
Beyond Fine-Tuning: Eficient and Efective Fed-Tuning for
Mobile/Web Users

Bingyan Liu Yifeng Cai Hongzhe Bi
bingyanliu@bupt.edu.cn caiyifeng@pku.edu.cn bhz@bupt.edu.cn

Beijing Key Laboratory of Intelligent MOE Key Lab of HCST, School of School of Computer Science, Beijing
Telecommunications Software and Computer Science, Peking University University of Posts and
Multimedia, School of Computer Beijing, China Telecommunications

Science, Beijing University of Posts Beijing, China
and Telecommunications

Beijing, China

Ziqi Zhang Ding Li Yao Guo
∗

ziqi_zhang@pku.edu.cn ding_li@pku.edu.cn yaoguo@pku.edu.cn
MOE Key Lab of HCST, School of MOE Key Lab of HCST, School of MOE Key Lab of HCST, School of

Computer Science, Peking University Computer Science, Peking University Computer Science, Peking University
Beijing, China Beijing, China Beijing, China

Xiangqun Chen
cherry@pku.edu.cn

MOE Key Lab of HCST, School of
Computer Science, Peking University

Beijing, China

ABSTRACT
Fine-tuning is a typical mechanism to achieve model adaptation for
mobile/web users, where a model trained by the cloud is further
retrained to ft the target user task. While traditional fne-tuning
has been proved efective, it only utilizes local data to achieve adap-
tation, failing to take advantage of the valuable knowledge from
other mobile/web users. In this paper, we attempt to extend the
local-user fne-tuning to multi-user fed-tuning with the help of Feder-
ated Learning (FL). Following the new paradigm, we propose EEFT,
a framework aiming to achieve Efcient and Efective Fed-Tuning
for mobile/web users. The key idea is to introduce lightweight but
efective adaptation modules to the pre-trained model, such that we
can freeze the pre-trained model and just focus on optimizing the
modules to achieve cost reduction and selective task cooperation.
Extensive experiments on our constructed benchmark demonstrate
the efectiveness and efciency of the proposed framework.

∗
Yao Guo is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proft or commercial advantage and that copies bear this notice and the full citation
on the frst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specifc permission
and/or a fee. Request permissions from permissions@acm.org.
WWW ’23, April 30–May 04, 2023, Austin, TX, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9416-1/23/04. . . $15.00
https://doi.org/10.1145/3543507.3583212

CCS CONCEPTS
• Computer systems organization → Client-server architec-
tures; • Human-centered computing → Ubiquitous and mo-
bile computing; • Computing methodologies → Neural net-
works.

KEYWORDS
Mobile/Web Computing, Model Adaptation, Fine-tuning, Federated
Learning

ACM Reference Format:
Bingyan Liu, Yifeng Cai, Hongzhe Bi, Ziqi Zhang, Ding Li, Yao Guo, and Xi-

angqun Chen. 2023. Beyond Fine-Tuning: Efcient and Efective Fed-Tuning
for Mobile/Web Users. In Proceedings of the ACM Web Conference 2023
(WWW ’23), April 30–May 04, 2023, Austin, TX, USA. ACM, New York, NY,
USA, 11 pages. https://doi.org/10.1145/3543507.3583212

1 INTRODUCTION
With the popularity of deep learning, more and more researchers
are devoted to empowering intelligent mobile and web applica-
tions such as sensor-based activity recognition [4, 17] and Web AR
[33, 35]. Instead of training a deep learning model from scratch, in
mobile and web scenarios, a noteworthy trend is to directly adapt a
pre-trained model [42]. Fine-tuning is a typical technique to achieve
model adaptation [23, 38] where a cloud server frst pre-trains a
deep learning model with sufcient data and each mobile/web user
then uses their own data to retrain the cloud-trained model. The
motivation behind fne-tuning is that the optimized parameters in
the pre-trained model include more general knowledge and can
adapt well to a related task at a faster speed [10], saving much com-

putational cost for the resource-constrained mobile/web devices.

2863

https://doi.org/10.1145/3543507.3583212
https://doi.org/10.1145/3543507.3583212
mailto:permissions@acm.org
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3543507.3583212&domain=pdf&date_stamp=2023-04-30

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Liu et al.

Despite being proved efective, the conventional fne-tuning
technique may not be the optimal solution because it only utilizes
the local data to adapt the pre-trained model. Our motivation is that
in real-world web scenarios, there are a large number of users who
may hold a similar, or even identical, task requirement to others [2].
Therefore, it is possible and meaningful to develop a method to
achieve efective user cooperation to improve task performance.
Motivated by this, we attempt to extend the local-user fne-tuning
to multi-user fed-tuning, with the help of Federated Learning (FL)
[27, 29, 41], which has been widely used to address the problem of
data island as well as respecting user privacy.

Unfortunately, conventional FL is not suitable to our adaptation
scenario. First, traditional FL requires training and exchanging
the whole model at each federated round, which is unacceptable
for mobile/web devices considering their limited computing power
and network connection. Moreover, the pre-trained cloud model is
usually much larger than the normal FL model, further exacerbat-
ing the training and communication cost. Second, diferent from
traditional FL that is focused on a single task, in our scenario, there
may include a variety of tasks in terms of user preference, which
makes it undesirable to federate all models directly.

To the best of our knowledge, no existing FL technique can
simultaneously address the above two problems to ft our scenario.
To fll this gap, we propose EEFT, a framework aiming to achieve
Efcient and Efective Fed-Tuning for mobile/web device users. The
rationale behind EEFT is that: (1) for training and communication,
it is wasteful to fne-tune and exchange the whole pre-trained
model since typically the scale of the target task is small and does
not need so many parameters to ft; (2) for task diversity, it is
necessary to introduce extra information to the pre-trained model
because the current pre-trained model does not have the capability
to distinguish diferent task features. Inspired by this, EEFT designs
a series of lightweight adaptation modules upon the original pre-
trained model, such that we can freeze the pre-trained model and
just focus on optimizing the modules to achieve cost reduction and
selective task cooperation.

Designing lightweight adaptation modules and enabling them
to achieve efective fed-tuning requires overcoming two technical
challenges. We list them as follows:

• How to properly select the components of the adaptation mod-
ules such that they can be perfectly incorporated to the pre-
trained model for joint training? A pre-trained model has
its special architecture. Adding any new layers or connec-

tions may destroy the original model features. Therefore, it
is important to carefully design and introduce the adaptation
modules.

• How to achieve selective federation for similar or identical user
tasks? Note that in a federated web system, the number of
participating clients may be huge. Blindly conducting fed-
eration may lead to the cooperation among some irrelevant
tasks and thus harm the fnal performance.

To address the frst challenge, instead of inserting modules inside
the pre-trained model, EEFT regards the model as several indepen-

dent modules and augments each one in a skip-connection and
parallel manner. As shown in Figure 1, we freeze the pre-trained
modules and only fne-tune our new added adaptation modules:

utilization factors and task-specifc blocks. The utilization factors
are responsible for measuring the utility degree of each module
(e.g., a block or layer in a ResNet model [11]) in the pre-trained
model, such that we can selectively utilize the valuable knowledge
embedded in the pre-trained model for better target performance.
The task-specifc blocks aim to learn the unique features for the
task of each mobile/web device, which complements the general
knowledge of the pre-trained model to enable specifc adaptation.
In this way, the execution of the pre-trained model will not be
interfered. It is worth noting that usually the required adaptation
modules are much smaller than the pre-trained model since both
the number of pre-trained modules and the task-specifc features
are limited. Therefore, by introducing these lightweight adaptation
modules and only training and exchanging them, the whole process
becomes efcient. Here training is optimized by a newly designed
loss that penalizes not only the accuracy error but also the model
complexity that can dynamically control the usage degree between
large pre-trained modules and small adaptation modules, in order
to favor the learning of the added parts for improved performance.

EEFT addresses the second challenge by precisely picking out
the identical or similar tasks to a certain task according to the
uploaded utilization factors involved in the adaptation modules. The
insight is that similar tasks have a great possibility to hold similar
utilization patterns to the same pre-trained model. Concretely, EEFT
calculates the distance among these utilization factors as the user
task similarity and then federates similar ones. Because uploaded
modules share a same architecture, we can directly aggregate them
with traditional algorithms (e.g., FedAvg [27]).

Considering that there is no available benchmark to conduct
fed-tuning, we manually construct a benchmark based on pub-

lic computer vision(CV) and human activity recognition (HAR)
datasets, where we consider the diferences in task types, environ-

mental conditions, and user preferences, which are widely seen in
the mobile/web scenarios (details in Appendix B.1). We evaluate our
framework on the benchmark and compare it to the traditional local-
user fne-tuning baseline and several federated learning methods.
The results show that our approach signifcantly outperforms other
methods on accuracy performance by up to 6.52% while using only
11.2% training parameters and saving up to 8.9× communication
cost. In addition, we conduct a series of in-depth theoretical (details
in Appendix A) and empirical analyses to prove the efectiveness
of the proposed framework.

This paper makes the following contributions:

• We extend fne-tuning to a new paradigm, fed-tuning, for
better model adaptation under the mobile/web scenario. To
the best of our knowledge, this is the frst attempt in the
literature to study and explore multi-user fed-tuning.

• We design and implement EEFT, an efcient and efective
framework to achieve fed-tuning. By adding, optimizing, and
selectively federating two types of adaptation modules, EEFT
can achieve higher model accuracy at a small training and
communication cost.

• Extensive experiments on our constructed benchmark demon-

strate the superiority of EEFT.

Relevance to Web. Recently, "Federated Learning for the Web
and Mobile" has attracted more and more attention both in industry

2864

Beyond Fine-Tuning: Eficient and Efective Fed-Tuning for Mobile/Web Users WWW ’23, April 30–May 04, 2023, Austin, TX, USA

and academia. Google is trying to apply FL to its web application
such as web tracking [1]. The web conference also considers FL as
an important track topic [22, 30, 44]. This paper targets addressing
the federated model adaptation issue for mobile/web users, which
has high relevance to the submitted conference.

2 RELATED WORK

2.1 Fine-tuning
Fine-tuning [38], which have been widely used in the feld of trans-

fer learning [19, 20, 32, 47], can serve as an efective solution to
implement model adaptation for mobile/web scenarios. The key
idea is to inherit the pre-trained parameters and retrain them with
the data in each device. For example, Xu et al. [42] proposed to use
an on-device input method for next-word prediction, where a model
was frst trained on the cloud using massive public corpora, and
then they incrementally customized the cloud-trained model with
data on individual devices. Liu et al. [23] focused on conducting
model personalization according to the environment of each mobile
device. They also utilized the pre-trained model in the cloud as a
base. Besides, some algorithms, such as fne-tuning flter [8] and
ensemble learning for fne-tuning [49], were proposed to enhance
the fne-tuning performance.

Unlike the aforementioned works restricted to local fne-tuning,
EEFT conducts the adaptation process in a federated manner, which
expands valuable knowledge from other devices and achieves im-

proved performance.

2.2 Federated Learning
Federated learning (FL) has drawn increasing attention and has
been applied to many areas due to its superiority in task perfor-

mance and privacy guarantees [9, 21, 24, 29, 43, 46]. It is originally
introduced by Mcmahan et al. [27], who aims to collaboratively
train a shared global model under the decentralized data settings.
Specifcally, they developed the FedAvg algorithm to generate the
global model by averaging the local parameters uploaded from each
client. Recently, a series of research directions have been proposed
to advance this promising feld [15]. For example, a large number of
research papers have been devoted to addressing the statistical het-

erogeneity (i.e., non-iid) problem that widely exists in FL systems
[14, 25, 36]. Various security analyses on FL have been investigated
to provide more insights to make FL robust [3, 28]. Besides, several
communication-efcient FL techniques have also been applied to
improve the overall speed of the FL system [13, 16].

Note that most of the research efort is based on an assumption:
there is only one task in the FL system, which is inappropriate to
our adaptation scenario where multiple tasks might be respectively
distributed to diferent mobile/web devices. One closely related
work called FedMTL [26] has attempted to apply multi-task learning
to FL to cope with the multiple tasks, where a weight factor is
applied to diferent tasks in order to achieve better federation. The
proposed EEFT difers in two aspects: (1) we do not need to train and
upload the whole model parameters, saving massive computation
and communication costs; (2) we directly pick out suitable tasks
to federate rather than allocating a weight to each task, which
contributes to eliminating the bad infuence coming from irrelevant
tasks.

3 PROBLEM FORMULATION

3.1 Workfow of FL
Generally, there are two parties involved in the FL process: clients
and a central server. Each client trains a shared global model locally
with a few epochs and only uploads the parameters/gradients of
the model to a central server, where we implement diferent algo-
rithms to aggregate the uploaded information and then distribute
the aggregated model to each client. We may iterate this pipeline
many rounds until model convergence. During the process, no raw
data are transmitted, thus ensuring user privacy to some extent.

3.2 Fed-tuning
Similar to FL, in fed-tuning, we also need many mobile/web devices
as “clients”, a shared pre-trained cloud model as the initial model,
and a central server to coordinate the uploaded information from
each device. The diferences lie in that: (1) the tasks among devices
may not be identical and sometimes are signifcantly diferent; (2)
the initial model has been pre-trained in the cloud and has a larger
size compared to the model in traditional FL. Therefore, the typical
FL pipeline cannot be directly applied to conduct fed-tuning, and
we need a new solution to achieve our goal.

Formally, assuming there are � mobile/web devices with tasks
{�1,�2, ...,�� } and corresponding data {�1, �2, ..., �� }, we defne
the goal of fed-tuning as follows.

Definition 1. (Fed-tuning). Suppose a desirable model architec-
ture ���� designed for efcient training and communication can be
generated based on the shared cloud-trained model ������� . The goal
of fed-tuning is to: (1) optimize ���� with the data {�1, �2, ..., �� }
locally; (2) upload and selectively federate the local model parameters
{��1 , ��2 , ..., ��� } in order to obtain the fnal device-specifc models
{��1 , ��2 , ..., ��� } for each device after � rounds.

To accomplish this objective, we frst add a series of lightweight
adaptation modules to the pre-trained model to obtain the desirable
model architecture ���� , which is then optimized by a designed
loss L that penalizes both the accuracy error and the model com-

plexity. By comparing the utilization factors � included in the added
modules, we are able to select � (� < �) devices { �1, �2, ..., �� } with
similar task to a certain device � and aggregate their correspond-

ing uploaded parameters {��� , �� �
1
, ..., �� ��

} (i.e., added adaptation
modules) using existing aggregation algorithms, generating the
fnal device-specifc models. Note that our framework is based on
the following assumption: Randomly given a device in the feder-
ated system, there exist some devices with similar/identical tasks,
which is commonly seen in the context of large-scale mobile/web
federation scenarios.

4 FRAMEWORK DESIGN

4.1 System Overview
We design and develop EEFT, a framework to conduct model adapta-
tion in a federated manner via introducing, training, and federating
two types of adaptation modules, such that the data knowledge of
a mobile/web device can be efectively expanded at a small cost.
Figure 1 depicts the overall pipeline of our framework, which can
be briefy summarized as follows.

2865

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Liu et al.

… … … … … …

!
"#
$%
"&
'(

)

!"#$%&'$&(')*+,$('
-($*.$.%,&'/,(0+12

… … … … … …

3).%+%4$.%,&56$21(
71+18.%,&

… …… … … …

9-::#1:$.%,& 9-::#1:$.%,& 9-::#1:$.%,&

*"
(+
,-
.&&
/"
,#
",

!"#$%&'()*+,%-.#%$",/-00,""1"1 2'*"*3)'*#+-4)5'#(/-0+,-$(1 6)/7&89,5*:*5-;"#57/-0+,-$(1

2 -((
-($*.$.%,&'/,(0+12

!"#$%"&' !"#$%"&(!"#$%"&) !"#$%"&* !"#$%"&+ !"#$%"&,

… … … … … …

Figure 1: Pipeline of the proposed EEFT framework. It mainly includes four steps: adding adaptation modules to the pre-trained
model for each device; training and uploading these adaptation modules with our designed loss while freezing pre-trained
modules; measuring the similarity among these uploaded parameters with the utilization factors in order to select suitable
federation targets; aggregating the parameters accordingly. Here the color represents the task features. Similar tasks are reflected
by similar colors.

(1) Adding adaptation modules to the pre-trained model, where
the utilization factors are multiplied to each module of the
original model and the task-specifc blocks are introduced
in a form of skip connections as used in DenseNets [12].

(2) Training and uploading the adaptation modules, where a new
loss L that encourages the learning of the added modules is
applied to optimize the parameters.

(3) Selecting the federating targets based on a utilization-based
comparison, where the uploaded utilization factors of each
device model are used as indicators to compare with each
other, generating a task similarity matrix to guide the feder-
ating policy.

(4) Aggregating the selected modules, where we average the
parameters in each location of these selected modules to
achieve federation.

The last three steps may be executed multiple times until the
training converges. The fnal aggregated modules are distributed
to corresponding device users for deployment.

4.2 Introducing Adaptation Modules
This step adds the adaptation modules to optimize the target task.
Specifcally, we assume the pre-trained model ������� has � blocks
{�1, �2, ..., �� } and the inference function can be denoted as

� (�) = �� ⊙ ��−1 ⊙ · · · ⊙ �1 ⊙ (�) (1)

where � is the data sample and ⊙ represents the operations of the
blocks, such as convolutions, poolings, etc. As shown in Figure 2, for
each block �� , we introduce a utilization factor �� and several task-
specifc skip blocks {��� }�−1

that come from previous � blocks.
�=�−�

!"
"#$

%" &"

'"#$ '"

!"
(

…

 !"#

$%%&

'(')

*%+,
-.)"

(

Figure 2: Illustration of the added adaptation modules. For
each pre-trained block �, we attach a utilization factor � and
several task-specifc skip blocks � . Each skip block is com-
posed of a max-pooling layer, a convolutional layer, a Batch
Normalization (BN) layer, and a soft-attention parameter
that is used to measure the importance of the block.

After this augmentation, the fnal output of �� is the combination
of the �� output, �� output, and {��� }�−1

output, which can be
�=�−�

2866

Beyond Fine-Tuning: Eficient and Efective Fed-Tuning for Mobile/Web Users WWW ’23, April 30–May 04, 2023, Austin, TX, USA

calculated by

�∑−1

�� = �� ∗ �� ⊙ (��−1) + ��
� ⊙ (��) (2)

�=�−�

where ∗ is the multiplication operation. �� is a scalar that satisfes
�� ∈ [0, 1]. Each skip block ��

�
contains the following parts: (1) a

spatial max-pooling layer that converts activations from the spatial
resolution of �� to �� ; (2) a 1 × 1 convolutional layer (attached by
a Batch Normalization (BN) layer) that projects the input feature
map �� to the desired number of channels for �� ; (3) a soft-attention
parameter ��

�
to represent the importance of this block, which will

be normalized by computing the softmax across all skip blocks at
the ��ℎ block.

In this way, we are able to control the importance of diferent
blocks in the pre-trained model by � and complement the extra task
features by � , providing a feasible and lightweight architecture for
later training and uploading. We will analyze the concrete tuning
and communication cost in Section 5.3.

4.3 Training and Uploading
Given an expanded architecture generated by the last step, a key
question is how to efectively train it. A natural idea is to optimize
the added parameters directly by minimizing accuracy error loss
as traditional fne-tuning does. However, this simple optimization
is not optimal since the adaptation modules may not match the
pre-trained ones. On the one hand, the weights of the adaptation
modules are randomly initialized while the weights of the original
model are pre-trained on a large-scale dataset. On the other hand,
the overall number of the added parameters is extremely small
compared to the pre-trained model. Thus, it is difcult to focus on
training the adaptation modules to ft the new task.

In our work, we design a new loss, where not only the accuracy
error but also the model complexity are penalized for encouraging
and contributing to the learning of the added modules. Here the
model complexity can be defned as ∑�

�����_���������� = �� ∗ ������ (��)−
�=1

(3)∑� ∑�
� �
� ∗ ������ (�)
� �

�=1 �=1

where ������ () represents the number of parameters of the in-

put modules. From the equation, we can observe that: (1) model
complexity describes the usage degree of pre-trained modules and
added modules by � and � ; (2) minimizing the model complexity
can weaken the pre-trained modules while strengthening the added
modules (i.e., decrease � and increase �), which contributes to the
learning of the added modules. Therefore, we design the new loss
as follows:

L = L�� + � ∗ �����_����������, (4)

where L�� is the cross-entropy loss used to penalize accuracy error,
and � is a hyper-parameter that controls the proportion of the model
complexity. We use this loss to optimize the adaptation modules in
each device and upload them to a central server.

4.4 Federating Strategy and Aggregation
In conventional federated learning, all of the uploaded parame-

ters come from the same task and thus can be aggregated directly
without any additional processing. However, it is infeasible for
our scenario where multiple tasks might exist in the federated sys-
tem. Confronted with diverse tasks, we design two key steps to
achieve federation: (1) comparing the similarity among these device
tasks based on the corresponding uploaded adaptation modules; (2)
leveraging the similarity to conduct a selective aggregation.

We frst use the utilization factors in adaptation modules to com-

pare the task similarity. Intuitively, the utilization factors can charac-

terize the task property because they are based on an identical and
freezing pre-trained model. In other words, if all of the pre-trained
blocks have similar utilization values for two tasks, we believe the
two tasks share similar feature space and should be aggregated.
Specifcally, we use Euclidean Distance [5] as the metric to compare
the similarity between these utilization factors vut∑�

���(�� , � �) = (�� − ��)2
(5)

� �
�=1

where �� and �� denote the ��ℎ element of the factor �� and � � and
� �

in total, we have � elements (same as the number of pre-trained
blocks). In terms of this equation, we are able to generate a task
similarity matrix, which determines which tasks should be selected
and federated by setting a threshold (the threshold is apparent as
shown in Figure 4 (a)). According to the similarity matrix, we then
aggregate the adaptation modules of similar tasks by averaging
them and distribute them to each device, fnishing a single round
of fed-tuning. In this way, we can fnally obtain the device-specifc
models {��1 , ��2 , ..., ��� } for each device after � rounds.

5 EVALUATION

5.1 Experimental Setup
Benchmark. Since there is no available benchmark to evaluate
the performance of our framework, we manually construct one
with three typical mobile/web scenarios: task-specifc scenario,
environment-specifc scenario and user-specifc scenario. The de-
tailed statistics are illustrated in Table 1 and the concrete description
of these scenarios can be found in Appendix B.1.

Baselines. EEFT is compared to the fne-tuning baseline and
several federated learning methods, which are briefy summarized
as follows:

(1) Fine-tuning [38]: This baseline directly retrains the pre-trained
model with data of each user.

(2) FedAvg [27]: This method averages the local parameters up-

loaded from each user to generate a global model. Towards
the scenario where user tasks own a diferent number of cat-
egories (e.g., CUB-200 has 200 classes while Caltech-256 has
256 classes), we only average the shared pre-trained layers
and leave the last classifcation layer to be optimized in each
user device.

(3) Selective Masking (SM) [13]: A communication-efcient FL
techniques achieved by selectively uploading partial weights
or gradients.

2867

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Liu et al.

Table 1: Statistics of our simulated benchmarks. Here ����� −
1 represents the simulation of Ofce-Home and ����� − 2
represents the simulation of HAR-Depth.

Device #training #testing Scenario index sample sample

CUB-200 1,2,...,5 5990 5790
Task MIT-67 6,7,...,10 5355 1339

Caltech-256 11,12,...,15 5120 5120

Art 1,2,...,5 1940 485
Envir-1 Clipart 6,7,...,10 3490 873

Product 11,12,...,15 3550 887

Outdoor 1,2,3 1339 899
Envir-2 Indoor_nor 4,5,6 1293 895

Indoor_dark 7,8,9 2023 902

Type1 1,2,...,20 2000 2000
Type2 21,22,...,40 2000 2000

User Type3 41,42,...,60 2000 2000
Type4 61,62,...,80 2000 2000
Type5 81,82,...,100 2000 2000

(4) FedMTL [26]: This method borrows the idea of multi-task
learning to facilitate task performance under the federated
settings, where we apply a weight factor to each user task
in the system for better assisting the target task.

Implementation details All our experiments are simulated
and conducted in a server that has 4 GeForce GTX 2080Ti GPUs,
48 Intel Xeon CPUs, and 128GB memory. We implement EEFT in
Python with PyTorch, and all the experiments are conducted on the
ResNet-18 architecture [11], which is pre-trained with the ImageNet
dataset [6].

We now describe the standard implementation of EEFT, which is
used throughout our experiments unless otherwise specifed. The
concrete parameter settings are as follows: For adaptation modules,
we augment three skip connections (i.e., � = 3) to each block of
the pre-trained model. The initial values of the utilization factor
� and soft-attention parameters � are set to -3 and 2 for better
training. The hyper-parameter � is set to 0.3 to provide a good
trade-of between accuracy and model complexity. We use SGD as
the optimizer for training, and the learning rate is set to 0.01 with
a momentum of 0.5. All of the experiments are conducted for 50
federating rounds to guarantee convergence. Finally, we run each
experiment 3 times and average them as the reported results. We
will release our code at: https://github.com/ lebyni/ fed-tuning.

5.2 Performance Comparison
Here we use the pre-trained ResNet-18 as the backbone and replace
the last classifcation layer (i.e., fully connected layer) according to
the concrete task. Next, we illustrate the detailed results of each
benchmark.

Accuracy comparison on the simulated benchmarks. From
Table 2-5, we can clearly see that the proposed framework out-

performs other methods with an average of 1.81%-2.77% accuracy

Table 2: Results on the task-specifc scenario, where we test
the accuracy performance (%) with diferent methods. Here
devices with the same task are considered together and we
average their accuracy.

Method
Task-specifc

CUB-200 MIT-67 Caltech-256 Average

Fine-tune 44.63 57.34 58.07 53.35
SM 44.74 55.01 57.55 52.43

FedAvg 45.67 56.07 58.52 53.42
FedMTL 47.69 59.35 54.36 53.80
Ours 48.99 59.09 58.75 55.61

Table 3: Results on the environment-specifc scenario. Here
is the accuracy performance (%) on CV applications (Ofce-
Home).

Environment-specifc(Ofce) Method
Artistic Clipart Product Average

Fine-tune 48.70 53.06 78.17 59.98
SM 67.22 71.48 86.70 75.13

FedAvg 67.42 71.94 86.13 75.16
FedMTL 67.00 71.21 86.44 74.88
Ours 69.48 73.31 89.85 77.55

Table 4: Results on the environment-specifc scenario.Here
is the accuracy performance (%) on HAR applications (HAR-
Depth).

Method
Environment-specifc(HAR)

Outdoor Indoor_normal Indoor_dark Avg

Fine-tune 81.35 90.13 89.17 86.88
SM 91.69 99.11 99.26 96.68

FedAvg 98.22 100.00 87.22 98.48
FedMTL 99.18 98.80 98.76 98.69
Ours 99.67 100.00 100.00 99.89

Table 5: Accuracy performance (%) on the user-specifc sce-
nario.

Method
User-specifc

Type1 Type2 Type3 Type4 Type5 Avg

Fine-tune 91.58 77.18 84.60 92.64 89.42 87.08
SM 44.15 41.55 35.55 48.80 42.67 42.54

FedAvg 48.50 32.20 40.55 56.05 45.33 44.53
FedMTL 41.99 20.81 32.23 55.47 44.72 39.04
Ours 93.35 83.70 87.75 94.55 89.90 89.85

2868

https://github.com/lebyni/fed-tuning
https://1.81%-2.77

Beyond Fine-Tuning: Eficient and Efective Fed-Tuning for Mobile/Web Users WWW ’23, April 30–May 04, 2023, Austin, TX, USA

Table 6: Efect of the proposed components on our task-specifc scenario.

#added modules in each block loss efect federating efect Type Dataset
1-skip 3-skip 5-skip 7-skip w/o aggregation aggregation L�� L

CUB-200 47.55 48.99 48.85 48.70 48.04 48.99 33.65 48.99
Task MIT Indoor-67 57.91 59.09 60.01 59.95 58.25 59.09 51.86 59.09

Caltech-256 57.89 58.75 59.34 59.17 58.45 58.75 54.77 58.75

0 10 20 30 40 50
Round

0.0

0.2

0.4

Ac
c(

%
)

CUB-200

FedAvg
Selective Mask
FedMTL
Ours

0 10 20 30 40 50
Round

0.2

0.4

0.6

Ac
c(

%
)

MIT-67

FedAvg
Selective Mask
FedMTL
Ours

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

Ac
c(

%
)

Caltech-256

FedAvg
Selective Mask
FedMTL
Ours

Figure 3: Convergence performance on the task-specifc sce-
nario. For each task type, we select a user as an example and
plot the corresponding convergence line.

Table 7: The number of parameters needed for training and
communication on diferent methods.

Method #Train Params (M) #Communication (M)

Fine-tune 11.18 0
SM 1.34 2*50*1.34

FedAvg 11.18 2*50*11.18
FedMTL 11.18 2*50*11.18
Ours 1.25 2*50*1.25

improvement. This demonstrates that by adding and selectively fed-
erating the adaptation modules, we can greatly boost the accuracy
performance with less training or communication cost (details in
Section 5.3). Besides, it is worth noting that: for the task-specifc and
environment-specifc scenarios, a higher accuracy can be achieved
using the conventional FL methods compared to the local fne-

tuning. In other words, we can directly beneft from federated

learning when the device diference only lies in task types or envi-

ronments. However, most conventional FL methods cannot obtain
a good performance under the user-specifc condition, even largely
worse than the local fne-tuning. This demonstrates that simply ag-
gregating all of the uploading parameters is inappropriate when the
heterogeneity of data distribution is more apparent. Unlike these
FL methods, our framework selectively conducts the aggregation
process and achieves better performance no matter what scenario
we are in.

Convergence comparison on the simulated benchmarks.
We record the test accuracy of each round in FL and plot the con-

vergence lines of diferent methods. Here we use the task-specifc
scenario as an example, and for each task type, we select a user to
observe the convergence performance. Note that fne-tuning does
not need the federation process and hence is not included in the
comparison. As shown in Figure 3, our EEFT converges faster than
other methods and can reach the highest fnal test accuracy on aver-
age. Another interesting fnding is that although FedMTL performs
badly at the beginning, the fnal test accuracy is comparable to ours,
especially for the frst two task types. This indicates that FedMTL
is able to gradually learn the correct relation among these tasks as
the round increases.

5.3 Efciency of EEFT
Unlike traditional FL, in our settings, the target model is a pre-
trained model, resulting in massive training and communication
cost if we directly follow the existing FL pipeline. In this subsection,
we study the efciency of EEFT, where we record the training
parameters and communication cost of the task-specifc scenario.

Table 7 demonstrates the results. Note that the communication
cost is calculated by accumulating the number of uploading and
ofoading parameters. Obviously, we need fewer training param-

eters than other methods that tune the whole pre-trained model.
Specifcally, we can only train 11.2% parameters of the pre-trained
ResNet-18 while obtaining improved accuracy, which signifcantly
relieves the pressure of training on the resource-constrained mo-

bile/web devices. We assume that the FL process will run for 50
rounds towards the communication comparison, which means the
communication cost is 2 × 50 × ��������_���������� . Note that
we do not need to upload any parameters in fne-tuning; thus, the
cost is zero. For other traditional FL methods, as shown in the ta-
ble, our approach can save up to 8.9× communication cost, which
confrms the communication efciency of EEFT. Although the SM
method can achieve comparable training and communication cost
to ours, its efciency is at the expense of model accuracy, which
will signifcantly afect user experience.

2869

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Liu et al.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Device ID

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

D
ev

ic
e

ID

7Dsk-speciIic

0.0

0.1

0.2

0.3

0.4

0.5

0.6

C8B-200 0I7-67CDltech-256
DDtDset

1

2

3

4

5

6

7

8

Bl
oc

N
1

uP
Ee

U

7DsN-speciIic

AUt ClipDUt 3Uoduct
DDtDset

1

2

3

4

5

6

7

8

Bl
oc

N
1

uP
Ee

U

EnviUonPent-speciIic

0.60

0.75

0.90

1.05

1.20

0.60

0.75

0.90

1.05

1.20

(a)	Device	similarity (b)	Utilization	degree

Figure 4: Visualization of the user similarity matrix and the
learned utilization factor value at each pre-trained block.

5.4 Efect of the Introduced Components
Our framework mainly introduces three key components: two types
of adaptation modules, a new loss, and a federating strategy. Here
we conduct ablation studies to explore whether each of them is ben-

efcial to the fnal performance. Specifcally, for adaptation modules,
we investigate how diferent numbers (1,3,5,7) of added skip connec-

tions in each block afect the results. For the loss, we respectively
employ our designed loss and the traditional cross-entropy loss to
conduct our pipeline. Finally, we compare the achieved accuracy
using the conventional aggregation and our federating strategy to
test the usefulness of the proposed strategy.

Table 6 summarizes the results, where a pre-trained ResNet-18
is used as the backbone, and we average the user results of the
same task type. For each study, we fx the other two and focus on
the specifc component. From the fgure, we can observe that our
designed loss and aggregation strategy perform better than the
corresponding baselines across all of the task types, which vali-
dates their efectiveness. Towards the added modules, we fnd that
diferent task types have diferent best choices. For example, adding
5-skip is desirable for the MIT Indoor-67 while in CUB-200, adding
3-skip achieves the highest accuracy. Besides, an interesting obser-
vation is that when we increase the number of skip connections
to 7 for each block, the performance is surprisingly degraded. We
believe this is because excessively introduced modules increase the
training parameters, which will cause the overftting problem and
thus harm the accuracy. In conclusion, 3-skip or 5-skip is enough to
obtain good results.

5.5 Implication of the Learned utilization
Factors

As aforementioned, the goal of introducing utilization factors lies in
two aspects: (1) using them as an indicator to compare the similarity
between two tasks for selective aggregation; (2) measuring the
importance of diferent modules of the pre-trained model in order
to utilize them better. Here we extract the learned utilization factors
from each device model of the task-specifc scenario to explore how
they achieve the two goals.

Specifcally, we frst extract the utilization factors from the learned
models and use them to calculate the task similarity according to (5).
Figure 4(a) demonstrates the similarity matrix. We can observe that

user devices coming from the same task type can be easily picked
out by setting an apparent threshold, proving the efectiveness of
the utilization factors in selecting suitable device tasks. Besides, we
further visualize their averaged value of the utilization factors of
each task type. As shown in Figure 4(b), each pre-trained block has
its unique utilization to diferent task types, which confrms that
the introduced factors can learn the diferent utilization patterns
in terms of diferent inputs, providing guidance to the better us-

age of the pre-trained model. In addition, we fnd that Caltech-256
has a higher overall utilization degree compared to others. This is
reasonable because this dataset is more similar to the pre-trained
ImageNet dataset, which indicates that we can directly transfer
the pre-trained blocks without the need to tune them much. In
summary, these fgures imply the necessity and usefulness of intro-

ducing the utilization factors.

6 DISCUSSION
This section discusses the limitations of the paper. First, EEFT re-
quires adding specifc modules to the pre-trained model, which
will increase the model size and then introduces extra inference
time. However, considering that the added parameters are small
compared to the large pre-trained model, we believe this consump-

tion is acceptable. Another limitation is that our implementation is
based on CNN models. In the future, we will further explore how
to apply our framework to other models such as RNNs or GNNs.
Finally, one possible threat to validity is that whether the studied
benchmark can represent the mobile/web scenarios. We try our best
to minimize this threat by covering diferent possible data settings
for simulating real users. We will continue to explore other settings
in the future.

7 CONCLUSION
In this paper, we propose EEFT, where diverse users cooperate with
each other to learn their specifc tasks. We design and implement
EEFT by adding and federating light-weight adaptation modules.
As these modules are much smaller than the pretrained model, they
can be used to efciently and efectively expand the valuable data
knowledge and beneft each user. Experiments on our simulated
benchmark demonstrate the efectiveness of the proposed frame-

work, which outperforms other state-of-the-art methods while sav-
ing much training or communication cost. In the future, we will
further explore fed-tuning from other perspectives, such as privacy
and robustness.

ACKNOWLEDGMENTS
We would like to thank the anonymous reviewers for their valu-

able feedback. This work was partly supported by the Director
Fund of Beijing Key Laboratory and the National Natural Science
Foundation of China (62141208).

REFERENCES
[1] 2021. Federated Learning of Cohorts. https://en.wikipedia.org/wiki/Federated_

Learning_of_Cohorts.
[2] 2022. Web of Things (WoT): Use Cases and Requirements. https://www.w3.org/

TR/wot-usecases/.
[3] Arjun Nitin Bhagoji, Supriyo Chakraborty, Prateek Mittal, and Seraphin Calo.

2019. Analyzing federated learning through an adversarial lens. In International
Conference on Machine Learning. PMLR, 634–643.

2870

https://en.wikipedia.org/wiki/Federated_Learning_of_Cohorts
https://en.wikipedia.org/wiki/Federated_Learning_of_Cohorts
https://www.w3.org/TR/wot-usecases/
https://www.w3.org/TR/wot-usecases/

Beyond Fine-Tuning: Eficient and Efective Fed-Tuning for Mobile/Web Users WWW ’23, April 30–May 04, 2023, Austin, TX, USA

[4] Ling Chen, Yi Zhang, and Liangying Peng. 2020. METIER: a deep multi-task
learning based activity and user recognition model using wearable sensors. Pro-
ceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
4, 1 (2020), 1–18.

[5] Per-Erik Danielsson. 1980. Euclidean distance mapping. Computer Graphics and
image processing 14, 3 (1980), 227–248.

[6] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Imagenet:
A large-scale hierarchical image database. In 2009 IEEE conference on computer
vision and pattern recognition. Ieee, 248–255.

[7] Gregory Grifn, Alex Holub, and Pietro Perona. 2007. Caltech-256 object category
dataset. (2007).

[8] Yunhui Guo, Yandong Li, Liqiang Wang, and Tajana Rosing. 2020. AdaFilter:
Adaptive Filter Fine-tuning for Deep Transfer Learning. Thirty-Fourth AAAI
Conference on Artifcial Intelligence (2020).

[9] Andrew Hard, Kanishka Rao, Rajiv Mathews, Swaroop Ramaswamy, Françoise
Beaufays, Sean Augenstein, Hubert Eichner, Chloé Kiddon, and Daniel Ram-

age. 2018. Federated learning for mobile keyboard prediction. arXiv preprint
arXiv:1811.03604 (2018).

[10] Kaiming He, Ross Girshick, and Piotr Dollár. 2019. Rethinking imagenet pre-
training. In Proceedings of the IEEE/CVF International Conference on Computer
Vision. 4918–4927.

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[12] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger.
2017. Densely connected convolutional networks. In Proceedings of the IEEE
conference on computer vision and pattern recognition. 4700–4708.

[13] Shaoxiong Ji, Wenqi Jiang, Anwar Walid, and Xue Li. 2020. Dynamic sampling
and selective masking for communication-efcient federated learning. arXiv
preprint arXiv:2003.09603 (2020).

[14] Yihan Jiang, Jakub Konečnỳ, Keith Rush, and Sreeram Kannan. 2019. Improving
federated learning personalization via model agnostic meta learning. arXiv
preprint arXiv:1909.12488 (2019).

[15] Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi
Bennis, Arjun Nitin Bhagoji, Keith Bonawitz, Zachary Charles, Graham Cormode,
Rachel Cummings, et al. 2019. Advances and open problems in federated learning.
arXiv preprint arXiv:1912.04977 (2019).

[16] Jakub Konečny,` H Brendan McMahan, Felix X Yu, Peter Richtárik,
Ananda Theertha Suresh, and Dave Bacon. 2016. Federated learning:
Strategies for improving communication efciency. NIPS workshop (2016).

[17] Hyeokhyen Kwon, Catherine Tong, Harish Haresamudram, Yan Gao, Gregory D
Abowd, Nicholas D Lane, and Thomas Ploetz. 2020. IMUTube: Automatic extrac-
tion of virtual on-body accelerometry from video for human activity recognition.
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technolo-
gies 4, 3 (2020), 1–29.

[18] Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang. 2019.
On the convergence of fedavg on non-iid data. arXiv preprint arXiv:1907.02189
(2019).

[19] Yuanchun Li, Ziqi Zhang, Bingyan Liu, Ziyue Yang, and Yunxin Liu. 2021. Mod-

elDif: testing-based DNN similarity comparison for model reuse detection. In
Proceedings of the 30th ACM SIGSOFT International Symposium on Software Testing
and Analysis. 139–151.

[20] Bingyan Liu, Yifeng Cai, Yao Guo, and Xiangqun Chen. 2021. TransTailor: Pruning
the pre-trained model for improved transfer learning. In Proceedings of the AAAI
Conference on Artifcial Intelligence, Vol. 35. 8627–8634.

[21] Bingyan Liu, Yifeng Cai, Ziqi Zhang, Yuanchun Li, Leye Wang, Ding Li, Yao Guo,
and Xiangqun Chen. 2021. DistFL: Distribution-aware Federated Learning for
Mobile Scenarios. Proceedings of the ACM on Interactive, Mobile, Wearable and
Ubiquitous Technologies 5, 4 (2021), 1–26.

[22] Bingyan Liu, Yao Guo, and Xiangqun Chen. 2021. PFA: Privacy-preserving
Federated Adaptation for Efective Model Personalization. In Proceedings of the
Web Conference 2021. 923–934.

[23] Bingyan Liu, Yuanchun Li, Yunxin Liu, Yao Guo, and Xiangqun Chen. 2020.
Pmc: A privacy-preserving deep learning model customization framework for
edge computing. Proceedings of the ACM on Interactive, Mobile, Wearable and
Ubiquitous Technologies 4, 4 (2020), 1–25.

[24] Bingyan Liu, Nuoyan Lv, Yuanchun Guo, and Yawen Li. 2023. Recent Advances
on Federated Learning: A Systematic Survey. arXiv preprint arXiv:2301.01299
(2023).

[25] Yishay Mansour, Mehryar Mohri, Jae Ro, and Ananda Theertha Suresh. 2020.
Three approaches for personalization with applications to federated learning.
arXiv preprint arXiv:2002.10619 (2020).

[26] Othmane Marfoq, Giovanni Neglia, Aurélien Bellet, Laetitia Kameni, and Richard
Vidal. 2021. Federated multi-task learning under a mixture of distributions.
Advances in Neural Information Processing Systems 34 (2021), 15434–15447.

[27] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Aguera y Arcas. 2017. Communication-efcient learning of deep net-

works from decentralized data. In Artifcial Intelligence and Statistics. PMLR,

1273–1282.
[28] Luca Melis, Congzheng Song, Emiliano De Cristofaro, and Vitaly Shmatikov.

2019. Exploiting unintended feature leakage in collaborative learning. In 2019
IEEE Symposium on Security and Privacy (SP). IEEE, 691–706.

[29] Chaoyue Niu, Fan Wu, Shaojie Tang, Lifeng Hua, Rongfei Jia, Chengfei Lv, Zhi-

hua Wu, and Guihai Chen. 2020. Billion-scale federated learning on mobile
clients: a submodel design with tunable privacy. In Proceedings of the 26th Annual
International Conference on Mobile Computing and Networking. 1–14.

[30] Seungeun Oh, Jihong Park, Praneeth Vepakomma, Sihun Baek, Ramesh Raskar,
Mehdi Bennis, and Seong-Lyun Kim. 2022. LocFedMix-SL: Localize, Federate,
and Mix for Improved Scalability, Convergence, and Latency in Split Learning.
In Proceedings of the ACM Web Conference 2022. 3347–3357.

[31] Xiaomin Ouyang, Zhiyuan Xie, Jiayu Zhou, Jianwei Huang, and Guoliang Xing.
2021. ClusterFL: a similarity-aware federated learning system for human activity
recognition. In Proceedings of the 19th Annual International Conference on Mobile
Systems, Applications, and Services. 54–66.

[32] Sinno Jialin Pan and Qiang Yang. 2009. A survey on transfer learning. IEEE
Transactions on knowledge and data engineering 22, 10 (2009), 1345–1359.

[33] Xiuquan Qiao, Pei Ren, Schahram Dustdar, and Junliang Chen. 2018. A new era
for web AR with mobile edge computing. IEEE Internet Computing 22, 4 (2018),
46–55.

[34] Ariadna Quattoni and Antonio Torralba. 2009. Recognizing indoor scenes. In
2009 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 413–420.

[35] Pei Ren, Xiuquan Qiao, Yakun Huang, Ling Liu, Calton Pu, and Schahram Dustdar.
2021. Fine-grained elastic partitioning for distributed dnn towards mobile web
ar services in the 5g era. IEEE Transactions on Services Computing (2021).

[36] Khe Chai Sim, Petr Zadrazil, and Françoise Beaufays. 2019. An investigation into
on-device personalization of end-to-end automatic speech recognition models.
arXiv preprint arXiv:1909.06678 (2019).

[37] Sebastian U Stich. 2018. Local SGD converges fast and communicates little. arXiv
preprint arXiv:1805.09767 (2018).

[38] Nima Tajbakhsh, Jae Y Shin, Suryakanth R Gurudu, R Todd Hurst, Christopher B
Kendall, Michael B Gotway, and Jianming Liang. 2016. Convolutional neural net-

works for medical image analysis: Full training or fne tuning? IEEE transactions
on medical imaging 35, 5 (2016), 1299–1312.

[39] Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty, and Sethuraman
Panchanathan. 2017. Deep hashing network for unsupervised domain adaptation.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
5018–5027.

[40] Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie.
2011. The caltech-ucsd birds-200-2011 dataset. (2011).

[41] Hao Wang, Zakhary Kaplan, Di Niu, and Baochun Li. 2020. Optimizing federated
learning on non-iid data with reinforcement learning. In IEEE INFOCOM 2020-
IEEE Conference on Computer Communications. IEEE, 1698–1707.

[42] Mengwei Xu, Feng Qian, Qiaozhu Mei, Kang Huang, and Xuanzhe Liu. 2018.
Deeptype: On-device deep learning for input personalization service with min-

imal privacy concern. Proceedings of the ACM on Interactive, Mobile, Wearable
and Ubiquitous Technologies 2, 4 (2018), 1–26.

[43] Timothy Yang, Galen Andrew, Hubert Eichner, Haicheng Sun, Wei Li, Nicholas
Kong, Daniel Ramage, and Françoise Beaufays. 2018. Applied federated learning:
Improving google keyboard query suggestions. arXiv preprint arXiv:1812.02903
(2018).

[44] Xue Yang, Yan Feng, Weijun Fang, Jun Shao, Xiaohu Tang, Shu-Tao Xia, and
Rongxing Lu. 2022. An Accuracy-Lossless Perturbation Method for Defending
Privacy Attacks in Federated Learning. In Proceedings of the ACM Web Conference
2022. 732–742.

[45] Hao Yu, Sen Yang, and Shenghuo Zhu. 2019. Parallel restarted sgd with faster
convergence and less communication: Demystifying why model averaging works
for deep learning. In Proceedings of the AAAI Conference on Artifcial Intelligence,
Vol. 33. 5693–5700.

[46] Ziqi Zhang, Yuanchun Li, Bingyan Liu, Yifeng Cai, Ding Li, Yao Guo, and Xi-

angqun Chen. 2023. Protecting Federated Learning Models from Malicious Par-

ticipants with Model Slicing. In Proceedings of the 45th International Conference
on Software Engineering.

[47] Ziqi Zhang, Yuanchun Li, Jindong Wang, Bingyan Liu, Ding Li, Yao Guo, Xi-

angqun Chen, and Yunxin Liu. 2022. ReMoS: reducing defect inheritance in
transfer learning via relevant model slicing. In Proceedings of the 44th Interna-
tional Conference on Software Engineering. 1856–1868.

[48] Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, and Vikas Chan-

dra. 2018. Federated learning with non-iid data. arXiv preprint arXiv:1806.00582
(2018).

[49] Kuo Zhong, Ying Wei, Chun Yuan, Haoli Bai, and Junzhou Huang. 2020.
TranSlider: Transfer Ensemble Learning from Exploitation to Exploration. In
Proceedings of the 26th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining. 368–378.

2871

‖‖‖‖
‖‖‖‖

‖‖‖‖
‖‖‖‖

‖‖‖‖
‖‖‖‖

‖‖‖ ‖‖‖

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Liu et al.

A THEORETICAL ANALYSIS
In this part, we provide theoretical analysis to support our frame-

work. Specifcally, we respectively analyze the efectiveness of the
utilization-based comparison and the convergence property of the
fnal federating strategy. To begin with, we make the following
commonly used assumptions.

Assumption 1. The objective functions �1, �2, ..., �� in each de-
vice are all L-smooth: for all v and w, �� (v) ≤ �� (w) + (v −
w)� ∇�� (w) + �

2 ∥v − w∥2
2
.

Assumption 2. The objective functions �1, �2, ..., �� in each de-
vice are all µ-strongly convex: for all v and w, �� (v) ≥ �� (w) + (v −

� w)� ∇�� (w) +
2 ∥v − w∥2

2
.

Besides, we borrow the assumptions made in related works [37,
45] as follows.

Assumption 3. Let �� be sampled from the k-th device’s local�
data uniformly at random. The variance of stochastic gradients in() ()

2
� � each device is bounded: E ‖∇�� w� , ��

� − ∇�� w� ‖
≤ �

�
2 , for

k=1,...,N.

Assumption 4. The expected squared norm of stochastic gradients()
� is uniformly bounded, i.e., E ∇�� w� , ��

� 2
≤ �2, for all k=1,...,N‖ ‖

and t=1,...,������ − 1. Here ������ represents the total number of every
device’s SGDs.

According to a recent work [48], the weight divergence among
the uploaded models will harm the aggregation performance, which
can be formally defned as the following Theorem.

Theorem 1. Suppose Assumption 1 to 2 hold and the synchroniza-
tion is conducted every H steps. We have the following inequality for
the weight divergence after the m-th synchronization,

∥��� ∥ ≤ (6)

�∑ ������ (�)
(��)� ∥���−1 ∥Í�

=1 ������
(�)

�=1 �
�∑ �∑−1

������ (�)
�� − ������� + � Í�

�=1 ������
(�) ‖ ‖

�=1 � =1

()
�� �

max ‖∇� E� |�=� log �� (�, �)‖�=1

where �� = 1 + �
Í�
�=1 � (�) (� = �)�� |�=� and � is the number

of category. � represents the data distribution. Here we omit the
proof due to space limitations.

Based on the inequality, we can observe that the distribution
heterogeneity among devices has a large impact on the fnal diver-
gence degree. In our scenario, the data distribution among diferent
user tasks might be extremely diferent, which can be regarded
as a type of strong heterogeneity situation. Therefore, the weight
divergence issue will inevitably exist in our fed-tuning process.
We present a utilization-based comparison method to pick out pa-
rameters from similar tasks to conduct aggregation, which can
signifcantly mitigate the distribution heterogeneity and decrease
the weight divergence degree.

To further illustrate the convergence property of our federating
strategy, we analyze the number of communications (i.e., federa-
tion rounds) in terms of the following Theorem proposed by other
researchers [18].

Theorem 2. Let Assumption 1 to 4 hold and the complexity of the
communications can be formulated as, " Í�

1 1 �=1 �
2�2 + Γ + �2
� � O ((1 +) ��2 + + �2)

(7)

� � �

where Γ represents the heterogeneity degree of data distributions.
Other constant defnitions can be founded in the related paper [18],
and we do not need them to carry on our analysis. The proof is
omitted due to space limitations. Note that we only aggregate the
parameters of similar tasks, which means that the value of Γ is
extremely small compared to the traditional all-aggregation scheme.
Therefore, the communication times can be theoretically reduced,
and we are able to reach convergence at a faster speed.

B DETAILED EXPERIMENT SETTINGS

B.1 Constructed benchmarks.
We manually construct a benchmark with public computer vision
(CV) and human activity recognition (HAR) datasets to simulate
the adaptation for mobile/web scenarios. The detailed statistics are
illustrated in Table 1 and we briefy introduce these scenarios as
follows.

• Task-specifc scenario, where diferent mobile/web users may
have diferent task types. We employ three public datasets:
CUB-200 [40], MIT Indoor-67 [34] and Caltech-256 [7], to
simulate this scenario. Specifcally, CUB-200 represents a
fne-grained object recognition task with 200 species of birds.
MIT Indoor-67 represents a scene recognition task with 67
indoor scene categories. Caltech-256 represents a general ob-
ject recognition task with 256 object categories. We partition
the training samples in each task into fve parts, and each
device is allocated to one part to denote its target task. Thus,
this benchmark has 15 users with three types of tasks. Con-

sidering that Caltech-256 has no ofcial train/test settings,
we randomly pick out 20 disjoint samples of each category
as the training set and testing set. The fnal performance is
evaluated on the testing set of each task.

• Environment-specifc scenario, where the task is identical
while the environment background of each user may be
signifcantly diferent. Here we employ two types of applica-
tions to simulate it. For CV applications, we pick out three
types of background images: artistic images, clipart images
and product images from the Ofce-Home dataset [39], which
owns 65 identical object categories but diferent background
distributions. Specifcally, each image type is divided into a
training set (80%) and a testing set (20%). Then each train-

ing set is further partitioned and allocated as the settings in
the task-specifc scenario. For HAR applications, we use the
latest HAR-Depth dataset [31], where fve types of gestures
(good/ok/win/stop/fst) are recorded in this dataset by two
subjects using a depth camera in three environments (i.e.,
outdoor, dark, and indoor). Specifcally, we follow the ofcial

2872

Beyond Fine-Tuning: Eficient and Efective Fed-Tuning for Mobile/Web Users

partition settings, which have 3 scenes and simulate 9 nodes
for FL.

• User-specifc scenario, where diferent users may have dif-
ferent preferences (e.g., one may like collecting dog images
while others may cat images). Here CIFAR-10 is used to sim-

ulate 100 clients, each of which belongs to one type that

WWW ’23, April 30–May 04, 2023, Austin, TX, USA

has two disjoint categories of data. Thus in total, we have
5 types. Note that the heterogeneity of data distribution is
more apparent under this scenario since user preference is
more diverse.

2873

	Abstract
	1 Introduction
	2 Related Work
	2.1 Fine-tuning
	2.2 Federated Learning

	3 Problem Formulation
	3.1 Workflow of FL
	3.2 Fed-tuning

	4 Framework Design
	4.1 System Overview
	4.2 Introducing Adaptation Modules
	4.3 Training and Uploading
	4.4 Federating Strategy and Aggregation

	5 Evaluation
	5.1 Experimental Setup
	5.2 Performance Comparison
	5.3 Efficiency of EEFT
	5.4 Effect of the Introduced Components
	5.5 Implication of the Learned utilization Factors

	6 Discussion
	7 Conclusion
	Acknowledgments
	References
	A Theoretical Analysis
	B Detailed Experiment Settings
	B.1 Constructed benchmarks.

