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Abstract—Crowdsourcing Federated learning (CFL) is a new
crowdsourcing development paradigm for the Deep Neural Net-
work (DNN) models, also called “software 2.0”. In practice, the
privacy of CFL can be compromised by many attacks, such as
free-rider attacks, adversarial attacks, gradient leakage attacks,
and inference attacks. Conventional defensive techniques have
low efficiency because they deploy heavy encryption techniques
or rely on Trusted Execution Environments (TEEs). To improve
the efficiency of protecting CFL from these attacks, this paper
proposes FedSlice to prevent malicious participants from getting
the whole server-side model while keeping the performance goal
of CFL. FedSlice breaks the server-side model into several slices
and delivers one slice to each participant. Thus, a malicious
participant can only get a subset of the server-side model,
preventing them from effectively conducting effective attacks.
We evaluate FedSlice against these attacks, and results show that
FedSlice provides effective defense: the server-side model leakage
is reduced from 100% to 43.45%, the success rate of adversarial
attacks is reduced from 100% to 11.66%, the average accuracy
of membership inference is reduced from 71.91% to 51.58%, and
the data leakage from shared gradients is reduced to the level
of random guesses. Besides, FedSlice only introduces less than
2% accuracy loss and about 14% computation overhead. To the
best of our knowledge, this is the first paper to discuss defense
methods against these attacks to the CFL framework.

I. INTRODUCTION

Deep Neural Network (DNN) models, also dubbed as “soft-

ware 2.0” [19], [37], are one of the major focusing points of

software engineering researchers today [15], [35], [77], [32],

[77], [83], [87]. Crowdsourcing Federated Learning (CFL),

which allows the task requester (e.g. large companies) to use

participants’ private data to collaboratively train DNN models,

is a new crowdsourcing strategy for deep learning models [56],

[31], [54]. The task requester pays the participants for the

usage of private data, and the participants receive a monetary

incentive. Unlike traditional software crowdsourcing, in which

the key security concern is the integrity of the software under

development, CFL concerns not only the integrity of the

model but also the privacy of participants. Although CFL

protects participant privacy by limiting the participant data to

local devices, recent research showed that CFL may still leak

participant privacy [88], [85], [62], [56].

Possible Attacks. This paper focuses on four attacks against

federated learning: free-rider attacks [45], [22], adversarial

§Corresponding author.

attacks [52], gradient leakage attacks [88], [85], and inference

attacks [62], [56]. Free-rider attacks mean a malicious partic-

ipant can steal the server-side model without contributing to

the training process. The stolen model harms the intellectual

property of the task requester and causes economic loss. For

adversarial attacks, malicious participants may use the shared

model to generate adversarial samples to mislead the server-

side model. In gradient leakage attacks, the private training

data can be reconstructed by other participants. Inference

attacks can recover the sensitive information of other par-

ticipants’ training data. These four attacks compromise the

integrity of the model and the participant’s privacy. It is

important to develop defensive techniques for these attacks.

Status Quo and Limitation. Researchers have noticed the

threat of these four attacks and proposed various solutions.

However, these solutions are hard to deploy in practice due to

low efficiency. One solution is to encrypt model weights so

that participants know nothing of the distributed model [55],

[10]. However, as reported in prior work [71], cryptographic

ML algorithms are more than 1, 000× slower than ordinary

protocols. Another solution is to perform model updates inside

the Trusted Execution Environments (TEEs) [18], [71], [84].

However, TEEs are about 36× slower than the untrusted

hardware [71], [64]. Besides, TEEs require dedicated hard-

ware support, which is not always available for federated

devices [4], [1], [5].

Existing techniques have low efficiency because they aim

to simultaneously protect the machine learning model from

the malicious server and participants. Heavy encryption tech-

niques or dedicated hardware, such as TEEs, are necessary to

defend against the malicious server because it is the dominator

of the CFL process and has the highest privilege over the

model. For example, the server can see and manipulate the

model updates from all participants. It is difficult to prevent

the server from hacking the model in this scenario. However,

both encryption and using TEE introduce high overhead and

slow down the speed of CFL models [71], [18].

Key Idea. This paper aims to efficiently protect CFL models

in a different but more practical scenario in which the server

is trustworthy, but a few participants are malicious [54], [9].

This scenario is more practical because, in many realistic CFL

applications, the server belongs to reputable companies or or-

ganizations with financial resources. Violating the participants’
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privacy harms the reputation of these companies and may

result in a punishment with a high penalty. Thus, the server is

less motivated to compromise the participants’ privacy and

attack the trained model. On the contrary, participants are

less reliable and are more likely to conduct attacks on CFL.

As CFL needs many participants, it is hard to control the

identification of participants. An adversary can pretend to

be an honest participant, join the CFL training process, and

attack the trained model. In this case, malicious participants

are less privileged than the server and have less control over

the training process.

Specifically, this paper aims to efficiently protect CFL

models by achieving two sub-goals. First, we want to defend

against the four attacks mentioned before. Second, we aim

to avoid using TEEs or encryption because these techniques

can slow down the training speed of an CFL model by 36×
to 1000×. To achieve our goal, we build FedSlice, a new

CFL framework that defends against malicious participants

when the server is trustworthy. To the best of our knowledge,

FedSlice is the first efficient technique to defend against these

four attacks without TEEs or encryption.

Insight. The insight of FedSlice comes from the discrim-
inative model distribution strategy, which does not share the

whole model with all participants unconditionally. Instead, a

participant only has access to a part of the model so that

she cannot infer private information about other participants

nor compromise the integrity of the whole model. This strat-

egy is fundamentally different from existing solutions [43],

[53], [6], [9], [12], [48], which distribute a shared model

indiscriminately to all participants. Since our approach avoids

distributing a shared model to all participants, we can avoid

using TEEs or encryption techniques, allowing more efficient

model protection.

Our Solution. FedSlice implements the discriminative

model distribution strategy with techniques based on model

slicing, which was inspired by traditional program slicing. The

high-level idea of model-slicing-based techniques is first to

have a central model as the template to produce heteroge-

neous models and then aggregate the generated models back

into the central model. FedSlice has three advantages. First,

FedSlice can generate heterogeneous models by permuting and

combining the basic layers of the template model. This model

generation process does not need data and can be completed

within five minutes. Second, as the heterogeneous models

are generated from the same template model, existing CFL

aggregation techniques can combine the building layers to fuse

the models back into the template model. Third, FedSlice can

be integrated into current CFL aggregation strategies, such as

McMahan [53],Li [43], and Asad [6]. Therefore, FedSlice can

be deployed into existing CFL applications without modifying

their fundamental models and aggregation strategy.

Evaluation. We conducted experiments on six represen-

tative tasks. The results show that FedSlice can effectively

defend these four attacks with marginal accuracy loss and

computation overhead. For the free-rider attacks, FedSlice

decreases the model leakage from 100% to 43.45%. For

adversarial attacks initiated by participants, FedSlice decreases

the success rate from above 99% to 11.66%. For membership

inference attacks, the attack accuracy is reduced from 71.91%

to 51.58% (a random guess has 50% accuracy). For deep

gradient leakage attacks, the mean squared error between the

recovered data and the original training data is increased

from 0.00013 to 1.52 (a white noise has 2.0 MSE). The

average accuracy loss of FedSlice is smaller than 2%. The

training time of FedSlice is 14% more than the unprotected

model. Compared to model encryption (more than 1, 000×
slower) and TEE-based techniques (36.1× slower), the cost

of FedSlice is low.

To summarize, our paper makes the following contributions:

• We propose a slicing-based method that protects FL

models against four existing attacks, which include free-

rider attacks, adversarial attacks, membership inference

attacks, and deep gradient leakage attacks.

• We implement our method as a prototype, FedSlice,

that achieves 31.6× and 877.2× higher training speed

compared to TEE and encryption-based methods.

• We conduct extensive experiments with six large-scale

datasets against the four attacks and demonstrate the

effectiveness and scalability of FedSlice to protect the

functionality and privacy of the server-side model.

II. BACKGROUND

A. Security Risks of Federated Learning

Although CFL ensures that data does not leave the local

device, researchers still found that it suffers from various

security issues.

Free-rider attacks are launched by malicious participants

who want to steal the CFL model without contributing to

it [45], [22]. A free-rider can forge the locally-trained model

by adding random noise to model weights. It is difficult for

the server to stop free riders because it distributes a monolithic

model to the participants at each round. The free-rider can get

the valuable model by waiting for the server to deliver it.

Adversarial attacks aim to fool the target deep learning

system with carefully crafted input samples that look similar to

standard samples in the human’s eyes. The adversarial attack is

considered a severe security threat to DNN models, including

models trained by federated learning [52], [13]. The malicious

samples are usually generated from a surrogate model, and the

attack success rate strongly depends on the similarity between

the surrogate model and the target model. The attack is more

effective if the attacker knows the target model.

Inference attacks mainly consist of membership infer-

ence and attribute inference. Membership inference determines

whether a data sample is used by other participants, and

attribute inference outputs sensitive attributes of a given sam-

ple. A malicious participant can utilize the output score, loss

value [62], or internal gradient [56] of the shared model to

infer privacy. Although membership inference and attribute

inference have different goals, the techniques are similar, so

we mainly discuss membership inference in this paper.
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Fig. 1: The comparison between FedSlice and traditional federated learning. Traditional CFL distributes the entire server-side

model to all participants but FedSlice only distributes a (different) model slice to each participant.

Deep gradient leakage means that the shared model up-

dates can expose detailed information about the training data.

Given the shared model, a malicious attacker can recover

realistic (pixel-level accurate) input samples [88], [85]. Thus

this vulnerability poses a significant threat to the private data

of honest participants.

B. Motivation and Challenges

Motivation. Figure 1 shows the high-level idea of FedSlice

and its difference compared to the conventional CFL pro-

cess. Traditional CFL unconditionally distributes the server-

side model to all participants (as shown in the right part

of Figure 1). The adversary participant receives the shared

server-side model and can perform various attacks. Unlike

conventional CFL, FedSlice, as shown in the left part of Fig-

ure 1, implements a discriminative model distribution strategy.

FedSlice partitions the server-side model into several slices

and distributes one slice to each participant. As the adversary

participant only has partial information about the server-side

model, he cannot perform effective attacks.

The design of FedSlice is inspired by access control in oper-

ating system [72]. Access control ensures that authorized users

and applications can only do what is inside the permission

and nothing more than that. This technique protects system

resources (such as memory and files) and user applications

to enforce confidentiality and integrity. Similarly, we want to

restrict the accessible information to one participant by con-

trolling the distributed model so that the malicious participant

does not know enough privacy to perform attacks.

Technical Challenges. Enabling the discriminative distri-

bution strategy is particularly challenging because it requires

aggregating heterogeneous models across the server and partic-

ipant sides. To ensure that each participant receives a model

only relevant to his privacy, models distributed to different

participants must be different. The server-side model also

needs to be different from the participant models. However,

existing CFL techniques require a unified model between the

server and all participants because they fuse the models by

matching weights on the exact same positions in different

models [53], [6], [43]. Such merging techniques cannot be

applied to merge heterogeneous models because they cannot

find matching weights. To achieve discriminative model dis-

tribution, we need to address two technical challenges: (1)

we need to design an effective way to automatically generate

heterogeneous models for a large number of participants;

(2) we need to develop an efficient technique to aggregate

heterogeneous models.

How to separate the server-side model into slices that
participants can train on local devices. The way of encoding

knowledge and the explainability of the operating mechanism

between DNNs and traditional software is different. For tra-

ditional software, developers manually specify the knowledge

into code lines, each line having a specific meaning. Thus, a

software program can be decomposed and recomposed into

program slices [74] or slice combinations [26], [8]. On the

contrary, the behavior of DNN is constructed through enor-

mous annotated data, and each weight does not have a definite

meaning. Although there are advanced neural network slicing

techniques, only small models can apply such techniques.

It’s because they perform fine-grained weight analysis, and

the introduced overhead is exponential to the amount of

analyzed weights [58], [82]. One possibly viable solution is

neural architecture search [20]. This technique can generate

heterogeneous models automatically, but the search process is

data-intensive and time-consuming. Besides, the architectures

of searched models are highly diversified, making the models

difficult to combine later [24].

How to effectively combine heterogeneous models from
participants and reduce accuracy loss? To discriminatively

distribute models to different participants, the distributed mod-

els must be heterogeneous, e.g. , various participants receive

different models. However, existing CFL aggregation tech-

niques cannot handle heterogeneous models and achieve high

server-side model accuracy. Although there are techniques,

such as model distillation [30], that may distill the knowledge

of heterogeneous models into homogeneous models, they are

not efficient due to a large amount of required data. For

example, distilling a model on the CIFAR10 dataset requires

about 4, 000 samples per class [7]. With this amount of data,

the task requester can directly train a new model without CFL.
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Besides, this technique requires training all updated models to

aggregate the knowledge. When the number of participants

increases to hundreds or thousands, a realistic scenario for

CFL applications, the distillation time explodes and becomes

impractical [11].

C. Threat Model

We consider a typical federated learning framework, which

includes one server and multiple participants. The server

wants to utilize participants’ data to train a central server

model and award the participants with money. According

to regulations, participants do not need to upload data and

only share a locally-trained model. We assume that the server

is trustworthy, but participants may be malicious. We also

assume that malicious participants have all privileges to the

model they have received. They can arbitrarily analyze or

modify the received model. We assume that the server can

leverage some public dataset to assist slice aggregation. For

example, the server can train the aggregated model with the

ImageNet dataset. However, the server does not have access

to participants’ private data. This assumption is common in

prior literature [12], [40], [14], [86], [46]. In other words, the

participant-side models should have inadequate functionalities

compared to the server-side model and contain as little privacy

as possible about other participants’ training data.

III. APPROACH

This section will introduce the overview of FedSlice. After

that, we will illustrate the detailed description of FedSlice.

A. Overview

FedSlice includes three steps: ensemble model construction,

slice distribution, and slice aggregation. The first step is

only performed once during the framework setup. The slice

distribution and aggregation may be iterated multiple times

until a desired performance or time limitation. Figure 2 depicts

a sample demo of the overall pipeline. We briefly summarize

each stage as follows:

Ensemble model construction is the setup phase of our

framework. According to expert knowledge, the task requester

must first select a “template model” (a pre-defined model

architecture). For example, the task requester can choose a

ResNet20 [29] model to perform image classification tasks.

This stage enlarges each template model’s layer by duplicating

one layer to several parallel “branches”. Such branches have

the same operations but have different weights. Then, a fusion

layer is added between layers to aggregate the output of

different branches. The duplicated branches and the added

fusion layer form the “ensemble model”. The task requester

maintains this ensemble model until the end of the training

phase. As shown in the upper left part of Figure 2, the template

model has three layers. FedSlice duplicates each layer into

three branches and adds one fusion layer between layers.

Slice distribution constructs diverse “model slices” from the

ensemble model by a slice-branch mapping rule. A slice of

the ensemble model is a combination of branches and has the

same structure as the template model. For each of the template

model’s layers, a slice includes one of the ensemble model’s

branches. The mapping rule defines which branches are used

to construct the slices and is initialized at the setup phase.

During the training phase, FedSlice distributes different slices

to different participants. Participants use private data to train

the slices and upload the slices to the server. The mapping

rule is displayed in the upper right part of Figure 2, and five

constructed slices are distributed to five participants.

Slice aggregation fuses the uploaded slices into the ensem-

ble model. FedSlice first updates the branches with an inverse

mapping rule. This inverse mapping is derived from the slice-

branch mapping rule and defines which slices are used to

update the branches. How to update the branches is defined

by a given per-weight aggregation function. The lower part

of Figure 2 shows the inverse mapping and how each branch

is updated from the slices. After updating all the branches,

FedSlice trains the ensemble model with the public dataset.

This joint training aims to train the fusion layers and enhance

the collaboration between branches.

Rationality. FedSlice can mitigate the threats in Sec-

tion II-A meanwhile reducing the performance loss. First, the

ensemble model can efficiently achieve high accuracy with

little data because the participants have trained branches with

private data. The server only needs to fine-tune the weights of

the branches and the fusion layers. Second, in our design, each

participant only receives a slice of the server-side model, and

none of the participants know the ensemble model’s complete

structure. The size of a slice is approximately 1/n of the

whole model (n is the number of branches per layer). Thus,

the confidentiality of the ensemble model is protected, and

only the server owner has full access to the model. Third,

each slice is composed of different branches. Thus slices are

mutually heterogeneous. The probability of two participants

receiving the same slice is 1/nl (l is the number of layers).

In the experimental setting, where l is four and n is ten, this

probability is less than 10−6. The chance for the malicious

participant to receive the same model as another participant

is little or no. Thus he can not perform an effective attack

because the attacks require the integral model from other

participants.

Intuition. The intuition behind the branches is to replicate

different copies of a model layer so that 1) different copies

contain knowledge of different participants and 2) the copies

of different layers can be combined to form an integrated

model with the same architecture as the template model. The

intuition behind the fusion layer is to effectively aggregate

branch outputs. As Section IV-D shows, naive aggregation

(e.g., feature average) leads to suboptimal performance of the

server-side model.

B. Ensemble Model Construction

In the beginning, the task requester first chooses a template

model. The upper left corner of Figure 2 shows an example

in which the template model contains three layers. Each of

the first two layers performs three operations: convolution,
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Fig. 2: The overall pipeline of FedSlice consists of three stages: ensemble model construction, slice distribution, and slice

aggregation. In the demo, the template model contains three layers (denoted in blue, green, and red boxes) and each layer has

three branches (denoted by the number in each box). “Partic.” is the abbreviation of “participant”.

batch normalize, and ReLU. The last layer performs two

operations: pooling and linear. Ensemble model construction

aims to construct an ensemble model from the template model.

The task requester maintains the ensemble model and then

slices it into different model slices. To construct the ensemble

model, the task requester builds different branches for each

layer and adds a fusion layer between layers.

Branches Replication. We first build n parallel branches

for each layer. The branches share the same architecture but

have different weights. The server model uses all branches for

inference, while participants only receive a subset of branches.

Different branches learn knowledge from different partici-

pants. This knowledge is later integrated into the ensemble

model. At the setup stage, branches are initialized by different

weights. In the upper left part of Figure 2, FedSlice constructs

three branches for each layer, and the squares show the branch

IDs (branch one, branch two, etc.).

Fusion Layer. To fuse the information of branches, we

append a feature fusion layer after each layer of the ensemble

model. The fusion layers take the outputs of prior branches

as input and produce the input for branches of the next layer.

This design is similar to the requirement that different software

components have a unified interface to facilitate the develop-

ment process. Even though the function and implementation

of different components vary, the interface consistency ensures

that the components can be easily replaced and don’t need to

change other modules.

The choice of the fusion layers should consider two aspects:

the ease of training and the protection of model confidentiality.

On the one hand, the server can not collect much data to

support complex models, so the structure of fusion layers

should be concise. On the other hand, a superficial fusion

layer (such as feature average) may leak the server model

because there are fewer server-specific parameters. We choose

to apply batch normalization after the averaged feature maps

of all branches (which we call “FeatBN”) as the fusion

layer. Other choices include only averaging all feature maps

of prior branches (which we call “FeatAvg”) and applying

convolution operation after the averaged feature maps (which

we call “FeatConv”). FeatBN is the best choice among the

three candidates to balance the two factors according to the

experiment in Section IV-D.

C. Slice Distribution

In this stage, the task requester decomposes the ensemble

model into model slices and distributes slices to participants

according to a mapping rule. The input of this stage is the

ensemble model from the pre-mentioned section, and the

output is a set of model slices. In each communication round,

slices are assembled following the mapping rule and are sent

to the participants. The goal of slice distribution is to ensure

each participant only receives a partial server-side model and

thus can not perform effective attacks.

Model Slice. Each slice is a subset of the server-side model.

The upper right corner of Figure 2 shows five model slices

for five participants. For example, participant one has slice

one that consists of three branches: the first branch of layer

one, the second branch of layer two, and the first branch of

layer three. Each slice has the same structure as the template

model (the upper left corner of Figure 2). Thus the slices can

be trained on the local devices with existing training pipelines

(such as cross-entropy loss and gradient descent optimization).

Slice Mapping Rule. This rule records the mapping re-

lationship between the branches and slices. Suppose the i-th
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branch of the j-th layer composes the slice p, and the mapping

rule is denoted as map[p][j] = i. The slice p can be denoted

as:

Slicep = {map[p][j]|j = 1, · · · , n}. (1)

As shown in the upper right part of Figure 2, the slices are

constructed following the mapping rule. For example, the first

row of the mapping rule defines how to construct slice one.

The mapping rule map is generated at the startup phase and

fixed during the training process. We utilize a random strategy

to determine the slice-branch mapping relationship, i.e. one

slice randomly selects a branch from each layer. This random-

combination scheme has two advantages. First, it encourages

branches from different layers to collaborate so that they

can be better integrated into the server-side model. Second,

it reduces the privacy leakage of participant data because

different participants get different slices (various combinations

of branches).

D. Slice Aggregation

After participants train the model slices with local data, they

upload the slices to the server. The input of this stage is the

uploaded slices, and the output is the aggregated ensemble

model. Conventional model aggregation techniques can not

aggregate model slices because they require the uploaded and

ensemble models to have the same architecture. However,

in our case, the uploaded slice is a subset of the ensemble

model. This stage aggregates the slice knowledge into the

ensemble model to solve this problem by updating branches

and training the ensemble model. FedSlice first performs per-

branch aggregation to collect slice knowledge into branches.

Then FedSlice trains the ensemble model to update the fusion

layers and improve collaboration between branches.

Per-Branch Aggregation. The input of this stage is the

uploaded slices, and the output is the aggregated branches.

First, per-branch aggregation requires a pre-defined per-

weight aggregation function. Researchers have proposed var-

ious per-weight aggregation functions (such as per-weight

average [53]). This function can be arbitrarily selected from

the prior work [53], [43], [6], [41].

Then FedSlice builds an inverse mapping rule from the

slice mapping rule. This rule defines which slices are used

to update each branch. Contrary to the mapping rule (records

which branch is distributed from a layer to a slice), the

inverse mapping rule records the slices each branch composes.

Formally, FedSlice constructs the inverse map by

i map[i][j] = {p|map[p][j] = i}. (2)

The inverse map defines which slices are used to update one

branch, and the per-weight aggregation function defines how
the branches are updated. Each branch is updated by the per-

weight aggregation function using the slices indicated by the

inverse map.

The lower left part of Figure 2 displays the inverse mapping

of the demo case. Taking the first branch of layer one as an

example, the inverse mapping records (1, 3) (the array’s first

column of the first row ). It means this branch is updated by

slice one and slice three. It is because, in the mapping rule,

slice one and slice three are composed of branch one (the blue

squares of the upper right part of Figure 2). As shown in the

lower part of Figure 2, branches are updated by the inverse

mapping rule.

Joint Training. FedSlice jointly trains the whole server

model with a public dataset to converge the ensemble model.

Without this step, the ensemble model cannot converge when

participants’ data is highly diverse. In this scenario, the up-

dated slices have a large deviation from each other, causing

the aggregated branches difficult to produce valid outputs. This

step also trains the weights of the fusion layers to aggregate

the output features of the prior layer’s branches. Because we

choose FeatBN as fusion layers (as stated in Section III-B),

this step does not need a large amount of data.

IV. EVALUATION

Research Questions. In this section, we want to answer the

following research questions:

• RQ 1: Can FedSlice reduce the successful rate of the four

attackers in Section II-A?

• RQ 2: How is the training efficiency of FedSlice com-

pared with unprotected baselines?

• RQ 3: What is the accuracy loss of FedSlice?

• RQ 4: How do hyper-parameters influence the perfor-

mance of FedSlice?

Implementation Details. In our experiment, we set the

number of branches in each layer n as ten and select FeatBN

as the fusion layer. We conduct the experiments of FedSlice

on a server with two GeForce GTX 1080Ti GPUs, two Intel

Xeon CPUs with 16 cores, and 64GB of memory.

Evaluation protocol. We conducted our experiments

through FedML [28], a widely-used commercial open-source

library and benchmark for federated machine learning. FedML

provides a well-designed evaluation protocol for comparing

CFL approaches. Therefore, we directly use the standard pro-

cedure of FedML in our evaluation. Specifically, we configured

FedML in the Standalone Simulation mode and simulated the

participants and the server on a desktop. During the CFL

training procedure, FedML first simulates each participant to

train local models one by one. Then it simulates the central

server to aggregate the participants’ models. FedML repeats

these two steps for several rounds to train the CFL model. For

more details on how FedML simulates the participants, please

refer to the FedML paper [28].

A. Defense Effectiveness

The goal of FedSlice is to protect CFL models from the

four attacks mentioned in Section II-A. Therefore, we evaluate

how effectively can FedSlice counter the four attacks in this

section.

1) Setup: Dataset. We evaluate FedSlice on six representa-

tive datasets. The dataset selection follows prior CFL bench-

mark FedML [28] and Leaf [11]. We choose three computer vi-

sion datasets (EMNIST, CIFAR10, and CIFAR100) as they are
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commonly used by prior CFL literatures [41], [28]. We choose

one natural language process dataset (Shakespear [11]) to

study the effectiveness of FedSlice on different tasks. We also

choose two large-scale datasets designed for CFL evaluation:

FEMNIST and Celeba [11]. FEMNIST contains handwriting

digits and alphabets from more than 3,000 participants, and

Celeba includes human faces of more than 4600 people.

Data Partition. Data distribution is critical in federated

learning because, in real-world deployment, it may affect

the performance of CFL models [86]. We use the default

partition strategy for the already partitioned datasets (Celeba,

FEMNIST, and Shakespeare). For other datasets, we partition

the data into 100 participants and follow the prior α-degree
of non-IID to simulate both IID (independent and identically

distributed) and non-IID distribution [21]. IID means that the

distributions across all participants are the same, and non-IID

means that each participant has a unique data distribution. For

IID simulation, FedML iterates all participants and randomly

assigns one sample to each participant until all samples

are assigned. For non-IID simulation, we modified FedML

following previous work [21] since FedML does not provide

a default Non-IID partitioning strategy. For each participant,

we randomly select a major label, and half of this participant’s

data is sampled from the major label’s data. The rest half of

the participant’s data is uniformly sampled from the data that

does not belong to the major label.

We simulate the public dataset by randomly selecting 5%

of data from each dataset. This selection follows prior set-

ting [12], [40], [14], [86], [46]. The model trained with this

amount of data has low accuracy. Thus the task requester

needs the private data from the participants to help improve

the accuracy [40].

Models. We select four representative models as baselines.

For EMNIST and FEMNIST, we use a simple CNN model

(LeNet) according to the benchmark suggestion [11], [28]. For

CIFAR10, CIFAR100, and Celeba, we use a more complex

CNN model with residual connections (ResNet20 [29] and

ResNet18 [29]) following previous work [34]. We choose

an RNN model suggested by the Leaf [11] benchmark for

Shakespeare dataset.

Baseline Approaches We select three representative “un-

conditional sharing” baselines to compare with FedSlice. The

three baselines are McMahan [53], Asad [6], and Li [43],

which are among the most used CFL aggregation meth-

ods [41], [28]. These three methods have been used in industry

and academia [40], [67].

2) Free-Rider Attacks: Attack Protocol. We implemented

the attack proposed by Fraboni et al. and Lin et al. [45],

[22]. In our implementation, the malicious participants do not

update real gradients but fake gradients. After the training

procedure, the malicious participants use the shared model for

profit. The amount of stolen model functionality is quantified

by the accuracy of malicious participants’ local models.

Metrics. We use the average accuracy of all the participant’s

models to measure the model leakage [45], [22]. A higher

participant’s accuracy represents more model leakage, and a

lower value means better protection of the server-side model’s

functionality. Since the absolute accuracy of different datasets

and baseline techniques are distinct, we also utilize relative

values for better comparison across different datasets. Let

ACCS be the accuracy of the server-side model and ACCp

be the accuracy of participant p, the relative leakage is defined

as rLKG = 1
|P|

∑

p∈P
ACCp/ACCS .

Results. The model leakage can be observed by comparing

the “Server” column and the “Partic.” column of Table I.

The “Server” column shows the accuracy of the server-side

model, and the “Partic.” column shows the averaged accuracy

of the participants’ models. A more significant gap between

the “Server” column and the “Partic.” column represents a

lower functionality that the server-side model leaks.

For the three baselines, FedSlice’s average leakage of server

functionality is 40.63%, 42.02%, and 47.70%. It means that

FedSlice can reduce the leaked functionality of the server-

side model to an average of 43.45%. The performance of

FedSlice is similar to a fully protected baseline. For example,

for the LEAF dataset, the participants’ accuracy (about 60%)

is similar to that of prior literature (65%) [9]. On the contrary,

the leaked functionality of unconditional sharing baselines is

100% because they send the shared model to participants.

3) Adversarial Attacks: Attack Protocol. The malicious

participant joins the training procedure as benign participants.

After training, when the server-side model is utilized for

inference, the malicious participant runs the adversarial attack

with the local model to generate adversarial samples and uses

these samples to mislead the server-side model.

Metrics. We report the attack success rate (ASR) to evaluate

the defense effectiveness. ASR computes how many adver-

sarial examples generated from the local model can mislead

the output of the server-side model. We implement a strong

adversarial attack (PGD attack [52]) to evaluate ASR in the

worst case. The hyper-parameters of the PGD attack follow

the default setting of the original paper [52].

Results. Figure 3 shows the defense result of computer

vision datasets against strong PGD attacks. We list the un-

conditional sharing baselines (the first three histograms for

each dataset) and FedSlice (the subsequent three histograms)

together. McMahan [53], Asad [6], and Li [43] are represented

in red, blue, and green, respectively.

For all three baselines, the attack success rate (ASR) reaches

more than 99% (not labeled explicitly for simplicity), meaning

that the security risk of adversarial attacks is high. On the

contrary, the ASR of FedSlice is reduced substantially. For

EMNIST and FEMNIST, the ASR is below 30% in six out

of nine cases. For other datasets, the ASR is below 10%,

and there are 60% cases (nine out of fifteen) with an ASR

of zero. Averagely, FedSlice achieves an ASR of 11.66%.

The comparison between baselines and FedSlice demonstrates

that distributing model slices can effectively defend against

adversarial attacks from the participant and protect the server-

side model’s security.

The performance of FedSlice is similar to the fully pro-
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TABLE I: The performance of server-side model protection of FedSlice in terms of accuracy. The metrics of FedSlice include

the performance of the server-side model (the higher the better) and the average performance of participant models (the lower

the better). We list the average relative values of FedSlice w.r.t the unconditional sharing baseline at the bottom row.

McMahan [53] Asad [6] Li [43]

Baseline
FedSlice

Baseline
FedSlice

Baseline
FedSlice

Server ↑ Partic. ↓ Server↑ Partic.↓ Server↑ Partic.↓
EMNIST

IID 79.82 81.74 69.19 79.40 80.65 67.48 83.09 80.19 69.62

Non-IID 79.04 80.04 61.04 79.44 80.52 59.10 83.04 80.20 69.59

CIFAR10
IID 51.07 50.52 12.87 55.58 51.39 10.36 54.53 51.07 14.48

Non-IID 48.54 47.20 11.73 50.29 49.05 13.76 52.76 50.04 13.66

CIFAR100
IID 26.50 26.50 1.32 28.54 27.10 1.17 24.21 22.92 7.78

Non-IID 25.52 26.59 3.7 24.56 25.30 1.13 22.51 23.73 3.93

FEMNIST 73.82 75.02 3.72 72.94 68.66 5.10 76.51 76.34 23.77

Shakespear 41.28 39.52 27.85 42.15 39.95 33.07 39.53 36.72 21.90

Celeba 88.89 86.03 53.73 82.26 84.51 64.75 91.45 89.34 66.98

Average of Relative Value - -0.20% 40.63% - -1.94% 42.02% - -3.11% 47.70%

Fig. 3: The effectiveness of adversarial attack mitigation. Attack success rate (ASR) is reported to measure how much adversarial

examples generated by participant models can confuse the server-side model.

tected baselines because both FedSlice and the fully protected

baselines can prevent the adversary from getting an accurate

enough model from local data, which is necessary for existing

approaches to generate valid adversary samples. For example,

white-box adversary attacks require an attack model with

an accuracy higher than 90% for CIFAR10 and 75% for

CIFAR100, while FedSlice limit the accuracy of locally trained

models below 20%. The fully protected baselines have low

accuracy because local data is not enough to train high-

performance models.

4) Membership Information Attacks: Attack Protocol. In

our simulation, the malicious participants join the training

procedure as benign participants. After training, the adversary

uses the shared model and unknown input samples to deter-

mine if other participants use these samples during the training

procedure.

Metrics. We select four state-of-the-art membership infer-

ence attacks: the neural network (NN) attack [65], the Top3

attack, the Loss attack [62], and the Gradient attack [56]. The

four attacks use different information from the shared model.

The NN attack uses the logit output to infer membership. The

Top3 attack uses the highest three confidences of model output.

The Loss attack uses the loss value of the unknown sample on

the shared model. The Gradient attack uses the gradient vector

of the last layer’s input to infer membership information. To

comprehensively evaluate the attack performance, we report

four metrics for each attack (precision, recall, F1 score, and

accuracy). The selected metrics follow prior literature [33],

[56]. For each metric, a higher value represents more privacy

leakage. Note that the membership attack is a binary classifi-

cation task. The lower limit is a random guess, with the lowest

value of all the metrics mentioned above as 0.5.

Results. Table II displays the performance of four attacks

against baselines and FedSlice. For baseline techniques, all

four attacks can effectively infer the membership information.

The performance of the Loss attack and the Gradient attack is

generally higher because these attacks use more information

(data label and gradient information). Averagely, the precisions

of all attacks are above 0.74, meaning that about three-

fourths of the predicted positive samples are truly the training

members. This high precision threatens the privacy of the

participants’ training data.

On the contrary, according to Table II, the success rate

of FedSlice is substantially reduced. The performance of all

four attack techniques resembles that of a random guess. The

highest F1 is 0.54, and the highest accuracy is 0.55, which are

all lower than the baselines. The average accuracy is reduced

from 71.91% to 51.58%. The average F1 score is reduced from
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TABLE II: Protection against membership inference attacks on CIFAR100. For each case, we use precision, recall, F1 score,

and accuracy as metrics. The last two rows show the average value over all baselines.

NN Top3 Loss Gradient

Prec Recall F1 Acc Prec Recall F1 Acc Prec Recall F1 Acc Prec Recall F1 Acc

McMahan [53]
US 0.81 0.71 0.69 0.71 0.83 0.76 0.75 0.76 0.81 0.81 0.81 0.81 0.84 0.78 0.77 0.78

FedSlice 0.52 0.52 0.51 0.52 0.51 0.51 0.51 0.51 0.54 0.53 0.48 0.53 0.53 0.53 0.53 0.53

Asad [6]
US 0.84 0.78 0.77 0.78 0.82 0.73 0.71 0.73 0.85 0.82 0.81 0.82 0.85 0.80 0.79 0.80

FedSlice 0.50 0.50 0.50 0.50 0.51 0.51 0.50 0.51 0.56 0.55 0.51 0.55 0.55 0.55 0.54 0.55

Li [43]
US 0.59 0.58 0.57 0.58 0.60 0.59 0.58 0.59 0.65 0.64 0.63 0.64 0.63 0.63 0.63 0.63

FedSlice 0.50 0.50 0.46 0.50 0.50 0.50 0.47 0.50 0.49 0.49 0.38 0.49 0.50 0.50 0.42 0.50

Average
US 0.74 0.69 0.68 0.69 0.75 0.69 0.68 0.69 0.77 0.76 0.75 0.76 0.77 0.74 0.73 0.74

FedSlice 0.51 0.51 0.49 0.51 0.51 0.51 0.49 0.51 0.53 0.52 0.46 0.52 0.53 0.53 0.50 0.53

0.71 to 0.48. It means the adversary participant extracts nearly

no private information. The attack performance against a fully

protected baseline is a random guess, and the performance of

FedSlice is similar to the fully protected baseline.

We also studied why our approach could reduce the success

rate of membership inference. Take the loss attack as an exam-

ple. Prior literature concluded that membership information is

mainly embedded into the loss magnitude [56]. Member data

samples usually have low loss magnitudes, and non-member

data samples have high magnitudes. It is because, during the

training phase, the DNN weights are optimized to minimize

the loss of the member samples. For FedSlice, both member

and non-member samples have high loss magnitude because

the adversary’s slice is never trained on honest participants’

data. The adversary participant can not extract usable private

information from similar magnitudes.

5) Deep Gradient Leakage Reduction: Attack Protocol.
The malicious participant uploads the local model and receive

the shared model as usual. Then, he computes the averaged

gradient by differentiating two versions of the received model.

Last, the malicious participant uses existing attacks and the av-

erage gradient to recover the training data of other participants.

Metrics. We choose two state-of-the-art attacks that use

leaked gradients to recover participants’ training samples [60]:

deep gradient leakage (DGL) [88] and improved deep gradient

leakage (iDGL) [85]. We display both quantitative results

and qualitative results of each attack. We show the Mean

Squared Error (MSE) for quantitative results, consistent with

the original attack evaluation [88], [85]. MSE computes the

pixel-value difference between the original image and the

recovered image. The range of MSE is [0, 2], where 0 means

the recovered image is identical to the original one, and 2
means the recovered image is completely random noise. We

display two randomly selected images for qualitative results

to compare the attack effect between different techniques.

Results. Table III displays both quantitative and qualitative

results. For baselines, the MSE of both attacks is smaller than

0.0002, which is similar to the lower limit. For FedSlice, the

MSE is around 1.50, which is four magnitudes larger than the

MSE of baselines and is close to the upper limit. The bottom

of Table III shows the qualitative results. The left column is the

ground truth sample, and the others are recovered samples. The

samples recovered from baselines resemble the ground truth.

TABLE III: The effectiveness to reduce deep gradient leakage.

Ground Baseline FedSlice

Truth DLG iDLG DLG iDLG

MSE - 0.00012 0.00014 1.75 1.49

Sample

There are only several countable pixels for the flower image

that are different from the ground truth image (the central part

of the flower and the right side of the image). On the contrary,

the samples of FedSlice are random noise (similar to the fully

protected baseline), meaning that the attacker can not infer

adequate input information from the distributed model slices.

Answer to RQ 1: FedSlice can reduce the model

leakage, ASR, F1 score, and MSE for the four attacks

mentioned in Section II-A.

B. Model Efficiency

FedSlice is designed to avoid heavy encryption and TEEs.

In this section, we evaluate how much training time could be

saved by avoiding TEE and encryption.

We recorded the training time on all datasets to compare the

training efficiency between FedSlice and baselines. Figure 4

shows the training time on CIFAR10 in minutes. In the

brackets above the dashed histograms of FedSlice, we show

the percentage of the time of FedSlice over the time of the un-

conditional sharing baselines. It can be observed that FedSlice

marginally increases the training overhead. Averagely, Fed-

Slice takes 14.3% longer time than the unconditional sharing

baseline. Compared to the TEE-based solution (up to 36.1×
slower [64] than baseline), FedSlice is 31.6× faster. Compared

to cryptographic solutions (more than 1,000× slower than

baseline [71]), FedSlice is 877.2× faster. The FedSlice is 3.7%

to 33.2% slower on other datasets. We skipped the detailed

figures due to the space limit.
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Fig. 4: The comparison of CFL training time on CIFAR10.

Answer to RQ 2: FedSlice improves the training speed

by avoiding TEEs or encryption.

C. Accuracy Loss

In this section, we want to evaluate whether FedSlice

protects CFL models by harming the model’s accuracy. To

do this, we measure the accuracy of the server-side model of

FedSlice and unconditional sharing.

Results. We can observe the accuracy loss of FedSlice by

comparing the “Baseline” column and the “Server” column of

Table I. The “Baseline” column is the accuracy of baseline

models, and the “Server” column is the accuracy of the Fed-

Slice models. To rigorously compare baselines with FedSlice,

we compute the statistical significance with Wilcoxon signed-

rank test [75]. For each baseline, the null hypothesis is that

there is no accuracy difference between the baseline and

FedSlice. The computed p-values for the three baselines are

0.78, 0.31, and 0.02. It means at a confidence level of 5%,

we have little or no evidence to reject the null hypothesis for

McMahan [53] and Asad [6], but we can reject the hypothesis

for Li [43]. For Li [43], the averaged accuracy loss is 3.11%.

These observations mean that FedSlice does not remarkably

harm the accuracy of the server-side model.

Answer to RQ 3: For two of the three baselines, Fed-

Slice does not reduce the server-side model accuracy

with statistical significance.

D. Effect of Hyper-Parameters.

We then study hyper-parameters’ effect on the two charac-

teristics of FedSlice: the accuracy of the server-side model and

the model leakage defense. The hyper-parameters include the

choice of fusion layers and the number of branches. For the

choice fusion layers, we evaluate “FeatAvg”, “FeatConv”, and

“FeatBN”, as discussed in Section III-B. For the number of

branches, we set the range from 2 to 50. We select EMNIST

and all three baselines to perform the experiments due to

the page limit. We also did exploratory experiments on other

datasets, and the results were similar.

The left figure in Figure 5 shows the results of the choice of

fusion layers. For each baseline, we plot the accuracy of the

server-side model and participant model together. In the figure,

FeatBN achieves the highest server accuracy in all cases,

demonstrating that it can effectively fuse knowledge from

different participants. The participants’ accuracy of FeatBN

is lower than FeatAvg but higher than FeatConv. This result

Fig. 5: Ablation study on the fusion module and the number

of branches on the EMNINST dataset.

means FeatBN can protect model functionality better than

FeatAvg but worse than FeatConv. However, we still choose

FeatBN because it has higher server-side accuracy.

The right figure in Figure 5 displays the model sensitivity

concerning the number of branches. The solid lines with

circles represent the server-side model, and the dotted lines

with stars represent the participants’ model. Figure 5 shows

that as the number of branches increases, the accuracy of the

server-side model and the participant-side models decreases.

We select the number of branches as ten because it achieves

high server-side accuracy while maintaining a significant gap

between the server-side and participant-side models.

Answer to RQ 4: FedSlice chooses the hyper-

parameters that can better balance the server-side

model’s accuracy and model leakage protection.

E. Threats to Validity.

Internal Validity. The training hyper-parameters may be

one internal validity in the experiment. Such hyper-parameters

include learning rates, training rounds, and epochs for each lo-

cal device. We mitigate this threat by using the recommended

settings of the public benchmark [28], [11] and keeping the

parameters consistent across all experiments.

External Validity. The choice of evaluated datasets and

models may be one threat to external validity. We mitigate

this threat using the diverse and recommended choices of

public benchmark [28], [11]. The evaluated datasets include

both computer vision tasks and natural language processing

tasks. Another threat is the number of simulated participants

and data distribution. To mitigate this threat, we simulate

a large number of participants (100 to more than 4K) and

evaluate both IID and non-IID distribution to demonstrate the

effectiveness of FedSlice under real-world settings.

Construct Validity. The choice of evaluation metrics may

be one threat to construct validity. We mitigate this threat by

selecting the same metrics from prior work [28], [11], [39],

[62], [56], [88], [85].

V. DISCUSSION

Collusion of Malicious Participants. One possible threat

against FedSlice is that several participants collude to attack
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the server model. The expected number of colluded partic-

ipants relates to the ensemble model structure, which is a

high-dimension variant of the coupon collector problem [57].

For a simple situation in which the shared model is split into

three layers and ten branches, the expectation of the number of

colluding participants is 38.75. Therefore, although multiple

participants may conspire to compromise the FedSlice, the

number of colluding participants is non-trivial.

Experiment Simulation. Although the CFL process is

simulated on a desktop, our experiments could still reflect

the realistic scenarios of CFL. Our primary goal is to protect

CFL models from the four attacks without losing too much

accuracy. The related metrics are platform-independent. For

the additional training overhead of FedSlice, we compare

FedSlice and baselines on the same platform. It is a common

practice in prior literature to compare the efficiency and

convergence speed of different CFL algorithms on a simulated

environment to approximate the realistic performance gap [43],

[36], [48]. Besides, we use the standard simulation framework,

FedML, which provides a systematic and realistic simulation

of CFL environments.

Limitations. FedSlice has two limitations: the constrained

application on the CFL and the dependency on the public

dataset. FedSlice is designed for the Crowdsourcing Feder-

ated Learning scenario [70], [80], in which participants only

contribute the data and receive monetary incentives. Therefore,

participants do not need the final model in CFL [80]. CFL is

widely-sed in industry [2], [3], [16]. For the public dataset,

FedSlice requires the server to use a public dataset to assist

slice aggregation. Given the diverse data available on the

Internet, the task requester can arbitrarily select one dataset

according to the type of task. Designing a data-free algorithm

for slice aggregation is an important future work of FedSlice.

Research Implications. The design of FedSlice provides a

new secure crowdsourcing solution for large companies that

seek to train commercial DNN models with private data. Dif-

ferent from the traditional CFL framework, FedSlice protects

the intellectual property and the security of the companies’

DNN model. Compared to the TEE-based solutions, FedSlice

reduces the hardware requirement (equipped with a TEE on the

edge device) for the participants and enlarges the participant

group so that the task requester can utilize more private data.

VI. RELATED WORK

Security and Privacy Issues of CFL. A few recent

papers point out that some ill-intended participants may steal

the server-side model for free (free-rider attacks) [22], [45].

Existing defense techniques mainly focus on detecting such

dishonest participants [45], [47]. FedSlice uses an orthogonal

technique and can be integrated with detection-based defenses

to safeguard the trained model better.

For privacy risks, researchers have proposed several attacks,

i.e. gradient leakage [88], [85], membership leakage [54], [56]

and attribute leakage [54]. Zhu et al. restored accurate training

data from the shared gradient [88]. Nasr et al. found that the

shared gradients may expose additional membership informa-

tion [56]. Melis et al. found that CFL can expose attributes

unrelated to the target task, causing privacy leakage [54].

Conventional defenses are based on TEEs or encryption, while

FedSlice leverages a novel technique that is more efficient.

Besides attacks mentioned in Section II-A, CFL may also

suffer poisoning attacks [69]. To defend against such attacks,

researchers proposed several byzantine-robust aggregation [9],

[12]. Such defenses are orthogonal with FedSlice. They can

not defend the four attacks discussed in this paper because they

deliver the server-side model to all participants. Byzantine-

robust solutions can be regarded as a per-weight aggregation

function and can be integrated into FedSlice.

Model-based Analysis on DNNs. In recent years, SE

researchers have proposed various model-based algorithms to

analyze the behaviors of DNNs (also dubbed as “SE4AI”).

One popular direction of SE4AI is DNN testing which aims

to find incorrect behaviors of DNN models [50], [25], [25],

[35], [73], [78], [79], [63]. Coverage is a common metric to

guide DNN testing [76], [68], [51] due to its effectiveness in

analyzing traditional programs [42], [44]. Other researchers

try to fix the incorrect behaviors and repair DNN faults [66],

[23]. Improving the robustness against adversarial attacks is

an important goal of DNN testing and repair [81], [83], [32].

Some researchers focus on the modularization of DNN models

and try to decompose and recompose DNN like traditional

programs [61], [58], [59].

VII. CONCLUSION

This paper aims to protect FL from the four attacks

mentioned in Section II-A without using heavy encryption

and TEE-based techniques. To achieve this goal, we propose

FedSlice, a federated learning framework that ensures each

participant only receives a slice of the server-side model,

which prevents them from performing effective attacks. We

evaluate FedSlice on six datasets and five models. The ex-

periment results show that FedSlice effectively defends the

four attacks with less than 2% accuracy loss and about 14%

computation overhead. Our tool and data are available on the

Internet 1.
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Gyimóthy. Union slices for program maintenance. In International
Conference on Software Maintenance, 2002. Proceedings., 2002.

[9] Peva Blanchard, El Mahdi El Mhamdi, Rachid Guerraoui, and Julien
Stainer. Machine learning with adversaries: Byzantine tolerant gradient
descent. In Proceedings of the 31st International Conference on Neural
Information Processing Systems, 2017.

[10] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone,
H Brendan McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and
Karn Seth. Practical secure aggregation for privacy-preserving machine
learning. In Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, 2017.

[11] Sebastian Caldas, Sai Meher Karthik Duddu, Peter Wu, Tian Li,
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