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Abstract
Performance of the operating system kernel is critical to
many applications running on it. Although many efforts
have been spent on improving Linux kernel performance,
there is not enough attention on GCC, the compiler used
to build Linux. As a result, the vanilla Linux kernel is
typically compiled using the same -O2 option as most user
programs. This paper investigates how different configu-
rations of GCC may affect the performance of the Linux
kernel. We have compared a number of compiler varia-
tions from different aspects on the Linux kernel, including
switching simple options, using different GCC versions,
controlling specific optimizations, as well as performing
profile-guided optimization. We present detailed analysis
on the experimental results and discuss potential compiler
optimizations to further improve kernel performance. As
the current GCC is far from optimal for compiling the
Linux kernel, a future compiler for the kernel should include
specialized optimizations, while more advanced compiler
optimizations should also be incorporated to improve kernel
performance.

Keywords Operating system kernel, Linux, Compiler,
GCC, Optimization

1. Introduction
Compiler has been the primary focus for optimizing the
performance of an application. The performance of highly
complex applications could be improved by as much as an
order of magnitude in comparison to compiling with no
optimizations. As a result, compiler becomes one of the most
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sophisticated software itself. For example, GCC contains
over 14 million lines of code; LLVM/Clang contains over
4 million lines of code.

Modern compilers like GCC and Clang provide differ-
ent levels of optimization such as -O1, -O2, -O3, with
each subsequent level optimizing further on performance
but probably incurring other unwanted side-effects. When
embedded systems are considered, GCC and Clang also
provide options like -Os to optimize more aggressively for
code size in favor of small cache and storage.

On the other hand, the Linux kernel, which is also one of
the most complicated software systems, contains more than
19 million lines of code. Although GCC has advanced opti-
mization options (such as -O3) that can be applied to many
applications to achieve performance speedup, the best option
officially recommended to build the Linux kernel is -O2,
targeting balanced performance and code size optimization,
or -Os, used for embedded systems that prefer smaller code
size. The compiler options used for building the Linux kernel
are the same as used by regular applications.

It is perplexing to even think about that, with so many
people contributing efforts on optimizing the Linux kernel
from all angles, it still shares the same compiler (GCC)
with so many other small and big applications. Although
the Linux kernel achieves reasonable performance from the
general-purpose compiler optimizations, should we build a
dedicated compiler for the Linux kernel to further improve
its performance? Should we at least implement some specific
optimizations for the Linux kernel? In what extent can a
dedicated compiler impact the kernel performance?

We attempt to answer the following questions in this
paper by comparing the performance of different GCC
variations:

• How do different levels of compiler optimizations affect
Linux performance? (§4.1)

• How does size optimization affect performance, com-
pared to speed optimizations? (§4.2)

• How do different GCC versions affect kernel perfor-
mance? (§4.4)



• How does profile-guided optimization affect Linux ker-
nel performance? (§4.3)

• How does switching specific optimization options affect
Linux performance? (§4.5)

• What could we do in the compiler to improve the perfor-
mance of the Linux kernel? (§5)

With detailed experimental results on a set of server
applications, we show that different GCC configurations
may affect the Linux kernel performance significantly. The
key results are summarized as follows:

• Compared to the recommended option (-O2), more ag-
gressive optimizations (-O3) may improve the applica-
tion performance by as much as 15%, while aggressive
size optimization (-Os) may degrade the application
performance by as much as 14%.

• With feedback information collected from kernel instru-
mentation, the application performance can be improved
by almost 8% on average (up to 13%).

• Different GCC versions have little to no influence on
kernel performance, which results in less than 1% per-
formance variation for all applications on average.

• Enabling or disabling specific optimizations (for exam-
ple, function inlining and reordering) may speed up some
applications, while slowing down others. This suggests
that it is beneficial to perform application-specific com-
piler optimization for the kernel.

The rest of this paper is organized as follows. Section 2
introduces background information and related work. Sec-
tion 3 presents the experimental setup and benchmarks used
in our empirical study. We present detailed results and analy-
sis in Section 4, then discuss implications, observations and
potential future directions in Section 5. Finally, Section 6
concludes our study.

2. Background and Related Work
2.1 GCC Optimizations
Currently, the Linux kernel can only be compiled with GCC
in production. Building the Linux kernel with other compil-
ers such as LLVM/Clang is still experimental [15]. There-
fore, we will focus on compiler optimizations in GCC [6].

The following GCC optimization levels are typically
adopted in production:

• -O2 enables nearly all mature compiler optimizations that
do not involve significant space-speed tradeoffs.

• -Os enables all -O2 optimizations that do not typically in-
crease code size as well as further optimizations designed
to reduce code size.

• -O3 enables all -O2 optimizations as well as optimiza-
tions that involve space-speed tradeoffs in favor of speed,
such as aggressive function inlining and loop unrolling.

Besides these optimization levels, there are more ad-
vanced GCC optimizations including profile-guided opti-
mization (PGO) and link-time optimization (LTO).

2.1.1 PGO
Profile-guided optimization (PGO) optimizes the target pro-
gram via recompilation, based on tendency profiles observed
in the past runs of the program. GCC introduced the PGO
technique in 2001 [7].

PGO in GCC makes use of profile feedback in opti-
mizations such as register allocation, code partitioning, loop
unrolling, function inlining and basic block reordering [10].

Traditional PGO in GCC utilizes instrumentation to col-
lect profile feedback. The new GCC 5.1 release1 introduces
Auto-FDO [3, 4], which is a sampling based approach.

2.1.2 LTO
Link-time optimization (LTO) is a type of compiler opti-
mization performed to a program at link time. LTO in GCC
was proposed in 2005 and merged in 2009 [5]. It is one of
the most actively developed features of GCC [9].

Traditionally, GCC compiles C/C++ program on a file-
by-file basis, which limits its ability to perform inter-
procedural analysis. LTO enables GCC to extend inter-
procedural optimizations such as constant prorogation,
function inlining and reordering at the whole-program
level [8].

2.2 Compiler Optimizations in Linux
The Linux kernel makes use of compiler optimizations
conservatively. The kernel build system supports -O2 and
-Os directly. Previous attempt of adding -O3 support was
rejected by kernel developers [13].

Optimization level -Os used to be the default in Linux.
Later -O2 became the default due to performance penalties
incurred by -Os size optimizations [16]. However, for some
mobile and embedded devices with limited storage, the
option -Os is still used in default kernel configurations.

PGO is widely adopted in user applications for per-
formance improvement. In our previous work [17], we
have shown that incorporating PGO to the Linux kernel
can achieve significant performance improvement. We will
perform similar experiments with the latest Linux and GCC
versions in this paper.

Kernel developers have also tried to build Linux with
LTO. However, their work has not been merged into the
mainline kernel yet.

2.3 General OS Optimizations
The OS research community has been continuously attempt-
ing to improve kernel performance. Recent work has found
scalability bottlenecks of the Linux kernel in a many-core
environment [2]. The problems have been fixed in later

1 Released on April 22, 2015



Table 1: Experimental environment.

Processor Intel Core-i7 4770
Memory 32GB DDR3 1600MHz
Network 10Gbps LAN

Kernel Linux 3.19.3
Kernel compiler GCC 4.9.3 prerelease

Operating system Debian sid amd64
File system tmpfs

Linux versions. However, the page coloring mechanism,
which is used to control last level cache partitioning in a
multi-core environment [11, 18], is not adopted by the Linux
kernel.

The principle of library OS has been adopted by systems
like Arrakis [12] and IX [1] for performance improvement.
Library OS for Linux has also been introduced recently [14].

Compared to the general OS optimizations and library
OS implementations, compiler-based optimizations can be
automated and further improve kernel performance.

3. Experimental Setup
This section presents the experimental environment and the
benchmarks used in the experiments.

3.1 Experimental Environment
Table 1 lists our experimental environment on the test
machine, where we run the benchmarking applications. We
have another client machine for workload generation. The
test machine and the client machine are connected via 10
Gigabit Ethernet.

We choose Debian sid distribution for better support of
hardware and the kernel version used. We use tmpfs in our
evaluation to avoid the uncertainty of disk I/O performance.
The kernel and the compiler are the latest stable versions
available2.

3.2 Benchmarks
To measure the performance of the Linux kernel, we
choose six server applications that are known to be system-
intensive, namely Apache, Nginx, MySQL, PostgreSQL,
Redis and Memcached.

Table 2 lists the application versions and workloads. All
the applications are configured to run in multi-threaded/multi-
process mode except Redis, which is a mostly single-
threaded program.

Detailed parameter setups and evaluation methods can be
found in our previous work [17]. The differences are listed
as follows:

2 As of March 30, 2015, one month before the submission deadline of this
paper.

Table 2: Benchmarking applications.

Application Version Workload
Apache 2.4.10 ApacheBench

Nginx 1.6.2 ApacheBench
MySQL 5.6.21 DBT2

PostgreSQL 9.3.5 DBT2
Redis 2.8.17 redis-benchmark

Memcached 1.4.21 mc-benchmark

Table 3: Application performance on different kernels.

Application (metric) -Os -O2 -O3

Apache (req/s) 117,632 127,814 130,321
Nginx (req/s) 462,777 537,589 556,723

MySQL (tx/min) 67,377 70,661 71,008
PostgreSQL (tx/min) 75,115 79,763 79,536

Redis (op/s) 325,074 352,547 405,417
Memcached (op/s) 804,521 844,439 845,322

Table 4: Kernel code size.

Kernel Code size (byte)
-Os 7,516,062
-O2 9,593,058
-O3 12,085,028

• The file size of web server response is increased to 1KB
due to network bandwidth upgrade (1Gbps in previous
work).

• The number of parallel benchmarking tool instances on
the client machine is increased to 8.

• Memcached is configured with 8 servicing threads.

4. Results and Analysis
We first compare the three generally adopted optimization
options of GCC on the Linux kernel, namely -Os, -O2 and
-O3.

Table 3 shows the overall performance results, which are
measured by the number of operations each application is
able to perform per second (throughput). The results will be
analyzed next.

Table 4 shows the code size of the three kernel images,
measured by the size of the .text section. Compared to
the kernel compiled with the default -O2 option, the kernel
compiled with -Os is 22% smaller in code size, while the
kernel compiled with -O3 is 26% larger. The kernel image
compiled with -O3 is 60% larger than -Os in code size,
which indicates significant size difference that should be
considered in the context of embedded devices.
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Figure 1: Performance results of aggressive speed
optimization (-O3).

4.1 Aggressive Speed Optimization
Figure 1 shows application performance3 on the kernel
compiled with -O3, which is normalized to performance of
-O2. On average4, the kernel with more aggressive speed
optimization is 3.3% faster than the vanilla kernel.

Unlike the traditional perception that -O3 would hurt
performance of programs as large as the Linux kernel,
our results show that application performance generally
improves (5 out of 6 applications) when running on the
kernel compiled with -O3 and a modern microprocessor with
sufficient cache5.

Another commonly mentioned reason against adopting
-O3 in compiling Linux is that some aggressive optimiza-
tions might affect the correctness of the Linux kernel. How-
ever, we have not met any errors or abnormal phenomena
during our experiments, which suggests that potential errors
have already been fixed by Linux and GCC developers.
Of course, more comprehensive testing is probably needed
before -O3 is widely used to build all Linux kernels, but it is
worthwhile to investigate this issue further.

4.2 Size Optimization
Figure 2 shows application performance on the kernel com-
piled with -Os. Compared to the vanilla kernel compiled
with -O2, performance is degraded for all six applications.
On average, the size optimized kernel is 7.5% slower than
the vanilla kernel.

Among the six applications, Nginx is most sensitive to
size optimization. One possible reason is that Nginx has
the largest network throughput, which is over 5Gbps in
our experiments. The large network throughput puts higher
pressure on the kernel, which may amplify the performance
penalties incurred by -Os.

The inferior performance of -Os, combined with the
increasing storage on mobile devices, may be the reason

3 Performance values in all figures are normalized to the vanilla kernel
compiled with GCC 4.9 and -O2.
4 All average values are calculated as geometric means.
5 Core i7-4770 has 256KB L1 cache, 1MB L2 cache and 8MB L3 cache.
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Figure 2: Performance results of size optimization (-Os).

that -O2 has been adopted more and more widely on mobile
devices. For example, Google Nexus 5 and Samsung Galaxy
S4 use -O2 as the default option to build the Linux kernel for
their Android systems.

4.3 Profile-Guided Optimization
We have presented experiences in profile-guided kernel
optimization in our previous work [17]. Figure 3 shows
the effectiveness of PGO on the newest GCC and Linux
versions. On average, application performance improves by
7.6%. PGO generally outperforms GCC optimization levels
-Os, -O2 and -O3 in kernel optimization.

Redis is the only exception, where -O3 performs better
than PGO. We notice that the performance numbers for
Redis suffer higher variation in different runs compared
to other applications. One possible reason for the large
variation is that Redis is the only single-process and single-
thread application among the six. When Redis is running, the
CPU frequency is more unstable due to the Intel Turbo Boost
technology, which is activated when the operating system
requests the highest performance state of the processor.
Nonetheless, the results of Redis in Figures 1 and 3 do not
affect the conclusion that PGO is generally better than -O3.

Compared to our previous results [17], the average per-
formance improvement is consistent. The performance of
Nginx improves much more because we upgrade to 10Gbps
network, which avoids bandwidth saturation.

4.4 Impact of Different GCC versions
We also conduct experiments to find how the evolution of
GCC influences Linux kernel performance. We choose GCC
versions 4.6 to 4.9 and use the default -O2 option to compile
the Linux kernel.

Figure 4 shows the application performance comparison
normalized to the latest version 4.9. For individual appli-
cations like Nginx, performance varies as much as 3% on
kernels compiled with different GCC versions (probably due
to the same reason as explained in §4.2). But on average,
there is no obvious pattern with kernel performance as GCC
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Figure 3: Performance results of profile-guided optimiza-
tion.
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Figure 4: Performance comparison of different GCC
versions.

version evolves: the performance difference is only 1%,
which falls within the error range.

4.5 Controlling Specific Optimizations
To explore the effectiveness of detailed compiler optimiza-
tions such as function inlining and code reordering, we try
enabling/disabling them and comparing them to the vanilla
kernel.

Figure 5 shows application performance on the ker-
nel compiled with -O2 and aggressive function inlining6

enabled. On average, the kernel is 3.2% faster than the
vanilla kernel. Compared with the results in §4.1, we find
that aggressive function inlining contributes most to the
performance gain of -O3 over -O2.

Figure 6 shows application performance on the kernel
compiled with -O2 and reordering7 disabled. On average,
the kernel is 2% slower than the vanilla kernel.

When specific applications are considered, we can see
that enabling aggressive inlining improves performance for
most applications except Memcached, while disabling code

6 Option -finline-functions, enabled by -O3.
7 Including function reordering, basic block reordering, and code partition-
ing.
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Figure 5: Performance results while enabling aggressive
function inlining.
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Figure 6: Performance results while disabling code
reordering.

reordering degrades the performance of four applications but
improves for two (PostgreSQL and Memcached). This indi-
cates that detailed compiler optimizations can be tuned in an
application-specific way to maximize kernel performance on
specific workloads.

5. Discussions
5.1 Observations
We have presented detailed analysis on performance com-
parisons of various GCC configurations applied to the Linux
kernel. Based on the results presented above, we have the
following observations:

• As the more aggressive -O3 optimization may improve
the application performance by as much as 15%, we sug-
gest that -O3 should be seriously considered to replace
-O2 when building customized Linux kernel, especially
for devices that do not have strict storage limitations.

• As aggressive size optimization (-Os) may degrade the
application performance by as much as 14%, it should not
be used unless the device is severely limited by storage
(for example, embedded devices, but probably not for
mobile devices such as smartphones).



• With feedback information collected from kernel instru-
mentation, profile-guided optimization (PGO) can im-
prove application performance by almost 8% on average.
For expert users who are sensitive to kernel performance,
for example, on a cloud server running heavy workload,
PGO can provide kernel images that maximize applica-
tion performance.

• Without feedback information, the commonly adopted
-O2 option is far from optimal for compiling the kernel.
It suggests that we should perform thorough investigation
to find out the set of optimizations that maximize kernel
performance.

• Different GCC versions have small to none influence on
kernel performance, which shows less than 1% perfor-
mance difference on average. It indicates that current
GCC evolution is not targeting programs like the Linux
kernel. More GCC and Linux developers should be
involved to help improve compiler optimizations for the
Linux kernel.

5.2 Future Directions
Kernel performance is critical to many applications running
on it. As we have demonstrated that different optimizations
on the Linux kernel may affect application performance sig-
nificantly, more efforts should be devoted to exploring how
different compiler optimizations or different combinations
of existing optimizations may affect kernel performance. In
particular, we believe that the following future directions are
worthwhile to explore:

• Dedicated compiler optimizations for Linux.

The Linux kernel is a complicated and special program
that requires dedicated compilation techniques to max-
imize its performance. Our results in §4.4 show that
different GCC versions have small to none influence on
kernel performance, which indicates that more efforts
should be focused on building a GCC branch that is
dedicated to better optimizations for kernel performance.
For example, the results in §4.5 show that code reorder-
ing, a general compiler optimization enabled by -O2,
sometimes leads to performance degradation. We believe
similar issues can be found via comprehensive inspection
and solving the issues will create a better compiler for
Linux.
Not only should we consider new compiler optimizations
for the kernel, we should also find out the combination
of existing optimizations that is best suited for the kernel
according to our observations. Dedicated optimizations
for Linux may also differ from common GCC in default
parameter values. The parameters are used by optimizers
to determine various optimization thresholds. Consider-
ing the differences between the kernel and user programs,
it makes sense to search for an optimal set of compiler
parameters for kernel compilation.

• Application-specific optimizations.

While 99% of the users would be satisfied with dis-
tribution kernels optimized with a dedicated compiler,
expert users may further improve kernel performance
with application-specific kernel optimization.
In our previous work [17], we have already shown that
applying PGO to the Linux kernel can achieve significant
application-specific benefits.
On the other hand, as we have shown in §4.5, enabling
or disabling specific optimizations (for example, function
inlining and reordering) may speed up some applications,
while slowing down others. This suggests that we could
investigate how to achieve further application-specific
benefits with more fine-grained control on different op-
timizations.

• Introducing more advanced optimizations to Linux.

For instance, LTO is another actively developed fea-
tures of GCC [9], which has not been accepted into the
mainline Linux kernel yet. If LTO support is merged
into the mainline Linux kernel, it may provide more
opportunities to further optimize kernel performance at
link-time. Moreover, LTO can be combined with PGO to
achieve extra application-specific benefits in the kernel.
Similar approaches have been already adopted by user
applications like Firefox.

6. Concluding Remarks
We have explored the potential performance impacts of
different compiler optimizations on the Linux kernel. Ex-
perimental results show that the current compiler (GCC)
is a long way from producing the best-performed Linux
kernel. To make compiler optimizations perform better for
the kernel, not only should we improve existing general
compiler optimizations, but also investigate advanced com-
piler optimizations specifically targeting the Linux kernel.

As opposed to kernel hacking and library OS construc-
tion, compiler-based optimization on the kernel can be
automated, such that it may provide consistent benefits to all
different applications. While general compiler optimizations
for the kernel is potentially beneficial, application-specific
compiler optimizations for the kernel may achieve greater
performance improvement for specific applications and us-
age scenarios.
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