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Abstract—The Data Minimization Principle is crucial for
protecting individual privacy. However, existing Android runtime
permissions do not guarantee this principle. Moreover, the lack
of an automatic enforcement mechanism leads to uncertainty as
to whether apps strictly comply with this principle. To bridge
this gap, we conduct the first systematic empirical study on
violations of the Data Minimization Principle and design a new
enforcement tool called GUIMind to detect them. GUIMind first
utilizes a reinforcement learning model to explore app activities
and monitor access to sensitive APIs that require sensitive
permissions, and then it leverages an existing tool to detect such
violations. We evaluate the performance of GUIMind using 120
real-world Android apps. The results indicate that GUIMind can
achieve a detection accuracy of 96.1%, effectively accelerating
the empirical study. Our empirical research is mainly focused
on the prevalence of violations, the responses of administrators
to violations, and the potential factors and characteristics that
lead to violations, such as typical violations, app categories, and
personal data types. Our study reveals that 83.5% of apps contain
at least one privacy violation, with health apps being the most
severe. In addition, telephony information is the most commonly
leaked personal data type, accounting for 71.1%. Finally, we
randomly selected 60 non-compliant apps for reporting to the
administrator, whose responses confirm the effectiveness of our
approach.

I. INTRODUCTION

The Data Minimization Principle is a key privacy principle

that aims to respect individual privacy and reduce the risks of

data breaches. It means that personal information should only

be collected, stored, and used if it is directly relevant and

necessary for a specific purpose. It also means that personal

information should not be kept longer than needed for that

purpose unless it is for statistical purposes. This principle is

embedded in various legal frameworks, such as the EU’s Gen-

eral Data Protection Regulation (GDPR) [1], Brazil’s Lei Geral

de Proteção de Dados Pessoais (LGPD) [2], the California

Privacy Rights Act (CPRA) in the United States [3], the Data

Protection Act in the United Kingdom [4], and the Personal

Information Protection Law (PIPL) in China [5]. However,

despite its importance, this principle only exists in legal

provisions and is not guaranteed by technical means. Although

the Android runtime permission system aims to uphold the

Data Minimization Principle by enforcing a popup window

before accessing sensitive permissions, recent studies revealed

†Corresponding authors.

that this system is ineffective in practice [6]–[9]. Therefore, we

anticipate that many apps will violate the Data Minimization

Principle due to the lack of effective enforcement techniques.

Unfortunately, although we suspect there are a lot of risks in

violating the Data Minimization Principle, currently, there is

no empirical evidence to support this suspicion. To this end, we

conduct the first systematic measurement study on violations

of the Data Minimization Principle. In our study, we answer

five research questions: what are the types of typical violations
of the Data Minimization Principle, how prevalent are privacy
non-compliance issues among apps, how do privacy non-
compliance issues occur in different categories of apps, which
types of personal data are most frequently leaked by apps, and
what is the response from the administrators to the violations?
These research questions help us understand violations of

the Data Minimization Principle in practice. In addition, our

research findings provide valuable insights into developing

effective strategies to ensure privacy compliance in apps and

increasing developer and user awareness of the importance of

the Data Minimization Principle.

Although it is valuable to empirically measure the violations

of the Data Minimization Principle, it is particularly challeng-

ing to build an automated testing tool that can detect such

violations in a large number of apps due to (1) the lack of a

formal definition; and (2) the difficulty of discovering sensi-

tive data across complex and dynamic app environments. To

address these challenges, in this paper, we first formally define

the violations of the Data Minimization Principle. Then, we

propose a novel tool called GUIMind to automatically discover

accesses to sensitive permissions in market apps. GUIMind
consists of two major components. The first component is

Explorer, which uses a deep reinforcement learning-based

model to explore app activities and monitor the accesses to

sensitive APIs that require sensitive permissions. The second

component is Fidelity Checker, which uses the existing tool

APICOG [10] to check whether an activity collects more

sensitive permissions than the users expect. We evaluate the

performance and accuracy of GUIMind with 120 real-world

apps from the Xiaomi market. The results show that GUIMind
can accelerate the empirical study while achieving a detection

accuracy of 96.1%.

Based on our newly proposed automated testing tool, we

conduct a large-scale empirical study of 1,876 real Android
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apps. Our findings reveal four typical violations of the Data

Minimization Principle: irrelevant permissions, holding per-

missions, bogus agreements, and mismatched permissions with

the agreement. Shockingly, our study shows that 83.5% of

apps have at least one privacy violation, with health apps

performing the worst. Furthermore, the most frequently leaked

personal data type is telephony information, accounting for

71.1%. To further validate the effectiveness of our tool, we

randomly select 60 apps that violate the Data Minimization

Principle and report them to the administrator. The response

received from the administrator confirms the effectiveness of

our approach.

The result of our measurement study indicates the sig-

nificant prevalence of violations of the Data Minimization

Principle for Android apps in various domains and scenarios.

Our study reveals the diversity and specificity of privacy

violations in the Android app ecosystem and calls for more

attention and efforts from developers, users, and regulators

to protect personal data from being unnecessarily collected,

stored, or transmitted. We also demonstrate the effectiveness

and usefulness of our proposed automated testing tool, which

can help app developers identify and fix privacy violations in

their apps and help users and regulators audit and monitor the

privacy practices of apps. Our tool can also facilitate further

research on app privacy analysis and improvement.

We summarize our contribution as follows.

• We formally define the violations of the Data Minimiza-

tion Principle.

• To the best of our knowledge, we conduct the first

systematic empirical study on violations of the Data Min-

imization Principle in mobile apps. This work benefits

developers/regulators in detecting privacy violations and

market-level reviews of app stores.

• We propose a novel automated tool called GUIMind
to detect violations of the Data Minimization Principle,

which leverages a deep reinforcement learning-based ap-

proach to prioritize and explore activities with the explicit

goal of triggering sensitive API calls that require sensitive

permissions.

• We thoroughly evaluate our approach with a variety of

Android apps collected from the Xiaomi Store. The ex-

perimental results demonstrate the effectiveness of GUI-
Mind in detecting violations of the Data Minimization

Principle.

Data Availability: In addition, our tool is publicly available

on GitHub (https://github.com/skzhangPKU/GUIMind).

II. BACKGROUND AND PROBLEM STATEMENT

A. Data Minimization Principle

The Data Minimization Principle is a fundamental princi-

ple of data protection. It requires that organizations collect,

process, and store only the minimum amount of personal data

necessary to achieve specific and legitimate purposes. This

principle is enshrined in various data protection frameworks.

In the European Union, the GDPR [1] enshrines the Data

Minimization Principle as one of its core principles, stating

that personal data shall be “adequate, relevant, and limited to

what is necessary in relation to the purposes for which they

are processed.” Similarly, Brazil’s LGPD [2] also requires data

controllers to limit the collection and processing of personal

data to what is strictly necessary for a specific purpose. In

the United States, the recently enacted CPRA [3] includes

provisions on data minimization, requiring businesses to limit

their collection, use, and disclosure of personal information to

what is reasonably necessary to achieve their stated purpose.

The UK’s Data Protection Act [4] also requires that data

controllers observe the Data Minimization Principle while

processing personal data to ensure the gathering of only

necessary and relevant data. In China, the PIPL [5] emphasizes

the Data Minimization Principle by requiring organizations

to minimize the collection of personal information and to

anonymize or pseudonymize personal information wherever

possible. Overall, the Data Minimization Principle is a critical

component of data protection frameworks worldwide, ensuring

that personal data is collected, processed, and stored only to

the extent necessary for legitimate purposes.

B. Limitations of the Android Permission System

The Android permission system is designed to control app

access to device resources and data. While it is intended to

protect user privacy and ensure data security, it cannot fully

guarantee the Data Minimization Principle. There are two

types of Android permissions: static permissions and runtime

permissions. For static permissions, users are required to grant

permissions during installation. This indicates that the app can

access specified resources without further user actions. While

this level of access may be necessary to function properly for

apps, it also poses a risk to user privacy. For example, some

apps may request more permissions than necessary, leading to

unnecessary data collection and potentially violating the Data

Minimization Principle.

Runtime permissions are introduced in Android 6.0 to

address some of these privacy concerns [11]. With runtime

permissions, the user is prompted to grant or deny access

to specific resources when the app requests it rather than

during installation. Ideally, if users can deny unnecessary

permission requests, it ensures only the minimum amount of

data necessary is collected. However, recent studies show [6]–

[9] that Android runtime permissions are not sufficient to fully

prevent apps from abusing users’ sensitive data due to three

reasons: (1) apps may group different permissions and mislead

users into granting unnecessary permissions; (2) the majority

of users (54.7%) cannot understand the descriptions in the

message box for permissions, allowing apps to access sensitive

data without true consent from users; (3) many sensitive

permissions, such as device location or unique phone IDs (e.g.,

IMEI number), are not protected.

In summary, while the Android Permission System provides

some control over app access to user data and resources, it

cannot guarantee adherence to the Data Minimization Princi-

ple. Further efforts are needed to ensure that apps only collect
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and retain the minimum user data necessary for legitimate

purposes.

C. Android GUI Programming

In Android development, activities are the building blocks

of apps. An activity represents a single screen with a user

interface. It typically fills the entire screen, although smaller

activities can be used in multi-window mode or as floating

windows. Widgets are small GUI components that allow users

to interact with an app, such as buttons, text fields, checkboxes,

and radio buttons. Activities are responsible for managing the

presentation and behavior of their widgets.

A frame GUI window is a container that holds one or more

activities. It provides a framework for the activities to be

displayed and allows them to communicate with each other. An

activity can be launched from another activity using an Intent

object, and the system handles the transition between the two

activities. A GUI transition graph is a diagram that represents

the behavior and functionality of an app. Formally, we define

a GUI transition graph as a directed graph G = (V,E) where

V is the set of nodes in the graph, representing individual

activities or screens within the app, and E is the set of edges

in the graph, representing the possible transitions or actions

between those activities. It provides a high-level overview of

the flow and structure of the app, showing how users can

navigate between different screens and what actions or events

trigger these transitions. This graph is useful when designing

and testing the flow of an app’s user interface.

D. Assumptions

In this paper, we hold a “sloppy user” assumption, which

assumes that users do not have sufficient knowledge or pa-

tience to carefully examine the permissions required by apps.

Thus, there is a high probability for users to mistakenly grant

sensitive permissions to apps, sometimes even unconsciously.

This assumption is supported by recent studies [6]–[8].

Furthermore, there are also many reports and blogs on the

Internet that supports the “sloppy user” assumption. For in-

stance, a study by Carnegie Mellon University [12] reveals

that many users grant app permissions without reading the

prompts carefully. A survey of users with an average of 5

years of Android experience [13] indicates that nearly 40%

of the participants fail to make informed decisions to grant

permissions due to an inadequate understanding of permission

prompts. Additionally, both the Internet survey and laboratory

study [14] show that users are less concerned about Android

permissions.

E. Problem Statement

On a high level, we say an app violates the Data Minimiza-

tion Principle if it attempts to collect, use, or hold permissions

that are not necessary to the user-expected functionalities of

the current activity. Note that, in this paper, the violations have

two properties:

• Intention Based: we do not require the app to successfully

get the permission(e.g., bypassing the runtime permission

systems of Android). As long as the app tries to obtain

unnecessary permissions, we consider it a violation. This

property is valid since the users often mistakenly grant

unnecessary runtime permissions to apps, according to

the “sloppy user” assumption.

• Fine-Grained: we detect violations on the granularity of

the activity1 level, instead of on the app level. Traditional

app-level detection of privacy violations may overlook

specific instances of permission abuse or unauthorized ac-

cess within the app. By detecting activity-level violations,

users gain a more granular understanding of how their

data is used. For example, suppose a news app requests

location information to recommend top local news. While

this may seem harmless, using this access to collect and

store location data for other unnecessary purposes would

violate the Data Minimization Principle.

The formal definition of a violation of the Data Minimiza-

tion Principle is given as follows. We define an Android app

as a set that has n activities: A = {a1, a2, a3, ...an}. For each

activity ai, we define it as a tuple of ai =< Bi, P
c
i >, where

Bi = {bi1, bi2, ..., bin} is the set of user-expected behaviors of

the activity and P c
i = {pci1, pci2, ..., pcin} is a set of permissions

that the activity attempts to get. Here we say a behavior bij
is user-expected if it has been clearly described by the GUI

context of the corresponding activity ai. We further define

a map R := B −→ P that maps a behavior bi to the

required permissions p ∈ P to satisfy the user expectation.

For simplicity, we define R(B) as
⋃

bi∈B

R(bi)

, then we say there is a violation of the Data Minimization

Principle in activity ai if Pi � R(Bi).

III. DESIGN OF GUIMind

To automatically discover violations of the Data Mini-

mization Principle, we develop GUIMind, a novel automated

tool that detects inconsistencies between GUI contexts and

permissions for activities in Android apps. The workflow of

GUIMind is shown in Figure 1. GUIMind takes an APK file as

input and generates a report containing any violations of the

Data Minimization Principle during the execution. It has two

components. The first is Explorer, which thoroughly explores

activities in the target app and monitors the accesses to API

calls that attempt to get sensitive permissions (sensitive APIs).

The second is Fidelity Checker, which is used to detect non-

compliance between user-expected behaviors and access to

sensitive APIs.

1) Explorer: Explorer accepts an Android app and thor-

oughly explores the activities in the app. During the explo-

ration, Explorer also outputs the screenshots, layout files, and

permissions of the activities to the Fidelity Checker to detect

violations of the Data Minimization Principle.

1An activity represents a single screen with a user interface. It is the most
basic functional unit of the Android system [15]. An app may contain multiple
activities.
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Fig. 1: Overview of GUIMind.

The key challenge of Explorer is how to efficiently trigger

sensitive API calls that require sensitive permissions. The

straightforward approach is to utilize a GUI tester [16] that

generates GUI operations randomly [17] or based on heuris-

tics [18], [19]. However, existing GUI testers are not optimized

for exploring sensitive API calls. Thus, they may waste time

exploring activities that do not require sensitive permissions

and slow down our empirical study. To this end, we model

Explorer as a Reinforcement Learning(RL) agent with a deep

learning model that automatically prioritizes activities based

on their probability of invoking sensitive APIs. Thus, Explorer

can focus on activities related to sensitive APIs and reduce the

time overhead of our empirical study.

Specifically, Explorer is an RL agent that uses deep Q-

Network (DQN) [20] to navigate through the transition graph

of all the activities in an Android app. The core part of

Explorer is the Q-Network, which takes as input the current

state and outputs the expected reward for each possible action.

The structure of the Q-Network consists of a feedforward

neural network. This is reasonable since it can approximate

any complex functions [21], which is useful for modeling the

relationships between activities and sensitive APIs.

The architecture of the Q-Network consists of three fully

connected layers, as shown in Equation 1.

f(x) = W3σ(W2σ(W1x+ b1) + b2) + b3 (1)

where W∗ are weight matrices, b∗ are bias vectors, σ is the ac-

tivation function, and x is a state representation described as a

Algorithm 1: The Explorer Learning Process.

1 Initialize DQN model M;
2 Initialize replay memory D; // Store past samples

3 p0 ← launchApp(); // Get the first UI page

4 s0 ← fuseMultiModal(u0); // Multi-modal fusion

5 for t = 0,T do
6 at ← selectAction(st,M);
7 pt+1 ← execute(at);
8 rt ← calcMultiLevelReward(); // Eq. 2

9 st+1 ← fuseMultiModal(pt+1);
10 D ← D∪ (st, at, rt, st+1); // Store transition

11 B ← sampleMiniBatch(D);
12 M ← updateModel(B,M);
13 st+1 ← st;

Multi-modal Fusion of different types of inputs. Specifically,

for an activity, the Q-network accepts three types of inputs: the

screenshot of the activity, the markup image, and the attributes

of each widget. We send the screenshot to an unsupervised

visual representation network AugNet [22] that generates a

feature vector with 768 dimensions. We send the markup

image to a self-supervised embedding model LayoutAutoEn-

coder [23], generating a feature vector with 64 dimensions.

We send the attributes to a pre-trained multilingual sentence

embedding model SentenceTransformer [24] that generates a

feature vector with 768 dimensions. Then we concatenate the

three feature vectors with a concat-attention layer [25]. Finally,

the output layer is a dense layer with 768 dimensions. Note

that we use SentenceTransformer to extract widget attribute

features because it can encode text from different languages

into a shared semantic space, thus minimizing the impact of

language differences on model performance.

We have three distinct types of input to accurately pinpoint

widgets that may lead to other activities. Intuitively, we

only need to feed the screenshot of an activity to a deep

learning model, which will automatically pinpoint the click-

able widgets. However, such an end-to-end solution requires

a large model and a huge amount of data, which is not

applicable to our study. Therefore, we add a markup image

of the screenshot, which explicitly pinpoints the positions of

clickable widgets, along with the screenshot and the text of the

widget types. An example of a screenshot, its corresponding

markup image, and the text of the widget types is shown in

Figure 2. Note that we can automatically get the markup image

and the text of the widget types by parsing the layout XML

file of an Android app with existing tools [23], [26].

Fig. 2: An example of different types of input. The “Makeup

image” refers to assigning different colors to individual wid-

gets within a GUI screenshot according to their categories

(e.g., text, image, and background). “The text of the widget

types” refers to the “text” attribute of the widget.

The goal of the Q-Network is to predict the probability of

future activities accessing sensitive APIs. To achieve this goal,

we need to achieve two sub-goals: (1) exploring more activities

containing sensitive APIs; (2) exploring more new activities.

Therefore, we design a Multi-level Reward simultaneously

considering the two sub-goals. The Multi-level Reward con-

sists of three parts: the API-level reward, the activity-level

reward, and the widget-level reward. Particularly, the API-
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level reward is to achieve the first sub-goal of prioritizing

activities with more sensitive API calls. In contrast, the other

two rewards are used to achieve the second sub-goal of

exploring more new activities. Formally, we define the Multi-

level Reward as:

Ri =
∑

k∈{a,s,w}
γkRk

i (2)

where Ra
i , Rs

i , and Rw
i represent the API-level reward,

activity-level reward, and widget-level reward, respectively,

and γ∗ is a weighting factor that provides the relative im-

portance of each item.

For the API-level reward Ra, we define it as the number

of distinct sensitive APIs called by an activity. We define the

activity-level reward as Equation 3, which helps the Explorer

deprioritize similar activities. Specifically, in Equation 3, X is

the screenshot of the current activity, Y is the screenshot of the

successor of X in the GUI transition graph, δ denotes the sim-

ilarity threshold, AUG is the embedded model AugNet [22]

that converts the screenshots to numerical vectors, sim(·, ·)
represents the Euclidean metric, and I stands for the indicator

function.

Rs
i = I(sim(AUG(X), AUG(Y )) < δ) (3)

For the widget-level reward, we define it as Equation 4,

where V Fcw denotes the visiting frequency of current widgets,

UWns stands for the number of unvisited widgets in the next

GUI state, and M and N represent the scaling factors that

ensure comparability between the two.

The rationale behind the widget-level reward is that the

transitions between activities are often caused by operating

widgets (e.g., clicking a button). Therefore, an activity with

more unvisited widgets is more likely to transit to new

activities. Thus, we combine the widget-level reward with

the activity-level reward to better lead the Explorer to new

activities.

Rw
i =

M

V Fcw
+

UWns

N
(4)

2) Fidelity Checker: Fidelity Checker evaluates whether an

activity collects more sensitive permissions than the users’

expectations. The input is a pair < activity, API >, and the

output is a binary label that indicates whether the semantics

of the API match the GUI context of the activity.

We directly use APICOG [10] to determine whether the

GUI context of an activity is consistent with its collected

permissions. The high-level idea of APICOG [10] is as fol-

lows. First, it uses the Tesseract OCR engine [27] to extract

embedded texts in GUI screenshots. Then, it inputs text ex-

tracted from screenshots, text-typed attributes of GUI widgets,

app descriptions, and descriptions of the called sensitive APIs

to a machine learning model to determine whether they are

consistent. Due to the page limit, we omit the details about

APICOG in this paper.

IV. EVALUATION OF GUIMind

To assess the effectiveness of GUIMind, we evaluate its

accuracy in detecting violations of the Data Minimization

Principle and the speed to trigger the usage of sensitive APIs.

1) Experiment Setup: We conduct experiments on an

Ubuntu server 18.04 LTS with a CUDA-enabled Nvidia GTX

1080 Ti GPU of 11GB memory. All apps run on a real rooted

mobile device with Android, namely Google Pixel 5. We do

not choose an emulator because it prevents sensitive data leak-

age if malware finds itself in an emulator environment [28].

GUIMind dynamically explores the instrumented apps via

Uiautomator2 [26]. It is built and implemented using the

Pytorch framework [29]. GUIMind uses Frida [30] to auto-

matically instrument apps to monitor sensitive API calls. For

dynamic API monitoring, we write snippets of JavaScript,

inject them into apps, and interact with the Frida server.

According to previous research [31], we set a maximum of

20 minutes to explore each app. Moreover, in our implemen-

tation, we set the weighting factors of the API-level reward,

activity-level reward, and widget-level reward to 50, 2, and 1,

respectively. For the widget-level reward, the scaling factors

M and N are set to 2 and 5, respectively. The similarity

threshold δ is set to 2. All hyperparameters are determined

based on best practices from a small-scale experiment.

We adopt a systematic approach to build the dataset

used in the experiments. Specifically, we implement

a crawler to fetch apps from the Xiaomi app store

(https://app.mi.com/download/{id}). The placeholder “id”

ranges from 1 to 1000. After removing invalid links, the

dataset contains a total of 520 apps. We use 400 apps for

training and the left 120 apps for testing. There is a broader

range of app sizes from 128KB to 424 MB.

2) Accuracy: Although the detection accuracy of our Fi-

delity Checker is the same as the existing tool [10], we still

empirically evaluate its accuracy to ensure the internal validity

of our study. To this end, we run the 120 apps in the testing

set and collect the visited activities and sensitive APIs through

Explorer. Then, we recruit three senior students to manually

label 2178 < activity, API > pairs for whether they are

consistent. A pair is deemed inconsistent only if at least half

of the participants support this claim. Finally, for each pair,

we input it to the Fidelity Checker and calculate the accuracy,

precision, recall, and F1 score. We show the data in Table I,

in which we also include the accuracy numbers from the

APICOG paper [10].

The experiment shows that GUIMind can achieve an ac-

curacy of 96.1%, a precision of 97.0%, a recall of 97.9%,

TABLE I: Overall performance of GUIMind and APICOG in

detecting violations of the Data Minimization Principle.

Model Accuracy Precision Recall F1 Score

APICOG 97.7% 94.1% 92.8% 93.4%

GUIMind 96.1% 97.0% 97.9% 97.4%
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and an F1 score of 97.4%, while APICOG yields an accuracy

of 97.7%, a precision of 94.1%, a recall of 92.8%, and an

F1 score of 93.4%. These numbers are consistent with the

numbers reported in the APICOG paper [10]. Overall, these

results demonstrate that GUIMind has sufficient accuracy to

ensure the soundness of statistical results in our empirical

study.

In addition, we also observe some discrepancies between

the performance of GUIMind and APICOG. Specifically,

compared to APICOG, GUIMind exhibits lower accuracy but

higher precision, recall, and F1 scores. A potential reason is

that our dataset contains a more balanced sample distribution

than the one used in the APICOG paper.
3) Efficiency: In this section, we evaluate whether Explorer

can accelerate the empirical study. To this end, we compare

its speed of invoking sensitive APIs to two baseline meth-

ods. One is a recently proposed RL GUI testing framework

(UniRLTest) [32] that aims solely to maximize coverage.

Note that UniRLTest is a more recent and efficient GUI

tester than Droitbot [33], the GUI tester of APICOG. The

second baseline(UniRLTest-S) is an enhanced UniRLTest that

considers the number of sensitive APIs in each activity. We

implement UniRLTest-S by adding the number of sensitive

APIs to the target function of UniRLTest. The second baseline

evaluates the effectiveness of our design of the Q-Network and

the multi-level reward.

We adopt the same training settings for all methods. For

example, according to previous research [34], we set a max-

imum of 20 minutes for training and exploration on each

app. We repeat the exploration process three times since

different pieces of training may cause the model to follow

different strategies [35]. To measure effectiveness, we perform

descriptive statistics of the number of sensitive API calls

discovered by the three methods, including mean, standard

deviation, and median.

Figure 3 provides the quantitative results of the proposed

approach and other baselines. We can observe that GUIMind
outperforms UniRLTest-S and UniRLTest. Specifically, on av-

erage, GUIMind detects 2137 sensitive API calls compared to

1495 of the UniRLTest-S and 1442 of the UniRLTest. The result

indicates that GUIMind can accelerate the empirical study by

43%, compared to UniRLTest. We also use the Mann-Whitney

test to calculate the statistical significance and the Cliff’s Delta

(d) [36]2 to quantify the effect size of our experiments. We

show the p-values and the effect size in Table II, which shows

that GUIMind can meaningfully improve the speed of our

empirical study.

We also conduct ablation studies on different types of

inputs and investigate their impacts on model performance.

Here, we eliminate the screenshot, the markup image, and

the widget attributes, respectively. Overall, the performance

of all three variants declines to various degrees. Specifically,

compared to these three variants, GUIMind identifies 145,

2We follow accepted practical guidelines [35] for interpretation: large for
|d| ≥ 0.474, medium for 0.33 ≤ |d| < 0.474, small for 0.10 ≤ |d| < 0.33,
and negligible for |d| < 0.10.

Fig. 3: Quantitative results of GUIMind, UniRLTest-S, and

UniRLTest in discovering sensitive API calls.

TABLE II: Results of the Mann-Whitney test (adjusted p-

value) and Cliff’s Delta (d) when comparing the distributions

of the number of sensitive APIs triggered.

Test p-value cliff-delta

GUIMind vs UniRLTest-S < 0.001 0.28 (Small)

GUIMind vs UniRLTest < 0.001 0.30 (Small)

UniRLTest-S vs UniRLTest < 0.001 0.02 (Negligible)

325, and 470 more sensitive API calls, respectively. The

results demonstrate that it is beneficial to improve the overall

performance of GUIMind by integrating these types of inputs.

This discrepancy suggests their significant effects on model

performance ranked from low to high: the screenshot, the

markup image, and the widget attributes.

V. STUDY PROTOCOL

In this section, we discuss our experimental protocol for the

measurement study. Specifically, we utilize GUIMind to detect

such non-compliance behaviors. Our measurement study aims

to answer the following research questions:

• RQ1: What are the types of typical violations of the
Data Minimization Principle?

• RQ2: How prevalent are privacy non-compliance
issues among apps?

• RQ3: How do privacy non-compliance issues occur in
different categories of apps?

• RQ4: Which types of personal data are most fre-
quently leaked by apps?

• RQ5: What is the response from the administrators
to the violations?

A. Dataset

Our dataset includes 1876 realistic Android apps from the

Xiaomi App Market, one of the largest app distribution plat-

forms in China, between 2022-09-26 to 2022-10-09. Similar
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TABLE III: The list of monitored sensitive APIs

Resource Types Sensitive APIs Descriptions

Telephony
APIs in TelephonyManager and SmsManager,

e.g., getLine1Number(), getDeviceId(), sendTextMessage()

Accessing sensitive information and

services related to telephony.

Location

APIs in Location, Address, LocationManagerService,

and GoogleMap, e.g., getLastKnownLocation(),

requestLocationUpdates(), getLongitude()

Retrieving device location data through

direct GPS queries or by registering for

GPS listeners.

Bluetooth
APIs in BluetoothDevice and BluetoothAdapter,

e.g., getName(), getAddress(), getBondedDevices()

Accessing Bluetooth-related data

and communications.

Microphone

and Camera

APIs in AudioRecord, MediaRecorder, and Camera,

e.g., startRecording(), start(), and takePicture()

Enabling the recording of audio and

video, as well as capturing pictures.

Connectivity

States

APIs in WifiManager and WifiServiceImpl,

e.g., getScanResults(), getDhcpInfo(), and

getWifiState()

Potentially exposing users’ location

or triggering harmful actions (based on

the WIFI state changes).

Application

States

APIs in PackageManager and UsageStatsManager,

e.g., getInstalledPackages(), getApplicationInfo(),

and queryUsageStats()

Analyzing the availability of installed

antivirus and financial apps to identify

malicious activities like phishing.

Accounts APIs in AccountManager, e.g., getAccountsByType()
Accessing users’ online accounts

through a centralized registry.

to the dataset used in evaluating the performance of GUIMind,

we adopted a systematic approach to fetch free apps based on

the link (https://app.mi.com/download/{id}). The difference is

that the IDs range from 1000 to 4000, rather than 1 to 1000.

In other words, the apps used in our measurement study do

not overlap with those used in evaluating GUIMind. We then

randomly selected 2000 apps for our experiment. Finally, we

removed the apps that crashed during the automatic interaction

with Frida-Server. This left us with 1876 apps spanning 14

categories, which include health, sports, travel, etc. In addition,

according to previous research [10], [37], [38] and malware

analysis experience, the sensitive APIs monitored are shown

in Table III.

B. Experiment Setup

In our experiments, we grant the system with all runtime

permissions. Recall that we consider an app violates the Data

Minimization Principle if it attempts to collect permissions

beyond the users’ expectations. Directly granting all permis-

sions can avoid interrupting the exploration process without

affecting our detection accuracy. Besides, the hardware for

our experiments is the same as that for evaluating GUIMind.

C. RQ1: Types of Typical Violations

We notice four types of typical violations of the Data

Minimization Principle. We discuss the details in this section.

Irrelevant Permissions. For 68.7% of violations, apps

collect extra data beyond the functionalities they display to

users. This practice violates GDPR Article 5(1)(b) [39], which

requires that personal data must be collected for specified,

explicit, and legitimate purposes and not further processed in

a manner that is incompatible with those purposes. For exam-

ple, Figure 4(a) shows the settings page for an educational

experience. The app requests the device’s IMSI, SIM card

serial number, location information, and WIFI scan results,

which are irrelevant to its intended purpose. Note that none of

these permissions are protected by the runtime permission of

Android. In practice, they are collected in stealth.

Bogus Agreements. The second most frequent non-

compliance (16.9%) is bogus agreements. This indicates that

apps may display an agreement that describes the desired

permissions and appears to allow the user to choose whether

to grant the requested permissions to the app. However, the

choices of the users are not considered. Regardless of the

users’ choice, the app will collect the permissions it wants.

This practice violates GDPR Article 6(1) [40], which requires

that organizations must obtain consent from individuals before

processing their personal data. For instance, Figure 4(b) is the

privacy policy interface of a Dadi Cinema app. Before the user

agrees to the privacy policy by clicking the green box, the app

has collected all the sensitive data it wants.

Mismatched Permissions with the Agreement. For 10.1%

of violations, apps may ask for extra permissions that are not

shown in their user agreement. This practice violates GDPR

Articles 7(2) [41] and 4(11) [42], which require that consent

must be freely given, specific, informed, and unambiguous.

For instance, when the app in Figure 4(c) requests permission

to access device information, it also collects the location

and Bluetooth device address, which are not included in the

message shown to users, after the user clicks the “open” button

marked by the red box.

Holding Permissions. Lastly, for 4.3% of violations, apps

may access permission through a legitimate request in one

activity and then abuse that permission in another to steal

user data. This practice violates GDPR Article 5(1)(a) [39],

which requires that personal data be processed lawfully, fairly,

and transparently. For example, Figures 4(d) and Figure 4(e)

show GUI screenshots of a My Bentley app. Figure 4(d)
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Fig. 4: Some concrete examples of privacy non-compliant apps.

requests location permission for a legitimate purpose, such

as navigation services, and the user grants it by clicking

the “While using the app” button marked by the red box

in Figure 4(e). When the app reaches Figure 4(e), it abuses

the granted permission to access location information beyond

what is necessary. Holding the location allows the app to

continuously track the movement of users, but the users do

not expect such continuous tracking in this app.

Answer to RQ 1: Our study distills four types of typical vi-

olations of the Data Minimization Principle, which include

irrelevant permissions (68.7%), bogus agreements (16.9%),

mismatched permissions with the agreement (10.1%), and

holding permissions (4.3%).

D. RQ 2: Prevalence of Violations

To answer this research question, we need to measure the

privacy compliance of each subject app and then perform

statistical analysis on all apps. In our measurement, we use the

number of violations of the Data Minimization Principle in an

app. Formally, we measure the number of violations by count-

ing the activity-API pairs that break the Data Minimization

Principle during the 20-minute testing. For instance, if an app

collects a user’s location information, contacts, and call history

beyond what is necessary, there are three instances that violate

the Data Minimization Principle. The higher the numerical

value, the more severe the privacy non-compliance of the app.

We define an app with 0 violations as fully compliant with

privacy requirements.

Based on our research findings, a considerable number of

mobile apps exhibit significant privacy non-compliance. After

examining 1876 apps, we observe that 83.5% of them have

at least one privacy non-compliance, while only 16.5% fully

comply with all privacy requirements, as shown in Figure 5.

These results indicate that most apps fail to follow best

practices and principles when dealing with user data, which

may expose users to potential risks and losses. As a result,

developers and app distribution platforms must strengthen the

review and oversight of their products and services.

In addition, we group apps with privacy non-compliance

into three levels based on the number of violations: low (1-

4), moderate (5-8), and high (9-12). Our analysis reveals

significant disparities in privacy non-compliance across these

groups, as shown in Figure 5. Specifically, out of all apps,

44.9%, 25.3%, and 13.3% belong to the first, second, and

third categories, respectively. This suggests that most apps

with privacy concerns only contain a limited number (1-4)

of privacy non-compliance.

Fig. 5: Distribution of privacy non-compliance counts among

apps.
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Answer to RQ 2: Our study reveals that 83.5% of apps in

our dataset contain at least one privacy violation, while only

16.5% fully comply with all privacy requirements. Thus,

privacy non-compliance is prevalent in Android apps.

E. RQ3:Violations in Different Categories of Apps?

To address this research question, we break down privacy

non-compliance into different categories, which include health,

travel, news, etc. They reflect the various functions or services

that the app provides to users. For example, in travel apps,

users can use a range of services such as booking flights,

hotels, and rental cars; in news apps, one can access and

consume various types of news content such as articles, videos,

podcasts, and live streams. Others are also commonly used in

daily life. In our measurement, we use the average number of

privacy non-compliant cases in each category of apps, namely

the total number of privacy non-compliant instances divided by

the number of apps in that category, as an indicator. Figure 6

shows the numerical results broken down by app categories.

From Figure 6, it can be seen that there are significant

differences in the average number of privacy non-compliant is-

sues among different categories of apps. Among the categories

we examine, health, sports, and financial apps perform the

worst regarding privacy non-compliance. They exceed others

significantly with the average number, reaching 11.3, 9.5, and

9.1, respectively. The results reveal the impact and challenges

of different functions or services on user privacy protection.

This suggests that sports, health, and financial apps are the

most in need of improvement and regulation. One possible

reason is that these apps hold large amounts of sensitive data

and are not careful enough when collecting the data, leading to

privacy violations. Moreover, numerous commercial interests

in these fields may motivate companies to prioritize business

benefits over user privacy protection.

Furthermore, several categories with low privacy violations

warrant special consideration. Figure 6 shows that three com-

mon app categories, including photography, productivity, and

Fig. 6: Average number of privacy non-compliance by app

category.

tools, exhibit low privacy non-compliance. On average, they

only present 3.5, 2.5, and 3.2 privacy non-compliance issues,

respectively (significantly lower than the overall level), with

minimal variations (i.e., standard deviations of only 2.7, 2.3,

and 1.8). A potential explanation is that these app categories

have relatively simple functions and services and do not

require too many permissions.

Answer to RQ 3: Our study reveals that app categories

lead to diverse privacy violations. Among these categories,

health, sports, and financial apps perform worst, with

an average number of violations of 11.3, 9.5, and 9.1,

respectively.

F. RQ4: Frequently Abused Permissions?

To answer this research question, we report the percentage

of apps that illegally access personal data to all non-compliant

apps. We distinguish non-compliant behaviors and categorize

them into different types of personal data, such as locations,

telephony, or Bluetooth. Finally, we utilize the statistical

method to calculate the distribution of each type. This provides

a more comprehensive picture of non-compliant access to

personal data.

According to our statistical results, we observe that 71.1%

of the apps access telephony information in a non-compliant

manner, which is the most frequently leaked personal data

type. This suggests these apps may obtain information such

as device identifier (via getDeviceId), phone number (via get-
Line1Number), SIM serial number (via getSimSerialNumber),

and IMEI number (via getSimOperator). This information can

reveal users’ identities, preferences, and habits and deliver per-

sonalized advertisements. The second largest non-compliance

is accessing location data (25.8%), which is concerning given

the potential impact of location tracking on privacy.

In addition to the above analysis, we discover a relatively

high proportion (13.7%) of non-compliant access to Bluetooth

information. This includes sensitive details such as bonded

Bluetooth devices, names, and addresses. Such information

can infer the user’s identity, device type, and proximity to other

devices or users. Further analysis can reveal other patterns and

trends. Specifically, certain types of apps are more inclined

to engage in non-compliant access to Bluetooth data than

Fig. 7: Distribution of app privacy non-compliance by different

personal data types.
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other categories of apps. For example, a social app accesses

Bluetooth information to find and connect with friends among

nearby users. It is also possible to identify specific factors,

such as the interests and preferences of app users, based on

the devices they typically connect to.

Answer to RQ 4: Our study reveals that the most fre-

quently leaked personal data type (71.1%) is telephony in-

formation, followed by location data (25.8%) and Bluetooth

information (13.7%).

G. RQ5: Responses from the Administrator

To investigate the practicality of our tool, we randomly

select 60 apps that violate the Data Minimization Principle at

the activity level and submit them to the Personal Information

Protection Task Force on Apps (PIPTFoA) for MANUAL

inspection through their official website. The website provides

a detailed report of the app’s behavior and the reasons for

the violation. The PIPTFoA is a credible institution jointly

established by four authorities of China: the Ministry of Public

Security, the Cyberspace Administration, the State Adminis-

tration for Market Regulation, and the Ministry of Industry and

Information Technology [43]. It is responsible for monitoring

and evaluating the data collection practices of mobile apps. We

only submit 60 apps because PIPTFoA has limited personnel,

and we do not want to cause denial-of-service to the team.

Until the submission of this paper, 43 apps have been con-

firmed, of which eight are in severe violation and subsequently

taken down from the app store. The team also agrees that the

other 35 have mild violations. Besides the 43 apps, another ten

apps have fixed their problems in the latest version. Overall,

this result implies that our tool has considerable potential to

identify apps that violate the Data Minimization Principle.

Answer to RQ 5: Our study indicates that out of 60

submissions, 43 apps have been confirmed, and another

ten have fixed their problems in the latest version. This

implies the practicality of our tool in detecting violations

of the Data Minimization Principle.

H. Implications and Suggestions

This research demonstrates a pervasive presence (83.5%

of apps) of violations of the Data Minimization Principle in

Android apps, which could lead to private data leakage and

other potential security risks. Moreover, our findings highlight

several underlying factors and characteristics contributing to

such non-compliance, such as typical violations, app cate-

gories, and types of personal data. This could offer valuable

insights into developing more effective privacy protection

measures.

For violations, we have the following suggestions. First,

developers should confirm the necessary permissions for each

activity before development. Second, automated testing tools,

such as those proposed in our research, should be developed

and implemented to identify and fix potential violations. Third,

permission control should be designed at a finer-grained level,

such as adjusting from the app to the activity level. The

activity level indicates that each activity should only access

the permissions it needs instead of the current permission

mechanism, which gives access to all permissions of the apps.

Finally, user awareness of app permission requests should be

increased. For example, runtime permission prompts could

be provided with detailed explanations, allowing users to

understand better what the app requires.

VI. DISCUSSION

A. Threats to Validity

Internal Threats. The main threat to internal validity is

the hyperparameter setting, which can affect the performance

of our tool. Due to time and resource constraints, we can-

not perform comprehensive fine-tuning for hyperparameters.

Therefore, the current parameters of our experiments may be

sub-optimal. To mitigate this threat, we set all parameters

to default or recommended values from previous studies.

For cases without known references, we conduct small-scale

experiments to select parameters based on best practices.

Another threat is using the same time budget for apps with

various complexities. Our intention is not to provide an equal

opportunity for all apps to explore their full potential but to

establish a standardized performance metric within a specific

time frame. This allows us to compare the efficiency and

effectiveness of different tools in a controlled manner. We

refer to previous research [34] for the particular time budget

settings.

External Threats. Threats to external validity mainly result

from the limited number of apps used in the experiments.

To mitigate this threat, we adopt a systematic approach to

construct the datasets, which retrieve apps from the Xiaomi

app store (https://app.mi.com/download/{id}) based on an

auto-increment ID allocating strategy. Although it is preferable

to conduct evaluations on more apps, our analysis covers

a substantial number of apps belonging to various classes,

indicating the general suitability of our approach.

Downloading apps only from the Xiaomi app store may

not give us a complete view of the Android app market.

However, the Xiaomi app store is one of the largest and most

popular app markets in the Android ecosystem. We believe

that the apps available on the Xiaomi app store can reflect

the general characteristics and trends of the Android app

market. Moreover, narrowing our scope to one prominent app

store allows us to conduct a more manageable study while

providing valuable information that can be extended to other

markets with further research. Besides, there may be a bias

in manually labeling the consistency of < activity, API >
pairs. Nonetheless, previous work [44] indicates that senior

students can serve as qualified agents in a well-controlled

environment.

B. Limitations

One limitation of our empirical study could be the presence

of statistical bias. Despite our efforts to select a diverse range

of mobile apps for analysis, our sample size is still limited.
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This may not represent the full heterogeneity of the population

of mobile apps. Furthermore, our research findings regarding

typical violations rely on manual inspection, which may be

subject to individual bias and interpretation differences. There-

fore, our results may not be applicable to other situations or

contexts.

C. Future Work

Dynamic testing can be inefficient when handling large

datasets such as AndroZoo, a common challenge for many

dynamic analysis tools. However, there are some potential

ways to improve the efficiency of GUIMind in the future,

such as using parallel processing to run multiple instances of

GUIMind on various machines or cloud platforms, applying

sampling techniques to select a representative subset of APKs

from the large dataset based on criteria such as popularity,

diversity, or similarity, and adopting heuristic methods to

prioritize the execution of APKs that are more prone to exhibit

malicious behaviors or vulnerabilities. In addition, we can also

explore other RL techniques besides DQN.

VII. RELATED WORK

Privacy Violation Analysis. Different techniques have been

proposed to detect privacy violations in mobile apps [45]–

[59] and identify third-party tracking services through dy-

namic [10], [60]–[64] or static analysis [34], [65]–[71]. For

example, Nguyen et al. [64] conducted a large-scale study

on the consent notices of third-party tracking and investigated

their violation of GDPR in Android apps. They first utilized

image processing and natural language processing techniques

to analyze consent user interfaces of apps and categorized

them into four interaction mechanisms. Based on these mecha-

nisms, an automated approach was proposed to detect personal

data sent from apps. The results revealed that 20.54% of the

apps utilized in their evaluation contained at least one violation

of the GDPR’s consent. Slaven et al. [48] proposed a semi-

automated framework to check the consistency between pri-

vacy policies and their apps’ code. In an empirical evaluation

conducted on 477 Android apps, 341 potential privacy policy

violations were identified using this framework.

Moreover, Pan et al. [31] proposed a flow-level system,

FlowCog, to perform semantic extraction and inference for

each information flow based on a Java-implemented taint-

analysis tool [68]. However, it is a static analysis method,

which is practically infeasible due to the intense usage of dy-

namic features such as code obfuscation, code encryption, dy-

namic class loading, and reflection. In contrast, APICOG [10]

is a dynamic method that judges the legitimacy of sensitive

API calls based on UI context, including text and image

attributes.

GUI Testing. Early approaches used random strategies

to automate mobile app testing, such as Monkey [17] and

Dynodroid [72]. To improve code coverage, some researchers

attempted to generate high-quality test cases using state ma-

chines (e.g., Stoat [73], Droidbot [33], and ORBIT [74]) or

systematic strategies (e.g., SAPIENZ [75] and A3E [76]).

There are also some studies based on machine learning

for automated GUI testing [77]–[83]. Currently, reinforce-

ment learning techniques have been widely used in testing

tasks [77], [78], [82]. For instance, Retecs et al. [84] applied

reinforcement learning to regression testing, which drives

the prioritization and selection of test cases more efficiently.

Zhang et al. proposed a reinforcement learning model UniRL-
Test [32] to thoroughly explore app states with a curiosity-

driven strategy. However, they are general testing frameworks

that maximize code or GUI coverage and cannot effectively

trigger specific targets, such as sensitive API calls.

VIII. CONCLUDING REMARKS

In this paper, we present the first systematic study on

violations of the Data Minimization Principle in mobile apps.

This contribution is significant as prior research has yet to

extensively explore mobile app privacy concerns, and our

proposed approach provides a viable solution to address these

issues. We first propose a new automated tool, GUIMind,

to detect such violations in Android apps, which utilizes a

deep reinforcement learning-based model to efficiently identify

sensitive API calls to accelerate our empirical study. We

then thoroughly examine instances of privacy non-compliance

across various mobile apps and provide an in-depth analysis

of the root causes behind these violations. Overall, our work

provides valuable insights into the state-of-the-art techniques

for detecting and mitigating privacy non-compliance in mobile

apps and could serve as a foundation for future research in this

field.
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