical results are in the last column of Table VII. In

general, we conclude that the average probability of finding a

counterpart on the target device corresponding to a GUI state

of the source device is around 85%. For most apps, ReSPlay

can find 92.64% of corresponding GUI states in a different

OS, except AdGuard, Monkey, and Wikipedia.

The counterpart discovery rate for widgets (not shown in

Table VII) is the same as for GUI states. This is because our

undergraduates consider that two widgets are counterparts if

they lead to equivalent GUI screenshots. This result indicates

that for apps where ReSPlay cannot work, conventional GUI

matching also does not work. This result proves that the

availability of ReSPlay is not lower than existing techniques.

We also notice that the apps with fewer GUI state matches

across OSes also generate lower accuracy in Table III. This

result explains why ReSPlay performs lower accuracies in
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TABLE VI: The average mismatch rate of ReSPlay, LIRAT, and Sikuli in the first, second, and third steps.

App name
Sikuli LIRAT ReSPlay

first second third first second third first second third
Keep 0% 0% 11.43% 0% 0% 0% 0% 0% 0%

Booking 34.29% 34.29% 42.86% 34.29% 34.29% 34.29% 0% 5.72% 20.00%
Amazon Shopping 0% 57.14% 74.29% 0% 0% 17.14% 0% 0% 11.43%

Evernote 20.00% 30.00% 53.33% 17.14% 28.57% 37.14% 0% 8.57% 8.57%
Apple music 25.71% 42.86% 54.29% 25.71% 34.29% 34.29% 5.71% 22.86% 22.86%

Kindle 0% 68.57% 80.00% 0% 25.71% 28.57% 0% 20.00% 20.00%
AdGuard 42.86% 45.72% 54.29% 25.71% 42.86% 42.86% 20.00% 28.57% 37.14%

HERE WeGo 11.43% 11.43% 22.86% 0% 0% 11.43% 0% 0% 0%
Monkey 42.86% 42.86% 42.86% 42.86% 42.86% 42.86% 42.86% 42.86% 42.86%

openHAB 42.86% 45.71% 45.71% 31.43% 37.14% 40.00% 14.29% 20.00% 20.00%
Tricount 0% 48.57% 48.57% 0.00% 11.43% 11.43% 0% 0% 0%

Wikipedia 25.71% 54.29% 54.29% 25.71% 42.86% 42.86% 25.71% 42.86% 42.86%
Average 20.48% 40.12% 48.73% 16.90% 25.00% 28.57% 9.05% 15.95% 18.81%

AdGuard, Monkey, and Wikipedia. In general, if the Android

version and the iOS version of an app are completely different,

ReSPlay does not work for this app. However, if the two

versions are completely different, widget matching also does

not work. This result can be inferred from the lower accuracy

of baselines in Table III. We notice this limitation of ReSPlay

and leave it to future work. Nevertheless, our evaluation still

shows that ReSPlay works for 83.33% of apps with a GUI state

matching rate higher than 70%. And it also shows that GUI

sequences can be applied to no fewer apps than conventional

widget matching.

TABLE VII: Mismatch rate and counterpart discovery rate for

GUI screenshot sequence.

App name
Average mismatch rate Counterpart

Sikuli LIRAT ReSPlay discovery rate
Keep 56.24% 33.37% 9.91% 99.11%

Booking 61.61% 52.84% 37.52% 98.58%
Amazon Shopping 86.87% 73.17% 31.47% 83.33%

Evernote 81.10% 67.45% 34.78% 97.20%
Apple music 74.59% 61.56% 45.15% 87.69%

Kindle 76.13% 55.38% 35.60% 72.22%
AdGuard 66.72% 54.10% 42.29% 58.34%

HERE WeGo 54.60% 47.06% 5.33% 100%
Monkey 76.67% 64.66% 51.85% 52.50%

openHAB 66.13% 49.44% 9.32% 99.02%
Tricount 63.14% 45.65% 19.05% 99.63%

Wikipedia 74.59% 62.46% 47.04% 70.32%
Average 64.60% 55.60% 30.78% 84.83%

VII. DISCUSSIONS

Threats to Validity. Threats to the external validity of

our approach are mainly related to (i) the number of devices

used, (ii) the number of apps in the experiments, and (iii)

the representativeness of test scenarios. We use four Android

devices and two iOS devices in the evaluation. However, there

are many kinds of smartphone models on the market, each with

diverse platforms and resolutions. There may exist a perfor-

mance bias under different configurations. To mitigate the first

threat, the mobile devices we select are the latest models and

with a large market share. To mitigate the second threat, we

selected apps from the 12 most popular categories based on

the number of installations and multi-platform compatibility.

While it would be great to conduct additional experiments with

more apps, our experimental subjects involve a considerably

large number of apps with different categories, suggesting the

relatively broad applicability of ReSPlay. Finally, a potential

threat is recruiting senior students majoring in software engi-

neering to design test scenarios. However, Salman et al. [82]

suggest that senior students are sufficient to act as a reasonable

proxy for developers in a well-controlled scenario.

Limitations. The current implementation has several limi-

tations. It does not support advanced actions like drag, zoom,

and swipe. It also assumes a deterministic environment for

record and replay of events, which is unrealistic. Moreover, it

cannot handle GUI changes across different platforms, such as

vertical vs. horizontal screens. These may affect the scalability

and robustness of our tool. We plan to improve the tool to

address these issues in the future.

VIII. CONCLUDING REMARKS

In this paper, we have proposed a general framework called

ReSPlay to record and replay test scripts for mobile apps

on different platforms. The key idea of our approach is that

we aim to match the resulting GUI screenshot sequences

instead of searching for the GUI widgets directly during replay,

which can significantly improve replay accuracy because we

can avoid the widely existing ambiguities caused by similar

widgets. We introduce SDP-Net, a cross-platform tool based

on deep reinforcement learning, which is used to identify the

best possible path to the target GUI screenshot in the GUI

transition graphs. SDP-Net learns an optimal decision policy,

which can be used to replay the recorded events accurately on

target devices with different platforms. Extensive experiments

demonstrate that our approach achieves substantially better

performance than state-of-the-art approaches. In the future,

we will consider using the source code to improve record-

and-replay for apps developed by cross-platform solutions like

Flutter or ReactNative [83].
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