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Abstract Although operating system optimization has been studied extensively, previous work mainly

focuses on solving performance problems. In the cloud era, many servers only run a single application,

making it desirable to provide an application-specific operating system (ASOS) that is most suitable for the

application. In contrast to existing approaches that build ASOS by manual redesign and reimplementation,

this paper presents Tarax, a compiler-based approach to constructing an ASOS for each application. With

profile collected from executing the target application on an instrumented Linux kernel, Tarax recompiles

the kernel while applying profile-guided optimizations (PGOs). Although GCC has already implemented the

optimization process that can be applied to user applications, it does not work on the Linux kernel directly.

We modify the Linux kernel and GCC to support kernel instrumentation and profile collection. We also

modify GCC to reduce the size of optimized kernel images. We conduct experiments on six popular server

applications: Apache, Nginx, MySQL, PostgreSQL, Redis and Memcached. Experimental results show that

application performance improves by 8.8% on average (up to 16%) on the ASOS. We also perform detailed

analysis to reveal how the resulting ASOS improves performance, and discuss future directions in ASOS

construction.
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1 Introduction

As the foundation of a computer system, the operating system (OS) is critical to the performance of

all applications running on it, especially system-intensive applications that invoke kernel features exten-

sively [1–3]. As a result, OS optimization has been studied extensively, which includes a vast of research

work trying to optimize every aspect of an OS. Most of these efforts tend to solve specific performance

problems in a general way that is suitable for various types of applications. In order to provide a “one for

all” OS, tradeoffs are made to guarantee that the performance is consistently good for all applications.

However, such a general-purpose OS is often suboptimal for a specific application.

Many computers run only a very small set of applications or even a single application. For example,

the computer behind an ATM machine typically runs only a single application. Many web servers run

nothing but the Apache server. In the cloud era, as there are more and more servers, it becomes more
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prevalent to run a single application on each dedicated server or virtual machine, instead of running many

applications on one server as in the past.

As a result, we argue that application-specific operating system (ASOS) should be built to provide an

optimal running environment for each application. ASOS was first proposed by Anderson [4] more than 20

years ago. ASOS differs from ordinary OS in that it focuses on the performance of a specific application,

instead of the overall performance for all possible applications. Figure 1 shows the general idea of ASOS,

where each application runs on a dedicated OS kernel. Recent examples of ASOS are mostly based on

the principle of library OS introduced by exokernel [5]. For example, unikernel [6] focuses on optimizing

for the cloud and is adopted by LightVM [7] for its low memory footprint. Arrakis [8] and IX [9] are

proposed for datacenter workloads.

Although application-specific library OS can achieve significant size or speed improvement, it typically

requires an entire reimplementation of the OS kernel, and even the applications running on it. It typically

requires first manually identifying the performance bottleneck, and then redesigning and reimplementing

the whole system. Although it is realistic to build an ASOS for some particular application or a set of

applications, it will be almost impossible to build an ASOS for every application running on it.

In this paper, we propose Tarax, a compiler-based approach that takes advantage of profile-guided

optimizations (PGOs) to construct an ASOS for each application. Compared to previous approaches,

Tarax does not need to modify OS source code when building an ASOS. Therefore we can build an ASOS

in significantly fewer efforts. While most existing work could only develop an ASOS for one type of

applications, Tarax can build a true ASOS that is specific to each application.

Specifically, Tarax extends PGO in GCC to perform application-specific optimizations on the Linux

kernel. PGO makes use of feedback collected from runtime profiling to guide the compiler optimization of

a program. By employing runtime feedback, the compiler can provide more accurate optimizations than

without the feedback. PGO is commonly used for user applications to improve performance. Well-known

projects such as Firefox and PHP have already adopted this technique for a few years. GCC itself can

also be built with PGO and shows about 7% speedup.

We have demonstrated the feasibility of applying PGO to the Linux kernel to achieve speedups in a

workshop paper [10]. This paper extends previous work, and proposes a more general solution in Tarax to

build ASOS with the help of PGO. We also perform comprehensive analysis on the experimental results

to provide insights on how profile information helps improve OS performance.

Since PGO in GCC cannot be directly applied on the Linux kernel, we investigate the reasons why PGO

does not work and make corresponding modifications to the Linux kernel and GCC to support kernel

instrumentation and feedback collection. At the same time, to make GCC more suitable for building

ASOS, we also modify GCC to produce smaller Linux kernel binaries when feedback is available.

Overall, we have modified 1017 lines of code in the Linux kernel and 148 lines of code in GCC and

submitted some of our modifications to the open source community, some of which has already been

accepted. We also automate the Tarax procedures so that an ASOS can be constructed with little user

intervention, and no need to modify the Linux kernel code as well.

We make the following main contributions in this paper.

• We propose Tarax, a compiler-based approach to constructing ASOS, which achieves the “one kernel

for one application” goal. Tarax is highly automated with a dedicated toolchain, such that users do not

need to make any manual modifications to the kernel or to the target applications.

• We conduct experiments on six popular server applications to demonstrate the effectiveness of Tarax.

The results show that the performance of these applications improves by up to 16% when running on the

Linux kernel optimized for each application. We also perform extensive analysis to reveal insights into

the performance optimization opportunities arising from Tarax.

• To the best of our knowledge, Tarax is the first comprehensive work that successfully enables PGOs

on modern OSs such as the Linux kernel. Besides the optimizations presented in this paper, we believe

more opportunities could arise for performing more advanced optimizations on the Linux kernel to achieve

extra application-specific benefits.
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Figure 1 (Color online) The general idea of ASOS. Figure 2 (Color online) Tarax overview.

2 Tarax overview and challenges

Our ultimate goal is to build ASOS automatically. To achieve this goal, Tarax is designed as a compiler-

based approach that takes advantage of PGOs. Figure 2 presents an overview of Tarax. We target

to build application-specific Linux kernels for popular server applications such as Apache, MySQL and

Redis. With the profile feedback from running individual applications, we rely on the compiler (i.e.,

GCC) to perform better optimizations on Linux kernel source code, and create kernel images optimized

for the corresponding application.

2.1 PGO in GCC

PGO has been well studied in the compiler community [11]. The compiler attempts to mitigate the cost

of a program’s generality by using feedback information such as control flow graph (CFG) and expression

value profiles, which are collected in one or more previous program runs. The compiler then focuses its

optimization efforts on the frequently executed portions of the program by understanding the run-time

tendencies within these portions. PGO has been applied to large open source projects such as Firefox

and Chrome.

A typical PGO process consists of the following phases.

• Instrumentation. The compiler instruments the target application during compilation in order to

collect profile information that will be used for later optimizations. The profile information consists of

control flow traces, value and address profiles.

• Profile collection. The instrumented target application is executed to collect profile information.

The execution process should reflect real-world runtime scenarios.

• Optimization. The compiler uses the profile information collected in the previous phase to optimize

the target application. The profile information helps the compiler make better decisions on branch

prediction, basic block reordering, function inlining, and loop unrolling.

In GCC, PGO instrumentation can be enabled by turning on an option (-fprofile-generate). After

instrumentation, one needs to run the application and collect profile data. Finally, the application

is recompiled with an option (-fprofile-use) to turn on the compiler optimizations using the collected

profile data: branch optimizations, basic block reordering, function inlining, register allocation, and code

partitioning. Recent GCC versions also support sampling-based AutoFDO (automatic feedback directed

optimizer), which does not require instrumentation. We will discuss it in Subsection 6.3.

2.2 Challenges

Applying PGO to user applications such as Firefox can be performed by simply enabling the related

options in GCC. However, applying it directly to the Linux kernel faces several technical challenges.

(1) How to enable kernel instrumentation. To collect profile feedback from individual applications,

the kernel should be instrumented. However, unlike user applications, some features in the Linux kernel

conflict with compiler instrumentation, which may result in Linux failing to boot.

(2) How to collect profile information. In order to enable profile collection, the compiler has some

auxiliary libraries that the instrumented program should link against. But the Linux kernel is self-

contained and does not allow linking against external libraries.
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Figure 3 (Color online) System architecture of Tarax.

(3) When to collect profile information. For an instrumented program, the profile feedback is collected

on exit. However, the runtime behavior of the kernel is different since it never really exits. We need to

collect profile feedback on-the-fly and carry on post processing.

(4) How to choose correct optimizations. If profile feedback is available, the compiler can perform more

aggressive optimizations that are otherwise disabled by default. Some optimizations will cause wrong

code generation on certain kernel functions, resulting in build failure.

3 Tarax design and implementation

3.1 Tarax design

Figure 3 presents the architecture of Tarax, where the shaded components involve our modifications and

implementation. To solve the challenges listed in Subsection 2.2, we make modifications to Linux, GCC,

as well as the profile data files collected from Linux.

We first need to design an approach to enable PGO instrumentation on the Linux kernel. Fortu-

nately, the gcov subsystem of Linux shares the same instrumentation infrastructure and the same data

format with the PGO implementation in GCC. The main difference is that gcov includes instrumentation

capabilities on only CFG profiling. It does not support value profiling, which is required by PGO.

In order to enable full kernel instrumentation, Tarax extends the gcov subsystem of Linux. We also

modify GCC to adapt to kernel instrumentation. To collect profile information from the kernel, we make

use of the existing debug filesystem (DebugFS) interface. To choose better optimizations for the kernel,

we modify the optimization option handling logic in GCC to support better size-speed tradeoff.

3.2 Kernel instrumentation

Linux kernel instrumentation in Tarax is based on the gcov subsystem. It already supports the -fprofile-

arcs instrumentation, which is used in coverage testing. In order to support full PGO instrumentation,

we make modifications to the gcov subsystem to support value profiling, and also make modifications to

handle various other issues.

• Value profiling. To support profiling on values via instrumentation, we add the following profilers

that are used in the instrumentation phase to the kernel gcov subsystem: indirect call profiler, ior profiler,

average profiler, one value profiler, interval profiler, pow2 profiler, time profiler, and indirect call topn

profiler. These profilers work together with the CFG arcs profiler, which is already supported in the

Linux kernel. Besides these profilers, we also need to add profile merging functions, which are included

in the auxiliary libraries of GCC. An instrumented program should link against these libraries, but the

Linux kernel building process does not allow linking against external libraries. So we port these functions

to Linux to keep the kernel code self-contained.

• Disabling TLS. The PGO implementation in GCC is designed for user applications and makes

use of thread-local storage (TLS) in value profiling. The TLS mechanism, which uses an extra segment
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register, requires kernel support. However, it is not available in the kernel itself. The kernel’s per-CPU

allocation, which is similar to TLS, uses a different segment register and is not available before kernel

initialization. So we disable this feature in kernel instrumentation. Specifically, we add the --disable-

threads and --disable-tls options when configuring and building GCC.

• Selective instrumentation. After the above modifications, the instrumented kernel may still not

be able to boot because some functions, if instrumented, interfere with the self-patching mechanism in the

Linux kernel. To solve this problem, we further modify Linux source file “arch/x86/kernel/paravirt.c”,

using the function-specific option pragma optimize provided by GCC to disable value profiling instru-

mentation on incompatible functions including paravirt nop, paravirt ident 32 and paravirt ident 64.

Moreover, the profiler functions themselves cannot be instrumented. So we disable instrumentation on

the whole gcov subsystem in the makefile.

3.3 Profile collection

With the implementations described in Subsection 3.2, we have incorporated instrumentation capabilities

to the Linux kernel. However, certain statistics such as counter summary and histogram, which are

required by GCC during optimization, are calculated by an auxiliary library when the instrumented

program exits. Although this is normal for user applications, such statistics for the kernel will be missing

since the kernel does not actually exit after it boots up.

To solve this problem, our implementations include:

• We write a utility program to help calculate the counter summary and histogram after collecting

profile data from the DebugFS interface;

• Instead of collecting profile data at program exit, we collect the profile data of the kernel on-the-fly;

• As the kernel never exits, we specify the start and the end of the profile collection process based on

the start and the end of the target application running on it.

3.4 Application-specific optimizations

With profile feedback available, the compiler can now perform application-specific optimizations on the

kernel. We make the following efforts to fix optimization errors and improve its performance.

• Fixing optimization problems. Some optimizations are incompatible with kernel code, re-

sulting in assembler errors at kernel build time. For example, code reordering is incompatible with

some kernel functions that have complex inline assembly, such as the function static cpu has safe in

“arch/x86/include/asm/cpufeature.h”. To solve this issue, we disable optimization options on a per-

source-file basis in the kernel makefile. The advanced compiler optimizations enabled by PGO may

also cause kernel boot failure due to misoptimization. For example, the schedule function in “ker-

nel/sched/core.c” may cause kernel panic if compiled with aggressive optimizations, We use the function

specific option pragma optimize to disable optimizations on a per function basis.

• Selective size optimization. Ideally, reducing kernel code size helps reduce instruction cache

misses and improve kernel performance. However, if we turn on aggressive size optimization in GCC

(-Os), it severely degrades kernel performance (Subsection 5.3). In order to make better size-speed

tradeoffs, we modify GCC to enable aggressive size optimization only when the profile data shows that

the whole translation unit is never executed1). Specifically, we change the cost model of GCC x86 backend

from ix86 tune cost to ix86 size cost to optimize for code size, set the code alignment constraint to one

byte to remove function-level code padding, and turn off optimizations that may increase code size on

the never-executed code. In this way, we are able to reduce the instruction cache footprint of the kernel

as much as possible without sacrificing performance.

1) Translation unit is the input to a compiler from which an object file is generated.
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Figure 4 (Color online) The building and optimization workflow in Tarax.

3.5 Workflow and automation

We automate Tarax with a dedicated toolchain, as shown in Figure 4. In the figure, the procedures in

italic are automated using shell scripts. Only booting up the instrumented kernel and running the target

application require user intervention. The workflow includes the following steps.

(1) Preparation. We patch the Linux kernel and GCC with the above modifications. Then we build

a dedicated GCC binary for kernel optimization.

(2) Instrumentation. We configure the kernel with CONFIG GCOV KERNEL and CONFIG GCOV

PROFILE ALL options enabled and set kernel makefile variable CFLAGS GCOV to -fprofile-generate.

Then we build the instrumented kernel with the CC variable set as our dedicated GCC.

(3) Profiling. We boot the instrumented kernel and run the target application to collect kernel profile

information from DebugFS. This step requires user involvement to run different applications.

(4) Optimization. We disable gcov-related kernel options previously set on, and rebuild the kernel

with makefile variable KCFLAGS set as “-fprofile-correction -Wno-error=coverage-mismatch -fprofile-use

-fprofile-dir=/path/to/profile”.

3.6 Implementation

Our implementation of Tarax is summarized as follows.

• Linux. We have modified eight source files (1017 lines of code), including five in the gcov subsystem,

two in the x86-specific code, and “kernel/sched/core.c”. The modified gcov subsystem contains auxiliary

libraries ported to support instrumentation and profiling (420 lines of code).

• GCC. We have modified three source files (148 lines of code), including two in the coverage support

code and one in the compiler driver.

• Utilities. We have implemented 2 utilities (395 lines of C++ code) for profile data file processing.

• Scripts. We have implemented six shell scripts to automate the building process.

We have submitted two patches for the gcov subsystem to Linux and one of them has been accepted

to the mainline kernel2). We have also submitted a patch for GCC that improves optimization option

handling, which is in the revision process to meet the GCC acceptance criteria. We also plan to release

the automated toolchain to the public to encourage further research and improvement in this direction.

4 Experimental setup

4.1 Environment

Our experimental environment includes a test machine running the target applications and a client

machine running benchmarking tools. Table 1 lists the experimental environment. The test machine and

2) Git commit ID is a992bf83.
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Table 1 Experimental environment

Type Parameters

Processor Intel Core i7-4770

Memory 32 GB DDR3 1600 MHz

Network 10 Gbps LAN

Kernel Linux 4.1.2

Kernel compiler GCC 5.1.1

Operating system Debian sid amd64

File system tmpfs

Table 2 Application versions

Application name Version

Apache 2.4.23

Nginx 1.10.2

MySQL 5.6.25

PostgreSQL 9.3.9

Redis 3.0.2

Memcached 1.4.21

the client machine are connected via 10 Gigabit Ethernet. We choose Debian sid as the target Linux

distribution for better hardware and software support. We also use tmpfs to avoid the uncertainty of

disk I/O performance.

4.2 Benchmarking methodology

We conduct experiments on six server applications that are known to be system-intensive, namely Apache,

Nginx, MySQL, PostgreSQL, Redis and Memcached. Table 2 lists the application versions used in our

experiments. We first run the six server applications on the vanilla kernel and measure their performance

via benchmarking tools. Then we carry out the optimization process described in Subsection 3.5 and get

six optimized kernels for the six server applications, respectively. Finally, we run the target applications

on their corresponding optimized kernels and measure their performance again. The characteristics of

the six applications and their benchmarking configurations are as follows.

• Apache, the most popular web server, has been investigated in previous work [12] and proved to be

system-intensive. We configure the web server to serve both static and dynamic requests. The response

size ranges from 256 to 2048 bytes. We do not choose even larger response sizes to avoid network

bandwidth saturation. On the client, we generate randomized requests, with the ratio of static:dynamic

requests evenly distributed at 1:1. The tool we use is ab, the Apache HTTP server benchmarking tool.

• Nginx is another popular web server. We use the same benchmarking settings as Apache.

• MySQL is the most popular open-source relational database system, widely used in small websites

for data management. The benchmarking tool we use is dbt2, an open-source implementation of the

TPC-C benchmark specification. It is an online transaction processing performance test. The dbt2

performance metric is NOTPM, the number of new order transactions processed in one minute.

• PostgreSQL is another popular database system. The benchmarking tool we use is also dbt2.

• Redis is the most popular key-value store, widely available on many cloud platforms. It is a

mostly single-threaded program and makes use of event-driven techniques to achieve concurrency. The

benchmarking tool we use is memtier. We configure it to generate randomized workloads with the ratio

of get:set operations evenly distributed at 1:1.

• Memcached is another popular key-value store. Compared with Redis, Memcached is multi-

threaded and event-driven, but does not support data persistence. The benchmarking tool we use is

also memtier.
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Table 3 Application performance on the vanilla kernel and the kernels optimized by Tarax

Application

(m)

Performance

Vanilla Tarax
Improvement (%)

Mean Stdev (%) Mean Stdev (%)

Apache (requests/s) 61843 0.16 69186 0.71 11.9

Nginx (requests/s) 255397 0.25 298443 0.30 16.9

MySQL (trans/min) 70499 0.25 74489 0.43 5.7

PostgreSQL (trans/min) 80943 0.59 83194 0.50 2.8

Redis (operations/s) 367807 0.45 396407 0.23 7.8

Memcached (operations/s) 427715 0.80 464129 0.23 8.5

Average (geomean) 8.8

5 Evaluation

In our evaluation, we first perform experiments to compare the performance and code sizes of the Tarax-

optimized kernels and the vanilla kernel. We then perform dynamic profiling on the kernels to collect

detailed statistics on instruction cache misses and branches. Finally, we switch on specific GCC opti-

mizations with and without profile feedback, respectively, to collect performance numbers. We use these

experiments to answer the following questions:

• What are the performance benefits of kernels optimized by Tarax in comparison to the vanilla kernel?

Are the optimized kernels application-specific? (Subsection 5.1)

• Is Tarax general enough to adapt to different workloads, different hardware architectures and differ-

ent Linux versions? (Subsection 5.2)

• How does Tarax affect kernel code sizes? (Subsection 5.3)

• Where do the performance benefits come from? (Subsection 5.4)

• Does the profile feedback really help the compiler to perform better optimizations? (Subsection 5.5)

5.1 Performance comparison

5.1.1 Overall performance

We first compare the overall performance of the optimized kernels and the vanilla kernel. We run each

benchmark five times and calculate the arithmetic means, which are shown in Table 3. The results

show that Tarax achieves positive performance improvement consistently for all six applications, with

improvement of more than 16% for Nginx. On average, application performance is improved by 8.8%

when running on the corresponding optimized kernels3).

We also present the standard deviations of performance numbers from different test runs in Table 3.

Although the standard deviations for specific applications may increase or decrease, they are all relatively

low, which indicates that the performance improvement are stable throughout the experiments.

The performance improvement numbers are in the same range as PGO on user applications. According

to our experience, the JavaScript performance of Firefox improves by about 5% using PGO. A recent

result on SPEC CPU2006 shows 4.5% improvement after applying PGO.

5.1.2 Cross evaluation

To investigate whether the optimized Linux kernels are really application-specific, we also run each

application on kernels optimized for other applications. Figure 5 shows the result matrix, where all

numbers shown are normalized to the application performance on its own optimized kernel.

If the optimized kernel is best-suited for the target application, the numbers on the diagonal should

be the highest; all other numbers should be below 1 since they are running on kernels optimized for

other applications. We can see that most of the results follow this pattern, with all applications except

Memcached achieving the best performance on their own optimized kernel.

3) All averages are calculated as geometric means throughout this paper, unless otherwise noted.
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Figure 5 Performance speedup on different optimized kernels. For each application, the numbers are normalized to the

performance when it runs on the kernel optimized for itself.

For example, when we run Nginx on all six kernels, the performance of it running on other kernels ranges

from 91% to 97% of the performance on its own kernel. On the other hand, although the performance

of Memcached is generally good while running on other kernels, the performance of other applications

running on the kernel optimized for Memcached could be as low as 93% of their best performance. One

possible reason is that the kernel hot path of Memcached is a subset of other applications.

The results show that we have created truly application-specific Linux kernels for each application.

Running an application on an arbitrary (albeit) optimized kernel could degrade its performance by 9%.

Note that Apache and Nginx exhibit different behaviors on these kernels even though they are both

web server applications, which indicates that it is sometimes difficult to build a uniformly good kernel

even for a set of applications with similar functionalities.

5.2 Sensitivity analysis

5.2.1 Sensitivity on workloads

In our experiments, the workloads are generated randomly such that different workloads are used during

profiling and testing. However, they still follow the same distribution. If the workload distribution of an

application changes, will it affect the performance improvement achieved by Tarax?

Figure 6 shows how workload changes may influence application performance of Nginx and Memcached.

The kernel for Nginx is optimized with the ratio of static:dynamic requests set as 1:1. When the ratio

changes, performance improvement of Nginx ranges from 15% to 21%. The kernel for Memcached is

also optimized with the ratio of get:set operations set at 1:1. When the ratio changes, performance

improvement of Memcached ranges from 8% to almost 10%. Workload changes influence the performance

of Apache and Redis similarly. Since dbt2 generates randomized database workloads, we do not perform

workload sensitivity analysis on MySQL and PostgreSQL.

The results show that the optimized kernels are robust against application workload changes.

5.2.2 Sensitivity on hardware platforms

How does Tarax perform on different hardware platforms? Figure 7 presents application performance

improvement of the optimized kernels over the vanilla kernel on both Intel and AMD microprocessors.

The AMD microprocessor we use in the comparison is FX-8350.

We can see that performance improvements of PostgreSQL and Redis are higher on AMD, but the

average performance improvement is higher on Intel. On average, Tarax achieves 7.6% performance

improvement on AMD, which shows that it is still effective on a different hardware platform.
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Figure 6 (Color online) Performance comparison with different workload. (a) Nginx; (b) memcached.
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Figure 7 Performance speedup on different hardware

platforms (normalized to the corresponding vanilla kernel).

Figure 8 Performance on different Linux versions (nor-

malized to the corresponding vanilla kernel).
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Figure 9 Comparison of kernel code sizes. Figure 10 Performance comparison: Tarax vs. kernel

compiled with -Os (normalized to the vanilla kernel).

5.2.3 Sensitivity on Linux versions

How do different OS versions affect the optimization effectiveness? Figure 8 shows application perfor-

mance on five different Linux versions: 3.16.7, 3.18.3, 4.0.8, 4.1.2, and 4.8.6.

Because there are many changes between these Linux versions, we can see that the performance numbers

vary significantly on some applications. For example, the performance improvement on Memcached ranges

from 2% to 10%. However, the average performance improvement is steady and consistent, ranging from

7.5% to 10.7%, which indicates that Tarax is effective on different kernel versions.

On Linux 4.8.6, Tarax achieves 10.7% average performance improvement, which is the highest among

the five versions. It shows that Tarax is still effective along the Linux version evolution.

5.3 Kernel code size comparison

A smaller kernel is beneficial as it could reduce instruction cache misses (which will be shown later).

Figure 9 compares the code sizes of the optimized kernels, with the vanilla kernel and the kernel compiled

with aggressive size optimization -Os. We measure the .text section size of the kernel image.

We can see that the optimized kernels are significantly smaller than the vanilla kernel compiled with

the default -O2 option; but they are a little larger than the kernel compiled with -Os.

We also compare the performance of the Tarax-optimized kernels and the kernel compiled with -Os,

which is shown in Figure 10. We can see that the kernel compiled with -Os is much slower than the
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(a) (b)

Figure 11 I-cache miss rates from dynamic profiling. (a) Kernel; (b) application.

Tarax-optimized kernels; they are even slower than the vanilla kernel (-O2). This shows that aggressive

size optimization could actually degrade the kernel performance; however, the compiler can make better

decisions on size-speed tradeoffs with profile feedback.

5.4 Dynamic profiling analysis

In order to explain how the application-specific kernels are optimized, we perform dynamic profiling

with perf [13] to collect performance related statistics. The sampling range is 10 s during application

execution. As perf supports profiling the kernel and user mode separately, we can calculate instruction

cache (I-cache) miss rates for the kernel and the application, respectively. We use the number of executed

instructions to approximate the number of I-cache accesses. We then calculate misprediction and taken

rates of branch instructions in kernel mode.

5.4.1 Instruction cache statistics

Figure 11 presents the statistics on I-cache for both kernels and applications. We can see that the I-cache

miss rates for applications are reduced slightly in five of the six benchmarks (I-cache miss rate of Redis

increases slightly from 0.37% to 0.41%). However, the I-cache miss rates for the kernels are significantly

reduced; the biggest reduction is 2.17 percentage points for MySQL. For Memcached, the I-cache miss

rate for the kernel is reduced by more than 58% (from 0.31% to 0.13%). The result shows that Tarax

improves the I-cache metrics, which is a major contribution to kernel performance speedup.

5.4.2 Branch optimizations

Figure 12 shows the profiling results of branch instructions in the kernel mode. We expect that the

compiler should make better decisions on branch prediction and code layout with profile feedback.

Figure 12(a) shows that compiler branch prediction does not help reduce branch misprediction rate in

the kernel, which is expected (explained in Subsection 2.1).

Instead of reducing branch mispredictions, the compiler exploits branch probabilities to reduce the

number of taken conditional branches. Figure 12(b) shows that the number of taken branches have been

reduced by over 50% for some kernels. Figure 12(c) shows over 1/3 reduction in branch-taken rates for

all optimized kernels. Please note that branch-taken rates on the vanilla kernel are all higher than 50%

because the compiler cannot reverse the condition and invert conditional branches used in loops without

profile feedback. Reducing taken branches favors I-cache locality as well. It is another contribution to

kernel performance speedup.

5.4.3 Function inlining

We also make use of clock cycle based sampling to see which kernel functions are live at runtime. Taking

Apache as an example, Figure 13 shows the top 10 live kernel functions when it runs on the vanilla kernel

and the optimized kernel, respectively.

We can see that many of the top 10 functions in the two kernels are different. Taking the most frequently

executed function thread group cputime as an example, it is invoked by function thread group cputime
Downloaded to IP: 192.168.0.213 On: 2019-07-31 07:44:13 http://engine.scichina.com/doi/10.1007/s11432-017-9418-9



Yuan P F, et al. Sci China Inf Sci September 2018 Vol. 61 092102:12

(a) (b)

(c)
×

1
0

1
0

Figure 12 Branch statistics from dynamic profiling. (a) Branch misprediction rate; (b) taken branch instructions;

(c) branch taken rate.

% Function name

10.01  thread_group_cputime

3.82  rwsem_down_write_failed

1.58  __switch_to

1.56  __schedule

1.56  _raw_spin_lock

1.30  _raw_spin_lock_irqsave

1.25  task_sched_runtime

1.18  copy_user_enhanced_fast_string

0.96  __fget

0.85  tcp_ack

0.85  page_fault

% Function name

11.43  thread_group_cputime_adjusted

4.77  rwsem_down_write_failed

2.18  enqueue_task_fair

1.83  dequeue_task_fair

1.80  __switch_to

1.74  task_sched_runtime

1.71  _raw_spin_lock

1.59  _raw_spin_lock_irqsave

1.47  copy_user_enhanced_fast_string

1.35  context_switch

1.29  select_task_rq_fair

(a) (b)

Figure 13 Top 10 live kernel functions at runtime of Apache. (a) Vanilla kernel; (b) optimized kernel.

void thread_group_cputime_adjusted(

struct task_struct *p,

cputime_t *ut,

cputime_t *st)

{

struct task_cputime cputime;

thread_group_cputime (p, &cputime);

cputime_adjust(&cputime,

&p->signal->prev_cputime,

ut, st);

}

Figure 14 Code of kernel function thread group cputime adjusted.

adjusted, whose source code is shown in Figure 14. In the optimized kernel, thread group cputime does

not appear in the sampling results, as it is inlined during optimization.

Kernel developers do not manually inline the function because it is invoked in multiple places. In the

vanilla kernel, the compiler does not inline the function because it acts conservatively without runtime

profile. Inlining the function in all places it is invoked may bloat the kernel and hurt performance (which

will be shown later). However, with profile information available, GCC is able to perform smarter inlining

on places where the callee has been invoked most frequently.
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(a) (b)

Figure 15 Effects of profile feedback on different GCC optimizations, results shown are performance improvements of

enabling the respective option over disabling it, with or without profile feedback. (a) Function inlining; (b) basic block and

function reordering.

5.5 Profile feedback analysis

We manually control some GCC optimization options and compare their performance to see how runtime

profile influences these optimizations. Specifically, we control option -finline-functions for function inlining

and option -freorder-blocks-and-partition for code reordering.

Figure 15 shows the results of profile feedback analysis, which are performance improvements of en-

abling the options over disabling them, with or without profile feedback.

From Figure 15(a), we can see that the performance improvements of five applications are higher when

performing function inlining with runtime profile. The profile feedback of PostgreSQL does not help the

compiler perform better function inlining on the kernel. For Memcached, aggressive function inlining

without profile feedback severely degrades performance by over 6%.

Figure 15(b) shows that the performance improvements of all six applications are higher when per-

forming code reordering with runtime profile. For PostgreSQL, code reordering without profile feedback

degrades performance by 1.4%.

The results show that runtime profile is beneficial for these two optimizations in most cases. Without

profile feedback, aggressive optimizations could degrade performance.

6 Discussions

6.1 Application scenario

Tarax can be used as a general approach to improving application performance by optimizing the under-

lying kernel. We can use Tarax to adapt the kernel to any specific application or scenario. For example,

when an application evolves to a new version, we can easily rebuild a new kernel to offer the best possible

performance for the new version. This would be almost impossible with manual redevelopment.

6.2 Kernel stability guarantees

In Subsection 3.4, we have disabled aggressive optimizations in PGO on particular files that caused

trouble during optimization. We have not found any other cases that may affect kernel stability during

runtime after applying Tarax. However, to further ensure that PGO does not introduce any instability

to the kernel, we can disable all aggressive optimizations enabled by PGO. In this way, Tarax can apply

the same optimizations as in -O2, with only the static branch predictions of GCC replaced by profile

feedback. Thus we can guarantee that the Tarax-optimized kernels are as stable as the kernel optimized

with -O2.

Disabling aggressive optimizations may impact the speedup. However, based on our preliminary ex-

periments on Linux 4.8.6, the speedup is still about 6% on average, which shows that profile feedback

helps improve kernel performance even without these extra optimizations.
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6.3 Sampling-based profiling

Traditionally, PGO requires instrumentation to collect profile feedback. GCC have recently introduced

AutoFDO, which can collect feedback using sampling-based profiling. We do not adopt AutoFDO in

Tarax because it is limited to CFG arcs profiling and requires last branch record support from Intel

processors. It cannot be applied to other processors or virtual machines. Moreover, the performance

improvement of AutoFDO is 15%–22% lower than PGO [14,15].

6.4 Further optimizations

The current Tarax implementation makes few modifications to the existing optimizations in GCC. We

have mainly tried to take advantage of existing optimizations in GCC to create application-specific

Linux kernels. Although the current results are already promising, we expect that more aggressive

optimizations could be applied along this direction. For example, we have shown that with profile

information available, the compiler makes better size-speed tradeoffs in comparison to aggressive size

optimization (-Os) (Subsection 5.3). In some cases, profile information actually degrades performance

compared to no profile information (Subsection 5.5). These indicate that more fine-grained control on

GCC optimizations can potentially achieve greater improvement.

6.5 Limitations

During the implementation and evaluation of Tarax, we have made some choices and tradeoffs to stay

focused on the main objective: to improve the application-specific performance of the Linux kernel.

Application selection. This paper focuses on optimizing the kernel for server applications because

many server applications are known to be system-intensive. Unlike server applications, desktop and

mobile applications are mostly interactive. The performance problems in these applications often reside

in their models of human-computer interaction, instead of in the kernel. As a result, these applications

may not benefit much from Tarax [16].

Experimental setup. In the experiments, we try to reduce factors that may influence application

performance other than the kernel, which widely exist in real-world cases. For example, we use tmpfs to

avoid the uncertainty of disk I/O performance. We also use high-speed network (10 Gbps) to increase

throughput and stress the kernel, as such network is already used in many cloud environments.

Evaluation methodology. Since PGO is a machine learning like approach, strict evaluation may

need separate training and testing inputs. For example, SPEC CPU2006 requires that only the training

input can be used in PGO. However, we do not strictly follow the rules because we want to emphasize the

potential benefits of Tarax. Although we use the same benchmarking tool for both training and testing,

random workloads are generated for each execution.

6.6 Future directions

Building virtual appliances for cloud. As most cloud servers run virtual machines instead of OS on

bare metal, we can extend Tarax to perform optimizations on the combination of the Linux kernel, the

middleware and the application to create a specially optimized software stack which can be distributed

and deployed as virtual appliances. We have applied Tarax and PGO to the famous LEMP stack, which

consists of Linux, Nginx, MySQL and PHP, and achieved 5.4% performance improvement for WordPress.

Link-time optimization (LTO). Previous work has explored link-time compaction and specialization

techniques to reduce memory footprint of the Linux kernel [17]. Tarax can also be combined with

LTO. Performing optimization at link-time provides the compiler with more chances to carry out inter-

procedural analysis, which will become more accurate when profile feedback is available.

Kernel refactoring. Another future direction is profile-guided kernel source code restructuring. The

profile feedback can help us figure out the relations between kernel functions at runtime. We can use this

information to eliminate unnecessary functions in the kernel with proper refactoring. We can also use the

profile information to rearrange functions in translation units, which increases optimization opportunities.
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7 Related work

We will discuss related work in three areas: ASOSs, general kernel performance optimization, and

feedback-directed optimization (FDO).

7.1 Application-specific operating systems

Anderson first proposed the idea of ASOS [4], which is an application-specific design where as much of the

OS as possible is pushed into runtime library routines linked with each application. Earlier ASOSs are

based on kernel specialization [18], which can improve the performance of a specific system call. However,

kernel specialization has not been applied to the whole kernel as Tarax does.

Since exokernel [5] was proposed, much research has been conducted on pursuing application-specific

OS kernels based on the principle of library OS. Modern library OSs use virtual machine monitors as the

exokernel [19]. The Mirage unikernels [6] are single-purpose appliances that are compile-time specialized

with significant reduction in image sizes, and improvement in efficiency and security. Arrakis [8] and

IX [9] are optimized for high I/O performance in datacenter workloads. They both adopt the library OS

principle and use virtualization technologies to accelerate I/O.

A library OS is specific to applications. Although it can achieve significant size and speed improvement,

library OS typically requires entire reimplementation of the kernel, and even the applications running on

it. Instead of reimplementing an application-specific kernel, Tarax leverages profile-guided recompilation,

such that the kernel can be optimized for each application without source code modification to either the

kernel or the application. Furthermore, we can apply PGO on customized OS kernels such as library OS,

to bring extra application-specific performance benefits on top of the library OS design.

7.2 Kernel optimization

Improving kernel performance [20] is an everlasting topic in the OS research community. With every gen-

eration of computer innovations, there is extensive research work on how to improve the OS performance

accordingly [21]. Besides research publications on kernel performance [12, 22], many more optimizations

have been applied to the Linux kernel to fix performance bugs and improve its performance; but most of

these implementation efforts have never been published. For Linux file system and memory management,

8% and 27.4% of patches are for performance optimization respectively [23, 24].

All these performance optimizations to the kernel focus on specific performance problems, but are

general to applications. Tarax pursues the opposite: it targets the whole kernel but is specific to each

application scenario.

7.3 Feedback-directed optimization

FDO is a more general concept than PGO. FDO is used to describe all techniques that alter the execution

of a program based on tendencies observed in its present or past runs. PGO alters the execution of the

target program via compilation, based on tendencies observed in the past runs of the program.

Previous studies have explored kernel performance improvement opportunities using profile-based com-

piler optimizations [25, 26]. Although they share similar goals to Tarax, they perform kernel PGO on

systems like HP9000/720 [25] and AS/400 [26], which have been outdated for decades. In contrast, Tarax

applies PGO to the Linux kernel, which is much more complex, widely adopted and well supported.

Profile feedback can also play an important role in specific optimizations for the kernel such as I-cache

packaging [27] and on-demand code loading of infrequently executed code [28].

Although FDO/PGO techniques have been extensively used in user applications, they have not been

widely adopted in the kernel. To the best of our knowledge, Tarax is the first comprehensive approach

that enables PGO on the Linux kernel to achieve significant performance improvement.
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8 Concluding remarks

We have presented Tarax, a compiler-based approach that takes advantage of PGO to construct ASOSs.

Specifically, Tarax extends the current PGO implementation in GCC to enable Linux kernel instrumen-

tation, profiling and application-specific optimization.

Experimental results on six popular server applications show that Tarax could improve the Linux

kernel performance by up to 16%. Detailed analysis has provided insights on how profile feedback helps

GCC perform better optimizations on the Linux kernel in an application-specific manner. With Tarax,

we believe there will be abundant opportunities to improve the Linux kernel performance further for each

application running on it.
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