
Beyond Fine-Tuning: Eficient and Efective Fed-Tuning for 
Mobile/Web Users 

Bingyan Liu Yifeng Cai Hongzhe Bi 
bingyanliu@bupt.edu.cn caiyifeng@pku.edu.cn bhz@bupt.edu.cn 

Beijing Key Laboratory of Intelligent MOE Key Lab of HCST, School of School of Computer Science, Beijing 
Telecommunications Software and Computer Science, Peking University University of Posts and 
Multimedia, School of Computer Beijing, China Telecommunications 

Science, Beijing University of Posts Beijing, China 
and Telecommunications 

Beijing, China 

Ziqi Zhang Ding Li Yao Guo
∗ 

ziqi_zhang@pku.edu.cn ding_li@pku.edu.cn yaoguo@pku.edu.cn 
MOE Key Lab of HCST, School of MOE Key Lab of HCST, School of MOE Key Lab of HCST, School of 

Computer Science, Peking University Computer Science, Peking University Computer Science, Peking University 
Beijing, China Beijing, China Beijing, China 

Xiangqun Chen 
cherry@pku.edu.cn 

MOE Key Lab of HCST, School of 
Computer Science, Peking University 

Beijing, China 

ABSTRACT 
Fine-tuning is a typical mechanism to achieve model adaptation for 
mobile/web users, where a model trained by the cloud is further 
retrained to ft the target user task. While traditional fne-tuning 
has been proved efective, it only utilizes local data to achieve adap-
tation, failing to take advantage of the valuable knowledge from 
other mobile/web users. In this paper, we attempt to extend the 
local-user fne-tuning to multi-user fed-tuning with the help of Feder-
ated Learning (FL). Following the new paradigm, we propose EEFT, 
a framework aiming to achieve Efcient and Efective Fed-Tuning 
for mobile/web users. The key idea is to introduce lightweight but 
efective adaptation modules to the pre-trained model, such that we 
can freeze the pre-trained model and just focus on optimizing the 
modules to achieve cost reduction and selective task cooperation. 
Extensive experiments on our constructed benchmark demonstrate 
the efectiveness and efciency of the proposed framework. 
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1 INTRODUCTION 
With the popularity of deep learning, more and more researchers 
are devoted to empowering intelligent mobile and web applica-
tions such as sensor-based activity recognition [4, 17] and Web AR 
[33, 35]. Instead of training a deep learning model from scratch, in 
mobile and web scenarios, a noteworthy trend is to directly adapt a 
pre-trained model [42]. Fine-tuning is a typical technique to achieve 
model adaptation [23, 38] where a cloud server frst pre-trains a 
deep learning model with sufcient data and each mobile/web user 
then uses their own data to retrain the cloud-trained model. The 
motivation behind fne-tuning is that the optimized parameters in 
the pre-trained model include more general knowledge and can 
adapt well to a related task at a faster speed [10], saving much com-

putational cost for the resource-constrained mobile/web devices. 
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Despite being proved efective, the conventional fne-tuning 
technique may not be the optimal solution because it only utilizes 
the local data to adapt the pre-trained model. Our motivation is that 
in real-world web scenarios, there are a large number of users who 
may hold a similar, or even identical, task requirement to others [2]. 
Therefore, it is possible and meaningful to develop a method to 
achieve efective user cooperation to improve task performance. 
Motivated by this, we attempt to extend the local-user fne-tuning 
to multi-user fed-tuning, with the help of Federated Learning (FL) 
[27, 29, 41], which has been widely used to address the problem of 
data island as well as respecting user privacy. 

Unfortunately, conventional FL is not suitable to our adaptation 
scenario. First, traditional FL requires training and exchanging 
the whole model at each federated round, which is unacceptable 
for mobile/web devices considering their limited computing power 
and network connection. Moreover, the pre-trained cloud model is 
usually much larger than the normal FL model, further exacerbat-
ing the training and communication cost. Second, diferent from 
traditional FL that is focused on a single task, in our scenario, there 
may include a variety of tasks in terms of user preference, which 
makes it undesirable to federate all models directly. 

To the best of our knowledge, no existing FL technique can 
simultaneously address the above two problems to ft our scenario. 
To fll this gap, we propose EEFT, a framework aiming to achieve 
Efcient and Efective Fed-Tuning for mobile/web device users. The 
rationale behind EEFT is that: (1) for training and communication, 
it is wasteful to fne-tune and exchange the whole pre-trained 
model since typically the scale of the target task is small and does 
not need so many parameters to ft; (2) for task diversity, it is 
necessary to introduce extra information to the pre-trained model 
because the current pre-trained model does not have the capability 
to distinguish diferent task features. Inspired by this, EEFT designs 
a series of lightweight adaptation modules upon the original pre-
trained model, such that we can freeze the pre-trained model and 
just focus on optimizing the modules to achieve cost reduction and 
selective task cooperation. 

Designing lightweight adaptation modules and enabling them 
to achieve efective fed-tuning requires overcoming two technical 
challenges. We list them as follows: 

• How to properly select the components of the adaptation mod-
ules such that they can be perfectly incorporated to the pre-
trained model for joint training? A pre-trained model has 
its special architecture. Adding any new layers or connec-

tions may destroy the original model features. Therefore, it 
is important to carefully design and introduce the adaptation 
modules. 

• How to achieve selective federation for similar or identical user 
tasks? Note that in a federated web system, the number of 
participating clients may be huge. Blindly conducting fed-
eration may lead to the cooperation among some irrelevant 
tasks and thus harm the fnal performance. 

To address the frst challenge, instead of inserting modules inside 
the pre-trained model, EEFT regards the model as several indepen-

dent modules and augments each one in a skip-connection and 
parallel manner. As shown in Figure 1, we freeze the pre-trained 
modules and only fne-tune our new added adaptation modules: 

utilization factors and task-specifc blocks. The utilization factors 
are responsible for measuring the utility degree of each module 
(e.g., a block or layer in a ResNet model [11]) in the pre-trained 
model, such that we can selectively utilize the valuable knowledge 
embedded in the pre-trained model for better target performance. 
The task-specifc blocks aim to learn the unique features for the 
task of each mobile/web device, which complements the general 
knowledge of the pre-trained model to enable specifc adaptation. 
In this way, the execution of the pre-trained model will not be 
interfered. It is worth noting that usually the required adaptation 
modules are much smaller than the pre-trained model since both 
the number of pre-trained modules and the task-specifc features 
are limited. Therefore, by introducing these lightweight adaptation 
modules and only training and exchanging them, the whole process 
becomes efcient. Here training is optimized by a newly designed 
loss that penalizes not only the accuracy error but also the model 
complexity that can dynamically control the usage degree between 
large pre-trained modules and small adaptation modules, in order 
to favor the learning of the added parts for improved performance. 

EEFT addresses the second challenge by precisely picking out 
the identical or similar tasks to a certain task according to the 
uploaded utilization factors involved in the adaptation modules. The 
insight is that similar tasks have a great possibility to hold similar 
utilization patterns to the same pre-trained model. Concretely, EEFT 
calculates the distance among these utilization factors as the user 
task similarity and then federates similar ones. Because uploaded 
modules share a same architecture, we can directly aggregate them 
with traditional algorithms (e.g., FedAvg [27]). 

Considering that there is no available benchmark to conduct 
fed-tuning, we manually construct a benchmark based on pub-

lic computer vision(CV) and human activity recognition (HAR) 
datasets, where we consider the diferences in task types, environ-

mental conditions, and user preferences, which are widely seen in 
the mobile/web scenarios (details in Appendix B.1). We evaluate our 
framework on the benchmark and compare it to the traditional local-
user fne-tuning baseline and several federated learning methods. 
The results show that our approach signifcantly outperforms other 
methods on accuracy performance by up to 6.52% while using only 
11.2% training parameters and saving up to 8.9× communication 
cost. In addition, we conduct a series of in-depth theoretical (details 
in Appendix A) and empirical analyses to prove the efectiveness 
of the proposed framework. 

This paper makes the following contributions: 

• We extend fne-tuning to a new paradigm, fed-tuning, for 
better model adaptation under the mobile/web scenario. To 
the best of our knowledge, this is the frst attempt in the 
literature to study and explore multi-user fed-tuning. 

• We design and implement EEFT, an efcient and efective 
framework to achieve fed-tuning. By adding, optimizing, and 
selectively federating two types of adaptation modules, EEFT 
can achieve higher model accuracy at a small training and 
communication cost. 

• Extensive experiments on our constructed benchmark demon-

strate the superiority of EEFT. 

Relevance to Web. Recently, "Federated Learning for the Web 
and Mobile" has attracted more and more attention both in industry 
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and academia. Google is trying to apply FL to its web application 
such as web tracking [1]. The web conference also considers FL as 
an important track topic [22, 30, 44]. This paper targets addressing 
the federated model adaptation issue for mobile/web users, which 
has high relevance to the submitted conference. 

2 RELATED WORK 

2.1 Fine-tuning 
Fine-tuning [38], which have been widely used in the feld of trans-

fer learning [19, 20, 32, 47], can serve as an efective solution to 
implement model adaptation for mobile/web scenarios. The key 
idea is to inherit the pre-trained parameters and retrain them with 
the data in each device. For example, Xu et al. [42] proposed to use 
an on-device input method for next-word prediction, where a model 
was frst trained on the cloud using massive public corpora, and 
then they incrementally customized the cloud-trained model with 
data on individual devices. Liu et al. [23] focused on conducting 
model personalization according to the environment of each mobile 
device. They also utilized the pre-trained model in the cloud as a 
base. Besides, some algorithms, such as fne-tuning flter [8] and 
ensemble learning for fne-tuning [49], were proposed to enhance 
the fne-tuning performance. 

Unlike the aforementioned works restricted to local fne-tuning, 
EEFT conducts the adaptation process in a federated manner, which 
expands valuable knowledge from other devices and achieves im-

proved performance. 

2.2 Federated Learning 
Federated learning (FL) has drawn increasing attention and has 
been applied to many areas due to its superiority in task perfor-

mance and privacy guarantees [9, 21, 24, 29, 43, 46]. It is originally 
introduced by Mcmahan et al. [27], who aims to collaboratively 
train a shared global model under the decentralized data settings. 
Specifcally, they developed the FedAvg algorithm to generate the 
global model by averaging the local parameters uploaded from each 
client. Recently, a series of research directions have been proposed 
to advance this promising feld [15]. For example, a large number of 
research papers have been devoted to addressing the statistical het-

erogeneity (i.e., non-iid) problem that widely exists in FL systems 
[14, 25, 36]. Various security analyses on FL have been investigated 
to provide more insights to make FL robust [3, 28]. Besides, several 
communication-efcient FL techniques have also been applied to 
improve the overall speed of the FL system [13, 16]. 

Note that most of the research efort is based on an assumption: 
there is only one task in the FL system, which is inappropriate to 
our adaptation scenario where multiple tasks might be respectively 
distributed to diferent mobile/web devices. One closely related 
work called FedMTL [26] has attempted to apply multi-task learning 
to FL to cope with the multiple tasks, where a weight factor is 
applied to diferent tasks in order to achieve better federation. The 
proposed EEFT difers in two aspects: (1) we do not need to train and 
upload the whole model parameters, saving massive computation 
and communication costs; (2) we directly pick out suitable tasks 
to federate rather than allocating a weight to each task, which 
contributes to eliminating the bad infuence coming from irrelevant 
tasks. 

3 PROBLEM FORMULATION 

3.1 Workfow of FL 
Generally, there are two parties involved in the FL process: clients 
and a central server. Each client trains a shared global model locally 
with a few epochs and only uploads the parameters/gradients of 
the model to a central server, where we implement diferent algo-
rithms to aggregate the uploaded information and then distribute 
the aggregated model to each client. We may iterate this pipeline 
many rounds until model convergence. During the process, no raw 
data are transmitted, thus ensuring user privacy to some extent. 

3.2 Fed-tuning 
Similar to FL, in fed-tuning, we also need many mobile/web devices 
as “clients”, a shared pre-trained cloud model as the initial model, 
and a central server to coordinate the uploaded information from 
each device. The diferences lie in that: (1) the tasks among devices 
may not be identical and sometimes are signifcantly diferent; (2) 
the initial model has been pre-trained in the cloud and has a larger 
size compared to the model in traditional FL. Therefore, the typical 
FL pipeline cannot be directly applied to conduct fed-tuning, and 
we need a new solution to achieve our goal. 

Formally, assuming there are � mobile/web devices with tasks 
{�1,�2, ...,�� } and corresponding data {�1, �2, ..., �� }, we defne 
the goal of fed-tuning as follows. 

Definition 1. (Fed-tuning). Suppose a desirable model architec-
ture ���� designed for efcient training and communication can be 
generated based on the shared cloud-trained model ������� . The goal 
of fed-tuning is to: (1) optimize ���� with the data {�1, �2, ..., �� }
locally; (2) upload and selectively federate the local model parameters 
{��1 , ��2 , ..., ��� } in order to obtain the fnal device-specifc models 
{��1 , ��2 , ..., ��� } for each device after � rounds. 

To accomplish this objective, we frst add a series of lightweight 
adaptation modules to the pre-trained model to obtain the desirable 
model architecture ���� , which is then optimized by a designed 
loss L that penalizes both the accuracy error and the model com-

plexity. By comparing the utilization factors � included in the added 
modules, we are able to select � (� < � ) devices { �1, �2, ..., �� } with 
similar task to a certain device � and aggregate their correspond-

ing uploaded parameters {��� , �� �
1 
, ..., �� �� 

} (i.e., added adaptation 
modules) using existing aggregation algorithms, generating the 
fnal device-specifc models. Note that our framework is based on 
the following assumption: Randomly given a device in the feder-
ated system, there exist some devices with similar/identical tasks, 
which is commonly seen in the context of large-scale mobile/web 
federation scenarios. 

4 FRAMEWORK DESIGN 

4.1 System Overview 
We design and develop EEFT, a framework to conduct model adapta-
tion in a federated manner via introducing, training, and federating 
two types of adaptation modules, such that the data knowledge of 
a mobile/web device can be efectively expanded at a small cost. 
Figure 1 depicts the overall pipeline of our framework, which can 
be briefy summarized as follows. 
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Figure 1: Pipeline of the proposed EEFT framework. It mainly includes four steps: adding adaptation modules to the pre-trained 
model for each device; training and uploading these adaptation modules with our designed loss while freezing pre-trained 
modules; measuring the similarity among these uploaded parameters with the utilization factors in order to select suitable 
federation targets; aggregating the parameters accordingly. Here the color represents the task features. Similar tasks are reflected 
by similar colors. 

(1) Adding adaptation modules to the pre-trained model, where 
the utilization factors are multiplied to each module of the 
original model and the task-specifc blocks are introduced 
in a form of skip connections as used in DenseNets [12]. 

(2) Training and uploading the adaptation modules, where a new 
loss L that encourages the learning of the added modules is 
applied to optimize the parameters. 

(3) Selecting the federating targets based on a utilization-based 
comparison, where the uploaded utilization factors of each 
device model are used as indicators to compare with each 
other, generating a task similarity matrix to guide the feder-
ating policy. 

(4) Aggregating the selected modules, where we average the 
parameters in each location of these selected modules to 
achieve federation. 

The last three steps may be executed multiple times until the 
training converges. The fnal aggregated modules are distributed 
to corresponding device users for deployment. 

4.2 Introducing Adaptation Modules 
This step adds the adaptation modules to optimize the target task. 
Specifcally, we assume the pre-trained model ������� has � blocks 
{�1, �2, ..., �� } and the inference function can be denoted as 

� (�) = �� ⊙ ��−1 ⊙ · · · ⊙ �1 ⊙ (�) (1) 

where � is the data sample and ⊙ represents the operations of the 
blocks, such as convolutions, poolings, etc. As shown in Figure 2, for 
each block �� , we introduce a utilization factor �� and several task-
specifc skip blocks {��� }�−1 

that come from previous � blocks. 
�=�−� 
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Figure 2: Illustration of the added adaptation modules. For 
each pre-trained block �, we attach a utilization factor � and 
several task-specifc skip blocks � . Each skip block is com-
posed of a max-pooling layer, a convolutional layer, a Batch 
Normalization (BN) layer, and a soft-attention parameter 
that is used to measure the importance of the block. 

After this augmentation, the fnal output of �� is the combination 
of the �� output, �� output, and {��� }�−1 

output, which can be 
�=�−� 
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calculated by 

�∑−1 

�� = �� ∗ �� ⊙ (��−1) + ��
� ⊙ (�� ) (2) 

�=�−� 

where ∗ is the multiplication operation. �� is a scalar that satisfes 
�� ∈ [0, 1]. Each skip block ��

� 
contains the following parts: (1) a 

spatial max-pooling layer that converts activations from the spatial 
resolution of �� to �� ; (2) a 1 × 1 convolutional layer (attached by 
a Batch Normalization (BN) layer) that projects the input feature 
map �� to the desired number of channels for �� ; (3) a soft-attention 
parameter ��

� 
to represent the importance of this block, which will 

be normalized by computing the softmax across all skip blocks at 
the ��ℎ block. 

In this way, we are able to control the importance of diferent 
blocks in the pre-trained model by � and complement the extra task 
features by � , providing a feasible and lightweight architecture for 
later training and uploading. We will analyze the concrete tuning 
and communication cost in Section 5.3. 

4.3 Training and Uploading 
Given an expanded architecture generated by the last step, a key 
question is how to efectively train it. A natural idea is to optimize 
the added parameters directly by minimizing accuracy error loss 
as traditional fne-tuning does. However, this simple optimization 
is not optimal since the adaptation modules may not match the 
pre-trained ones. On the one hand, the weights of the adaptation 
modules are randomly initialized while the weights of the original 
model are pre-trained on a large-scale dataset. On the other hand, 
the overall number of the added parameters is extremely small 
compared to the pre-trained model. Thus, it is difcult to focus on 
training the adaptation modules to ft the new task. 

In our work, we design a new loss, where not only the accuracy 
error but also the model complexity are penalized for encouraging 
and contributing to the learning of the added modules. Here the 
model complexity can be defned as ∑� 

�����_���������� = �� ∗ ������ (�� )− 
�=1 

(3)∑� ∑� 
� � 
� ∗ ������ (� )
� � 

�=1 �=1 

where ������ () represents the number of parameters of the in-

put modules. From the equation, we can observe that: (1) model 
complexity describes the usage degree of pre-trained modules and 
added modules by � and � ; (2) minimizing the model complexity 
can weaken the pre-trained modules while strengthening the added 
modules (i.e., decrease � and increase �), which contributes to the 
learning of the added modules. Therefore, we design the new loss 
as follows: 

L = L�� + � ∗ �����_����������, (4) 

where L�� is the cross-entropy loss used to penalize accuracy error, 
and � is a hyper-parameter that controls the proportion of the model 
complexity. We use this loss to optimize the adaptation modules in 
each device and upload them to a central server. 

4.4 Federating Strategy and Aggregation 
In conventional federated learning, all of the uploaded parame-

ters come from the same task and thus can be aggregated directly 
without any additional processing. However, it is infeasible for 
our scenario where multiple tasks might exist in the federated sys-
tem. Confronted with diverse tasks, we design two key steps to 
achieve federation: (1) comparing the similarity among these device 
tasks based on the corresponding uploaded adaptation modules; (2) 
leveraging the similarity to conduct a selective aggregation. 

We frst use the utilization factors in adaptation modules to com-

pare the task similarity. Intuitively, the utilization factors can charac-

terize the task property because they are based on an identical and 
freezing pre-trained model. In other words, if all of the pre-trained 
blocks have similar utilization values for two tasks, we believe the 
two tasks share similar feature space and should be aggregated. 
Specifcally, we use Euclidean Distance [5] as the metric to compare 
the similarity between these utilization factors vut∑� 

���(�� , � � ) = (�� − �� )2 
(5)

� � 
�=1 

where �� and �� denote the ��ℎ element of the factor �� and � � and
� � 

in total, we have � elements (same as the number of pre-trained 
blocks). In terms of this equation, we are able to generate a task 
similarity matrix, which determines which tasks should be selected 
and federated by setting a threshold (the threshold is apparent as 
shown in Figure 4 (a)). According to the similarity matrix, we then 
aggregate the adaptation modules of similar tasks by averaging 
them and distribute them to each device, fnishing a single round 
of fed-tuning. In this way, we can fnally obtain the device-specifc 
models {��1 , ��2 , ..., ��� } for each device after � rounds. 

5 EVALUATION 

5.1 Experimental Setup 
Benchmark. Since there is no available benchmark to evaluate 
the performance of our framework, we manually construct one 
with three typical mobile/web scenarios: task-specifc scenario, 
environment-specifc scenario and user-specifc scenario. The de-
tailed statistics are illustrated in Table 1 and the concrete description 
of these scenarios can be found in Appendix B.1. 

Baselines. EEFT is compared to the fne-tuning baseline and 
several federated learning methods, which are briefy summarized 
as follows: 

(1) Fine-tuning [38]: This baseline directly retrains the pre-trained 
model with data of each user. 

(2) FedAvg [27]: This method averages the local parameters up-

loaded from each user to generate a global model. Towards 
the scenario where user tasks own a diferent number of cat-
egories (e.g., CUB-200 has 200 classes while Caltech-256 has 
256 classes), we only average the shared pre-trained layers 
and leave the last classifcation layer to be optimized in each 
user device. 

(3) Selective Masking (SM) [13]: A communication-efcient FL 
techniques achieved by selectively uploading partial weights 
or gradients. 
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Table 1: Statistics of our simulated benchmarks. Here ����� − 
1 represents the simulation of Ofce-Home and ����� − 2 
represents the simulation of HAR-Depth. 

Device #training #testing Scenario index sample sample 

CUB-200 1,2,...,5 5990 5790 
Task MIT-67 6,7,...,10 5355 1339 

Caltech-256 11,12,...,15 5120 5120 

Art 1,2,...,5 1940 485 
Envir-1 Clipart 6,7,...,10 3490 873 

Product 11,12,...,15 3550 887 

Outdoor 1,2,3 1339 899 
Envir-2 Indoor_nor 4,5,6 1293 895 

Indoor_dark 7,8,9 2023 902 

Type1 1,2,...,20 2000 2000 
Type2 21,22,...,40 2000 2000 

User Type3 41,42,...,60 2000 2000 
Type4 61,62,...,80 2000 2000 
Type5 81,82,...,100 2000 2000 

(4) FedMTL [26]: This method borrows the idea of multi-task 
learning to facilitate task performance under the federated 
settings, where we apply a weight factor to each user task 
in the system for better assisting the target task. 

Implementation details All our experiments are simulated 
and conducted in a server that has 4 GeForce GTX 2080Ti GPUs, 
48 Intel Xeon CPUs, and 128GB memory. We implement EEFT in 
Python with PyTorch, and all the experiments are conducted on the 
ResNet-18 architecture [11], which is pre-trained with the ImageNet 
dataset [6]. 

We now describe the standard implementation of EEFT, which is 
used throughout our experiments unless otherwise specifed. The 
concrete parameter settings are as follows: For adaptation modules, 
we augment three skip connections (i.e., � = 3) to each block of 
the pre-trained model. The initial values of the utilization factor 
� and soft-attention parameters � are set to -3 and 2 for better 
training. The hyper-parameter � is set to 0.3 to provide a good 
trade-of between accuracy and model complexity. We use SGD as 
the optimizer for training, and the learning rate is set to 0.01 with 
a momentum of 0.5. All of the experiments are conducted for 50 
federating rounds to guarantee convergence. Finally, we run each 
experiment 3 times and average them as the reported results. We 
will release our code at: https://github.com/ lebyni/ fed-tuning. 

5.2 Performance Comparison 
Here we use the pre-trained ResNet-18 as the backbone and replace 
the last classifcation layer (i.e., fully connected layer) according to 
the concrete task. Next, we illustrate the detailed results of each 
benchmark. 

Accuracy comparison on the simulated benchmarks. From 
Table 2-5, we can clearly see that the proposed framework out-

performs other methods with an average of 1.81%-2.77% accuracy 

Table 2: Results on the task-specifc scenario, where we test 
the accuracy performance (%) with diferent methods. Here 
devices with the same task are considered together and we 
average their accuracy. 

Method 
Task-specifc 

CUB-200 MIT-67 Caltech-256 Average 

Fine-tune 44.63 57.34 58.07 53.35 
SM 44.74 55.01 57.55 52.43 

FedAvg 45.67 56.07 58.52 53.42 
FedMTL 47.69 59.35 54.36 53.80 
Ours 48.99 59.09 58.75 55.61 

Table 3: Results on the environment-specifc scenario. Here 
is the accuracy performance (%) on CV applications (Ofce-
Home). 

Environment-specifc(Ofce) Method 
Artistic Clipart Product Average 

Fine-tune 48.70 53.06 78.17 59.98 
SM 67.22 71.48 86.70 75.13 

FedAvg 67.42 71.94 86.13 75.16 
FedMTL 67.00 71.21 86.44 74.88 
Ours 69.48 73.31 89.85 77.55 

Table 4: Results on the environment-specifc scenario.Here 
is the accuracy performance (%) on HAR applications (HAR-
Depth). 

Method 
Environment-specifc(HAR) 

Outdoor Indoor_normal Indoor_dark Avg 

Fine-tune 81.35 90.13 89.17 86.88 
SM 91.69 99.11 99.26 96.68 

FedAvg 98.22 100.00 87.22 98.48 
FedMTL 99.18 98.80 98.76 98.69 
Ours 99.67 100.00 100.00 99.89 

Table 5: Accuracy performance (%) on the user-specifc sce-
nario. 

Method 
User-specifc 

Type1 Type2 Type3 Type4 Type5 Avg 

Fine-tune 91.58 77.18 84.60 92.64 89.42 87.08 
SM 44.15 41.55 35.55 48.80 42.67 42.54 

FedAvg 48.50 32.20 40.55 56.05 45.33 44.53 
FedMTL 41.99 20.81 32.23 55.47 44.72 39.04 
Ours 93.35 83.70 87.75 94.55 89.90 89.85 
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Table 6: Efect of the proposed components on our task-specifc scenario. 

#added modules in each block loss efect federating efect Type Dataset 
1-skip 3-skip 5-skip 7-skip w/o aggregation aggregation L�� L 

CUB-200 47.55 48.99 48.85 48.70 48.04 48.99 33.65 48.99 
Task MIT Indoor-67 57.91 59.09 60.01 59.95 58.25 59.09 51.86 59.09 

Caltech-256 57.89 58.75 59.34 59.17 58.45 58.75 54.77 58.75 
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Figure 3: Convergence performance on the task-specifc sce-
nario. For each task type, we select a user as an example and 
plot the corresponding convergence line. 

Table 7: The number of parameters needed for training and 
communication on diferent methods. 

Method #Train Params (M) #Communication (M) 

Fine-tune 11.18 0 
SM 1.34 2*50*1.34 

FedAvg 11.18 2*50*11.18 
FedMTL 11.18 2*50*11.18 
Ours 1.25 2*50*1.25 

improvement. This demonstrates that by adding and selectively fed-
erating the adaptation modules, we can greatly boost the accuracy 
performance with less training or communication cost (details in 
Section 5.3). Besides, it is worth noting that: for the task-specifc and 
environment-specifc scenarios, a higher accuracy can be achieved 
using the conventional FL methods compared to the local fne-

tuning. In other words, we can directly beneft from federated 

learning when the device diference only lies in task types or envi-

ronments. However, most conventional FL methods cannot obtain 
a good performance under the user-specifc condition, even largely 
worse than the local fne-tuning. This demonstrates that simply ag-
gregating all of the uploading parameters is inappropriate when the 
heterogeneity of data distribution is more apparent. Unlike these 
FL methods, our framework selectively conducts the aggregation 
process and achieves better performance no matter what scenario 
we are in. 

Convergence comparison on the simulated benchmarks. 
We record the test accuracy of each round in FL and plot the con-

vergence lines of diferent methods. Here we use the task-specifc 
scenario as an example, and for each task type, we select a user to 
observe the convergence performance. Note that fne-tuning does 
not need the federation process and hence is not included in the 
comparison. As shown in Figure 3, our EEFT converges faster than 
other methods and can reach the highest fnal test accuracy on aver-
age. Another interesting fnding is that although FedMTL performs 
badly at the beginning, the fnal test accuracy is comparable to ours, 
especially for the frst two task types. This indicates that FedMTL 
is able to gradually learn the correct relation among these tasks as 
the round increases. 

5.3 Efciency of EEFT 
Unlike traditional FL, in our settings, the target model is a pre-
trained model, resulting in massive training and communication 
cost if we directly follow the existing FL pipeline. In this subsection, 
we study the efciency of EEFT, where we record the training 
parameters and communication cost of the task-specifc scenario. 

Table 7 demonstrates the results. Note that the communication 
cost is calculated by accumulating the number of uploading and 
ofoading parameters. Obviously, we need fewer training param-

eters than other methods that tune the whole pre-trained model. 
Specifcally, we can only train 11.2% parameters of the pre-trained 
ResNet-18 while obtaining improved accuracy, which signifcantly 
relieves the pressure of training on the resource-constrained mo-

bile/web devices. We assume that the FL process will run for 50 
rounds towards the communication comparison, which means the 
communication cost is 2 × 50 × ��������_���������� . Note that 
we do not need to upload any parameters in fne-tuning; thus, the 
cost is zero. For other traditional FL methods, as shown in the ta-
ble, our approach can save up to 8.9× communication cost, which 
confrms the communication efciency of EEFT. Although the SM 
method can achieve comparable training and communication cost 
to ours, its efciency is at the expense of model accuracy, which 
will signifcantly afect user experience. 
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Figure 4: Visualization of the user similarity matrix and the 
learned utilization factor value at each pre-trained block. 

5.4 Efect of the Introduced Components 
Our framework mainly introduces three key components: two types 
of adaptation modules, a new loss, and a federating strategy. Here 
we conduct ablation studies to explore whether each of them is ben-

efcial to the fnal performance. Specifcally, for adaptation modules, 
we investigate how diferent numbers (1,3,5,7) of added skip connec-

tions in each block afect the results. For the loss, we respectively 
employ our designed loss and the traditional cross-entropy loss to 
conduct our pipeline. Finally, we compare the achieved accuracy 
using the conventional aggregation and our federating strategy to 
test the usefulness of the proposed strategy. 

Table 6 summarizes the results, where a pre-trained ResNet-18 
is used as the backbone, and we average the user results of the 
same task type. For each study, we fx the other two and focus on 
the specifc component. From the fgure, we can observe that our 
designed loss and aggregation strategy perform better than the 
corresponding baselines across all of the task types, which vali-
dates their efectiveness. Towards the added modules, we fnd that 
diferent task types have diferent best choices. For example, adding 
5-skip is desirable for the MIT Indoor-67 while in CUB-200, adding 
3-skip achieves the highest accuracy. Besides, an interesting obser-
vation is that when we increase the number of skip connections 
to 7 for each block, the performance is surprisingly degraded. We 
believe this is because excessively introduced modules increase the 
training parameters, which will cause the overftting problem and 
thus harm the accuracy. In conclusion, 3-skip or 5-skip is enough to 
obtain good results. 

5.5 Implication of the Learned utilization 
Factors 

As aforementioned, the goal of introducing utilization factors lies in 
two aspects: (1) using them as an indicator to compare the similarity 
between two tasks for selective aggregation; (2) measuring the 
importance of diferent modules of the pre-trained model in order 
to utilize them better. Here we extract the learned utilization factors 
from each device model of the task-specifc scenario to explore how 
they achieve the two goals. 

Specifcally, we frst extract the utilization factors from the learned 
models and use them to calculate the task similarity according to (5). 
Figure 4(a) demonstrates the similarity matrix. We can observe that 

user devices coming from the same task type can be easily picked 
out by setting an apparent threshold, proving the efectiveness of 
the utilization factors in selecting suitable device tasks. Besides, we 
further visualize their averaged value of the utilization factors of 
each task type. As shown in Figure 4(b), each pre-trained block has 
its unique utilization to diferent task types, which confrms that 
the introduced factors can learn the diferent utilization patterns 
in terms of diferent inputs, providing guidance to the better us-

age of the pre-trained model. In addition, we fnd that Caltech-256 
has a higher overall utilization degree compared to others. This is 
reasonable because this dataset is more similar to the pre-trained 
ImageNet dataset, which indicates that we can directly transfer 
the pre-trained blocks without the need to tune them much. In 
summary, these fgures imply the necessity and usefulness of intro-

ducing the utilization factors. 

6 DISCUSSION 
This section discusses the limitations of the paper. First, EEFT re-
quires adding specifc modules to the pre-trained model, which 
will increase the model size and then introduces extra inference 
time. However, considering that the added parameters are small 
compared to the large pre-trained model, we believe this consump-

tion is acceptable. Another limitation is that our implementation is 
based on CNN models. In the future, we will further explore how 
to apply our framework to other models such as RNNs or GNNs. 
Finally, one possible threat to validity is that whether the studied 
benchmark can represent the mobile/web scenarios. We try our best 
to minimize this threat by covering diferent possible data settings 
for simulating real users. We will continue to explore other settings 
in the future. 

7 CONCLUSION 
In this paper, we propose EEFT, where diverse users cooperate with 
each other to learn their specifc tasks. We design and implement 
EEFT by adding and federating light-weight adaptation modules. 
As these modules are much smaller than the pretrained model, they 
can be used to efciently and efectively expand the valuable data 
knowledge and beneft each user. Experiments on our simulated 
benchmark demonstrate the efectiveness of the proposed frame-

work, which outperforms other state-of-the-art methods while sav-
ing much training or communication cost. In the future, we will 
further explore fed-tuning from other perspectives, such as privacy 
and robustness. 
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A THEORETICAL ANALYSIS 
In this part, we provide theoretical analysis to support our frame-

work. Specifcally, we respectively analyze the efectiveness of the 
utilization-based comparison and the convergence property of the 
fnal federating strategy. To begin with, we make the following 
commonly used assumptions. 

Assumption 1. The objective functions �1, �2, ..., �� in each de-
vice are all L-smooth: for all v and w, �� (v) ≤ �� (w) + (v − 
w)� ∇�� (w) + � 

2 ∥v − w∥2 
2
. 

Assumption 2. The objective functions �1, �2, ..., �� in each de-
vice are all µ-strongly convex: for all v and w, �� (v) ≥ �� (w) + (v − 

� w)� ∇�� (w) + 
2 ∥v − w∥2 

2
. 

Besides, we borrow the assumptions made in related works [37, 
45] as follows. 

Assumption 3. Let �� be sampled from the k-th device’s local� 
data uniformly at random. The variance of stochastic gradients in( ) ( ) 

2
� � each device is bounded: E ‖∇�� w� , ��

� − ∇�� w� ‖ 
≤ �

� 
2 , for 

k=1,...,N. 

Assumption 4. The expected squared norm of stochastic gradients( )
� is uniformly bounded, i.e., E ∇�� w� , ��

� 2 
≤ �2, for all k=1,...,N‖ ‖ 

and t=1,...,������ − 1. Here ������ represents the total number of every 
device’s SGDs. 

According to a recent work [48], the weight divergence among 
the uploaded models will harm the aggregation performance, which 
can be formally defned as the following Theorem. 

Theorem 1. Suppose Assumption 1 to 2 hold and the synchroniza-
tion is conducted every H steps. We have the following inequality for 
the weight divergence after the m-th synchronization, 

∥��� ∥ ≤ (6) 

�∑ ������ (� ) 
(�� )� ∥���−1 ∥Í� 

=1 ������ 
(� )

�=1 � 
�∑ �∑−1

������ (� ) 
�� − ������� + � Í� 

�=1 ������ 
(� ) ‖ ‖ 

�=1 � =1

( )
�� � 

max ‖∇� E� |�=� log �� (�, �)‖�=1 

where �� = 1 + � 
Í�
�=1 � (� ) (� = �)�� |�=� and � is the number 

of category. � represents the data distribution. Here we omit the 
proof due to space limitations. 

Based on the inequality, we can observe that the distribution 
heterogeneity among devices has a large impact on the fnal diver-
gence degree. In our scenario, the data distribution among diferent 
user tasks might be extremely diferent, which can be regarded 
as a type of strong heterogeneity situation. Therefore, the weight 
divergence issue will inevitably exist in our fed-tuning process. 
We present a utilization-based comparison method to pick out pa-
rameters from similar tasks to conduct aggregation, which can 
signifcantly mitigate the distribution heterogeneity and decrease 
the weight divergence degree. 

To further illustrate the convergence property of our federating 
strategy, we analyze the number of communications (i.e., federa-
tion rounds) in terms of the following Theorem proposed by other 
researchers [18]. 

Theorem 2. Let Assumption 1 to 4 hold and the complexity of the 
communications can be formulated as, " Í� 

1 1 �=1 �
2�2 + Γ + �2 
� � O ((1 + ) ��2 + + �2)

# 
(7)

� � � 

where Γ represents the heterogeneity degree of data distributions. 
Other constant defnitions can be founded in the related paper [18], 
and we do not need them to carry on our analysis. The proof is 
omitted due to space limitations. Note that we only aggregate the 
parameters of similar tasks, which means that the value of Γ is 
extremely small compared to the traditional all-aggregation scheme. 
Therefore, the communication times can be theoretically reduced, 
and we are able to reach convergence at a faster speed. 

B DETAILED EXPERIMENT SETTINGS 

B.1 Constructed benchmarks. 
We manually construct a benchmark with public computer vision 
(CV) and human activity recognition (HAR) datasets to simulate 
the adaptation for mobile/web scenarios. The detailed statistics are 
illustrated in Table 1 and we briefy introduce these scenarios as 
follows. 

• Task-specifc scenario, where diferent mobile/web users may 
have diferent task types. We employ three public datasets: 
CUB-200 [40], MIT Indoor-67 [34] and Caltech-256 [7], to 
simulate this scenario. Specifcally, CUB-200 represents a 
fne-grained object recognition task with 200 species of birds. 
MIT Indoor-67 represents a scene recognition task with 67 
indoor scene categories. Caltech-256 represents a general ob-
ject recognition task with 256 object categories. We partition 
the training samples in each task into fve parts, and each 
device is allocated to one part to denote its target task. Thus, 
this benchmark has 15 users with three types of tasks. Con-

sidering that Caltech-256 has no ofcial train/test settings, 
we randomly pick out 20 disjoint samples of each category 
as the training set and testing set. The fnal performance is 
evaluated on the testing set of each task. 

• Environment-specifc scenario, where the task is identical 
while the environment background of each user may be 
signifcantly diferent. Here we employ two types of applica-
tions to simulate it. For CV applications, we pick out three 
types of background images: artistic images, clipart images 
and product images from the Ofce-Home dataset [39], which 
owns 65 identical object categories but diferent background 
distributions. Specifcally, each image type is divided into a 
training set (80%) and a testing set (20%). Then each train-

ing set is further partitioned and allocated as the settings in 
the task-specifc scenario. For HAR applications, we use the 
latest HAR-Depth dataset [31], where fve types of gestures 
(good/ok/win/stop/fst) are recorded in this dataset by two 
subjects using a depth camera in three environments (i.e., 
outdoor, dark, and indoor). Specifcally, we follow the ofcial 
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partition settings, which have 3 scenes and simulate 9 nodes 
for FL. 

• User-specifc scenario, where diferent users may have dif-
ferent preferences (e.g., one may like collecting dog images 
while others may cat images). Here CIFAR-10 is used to sim-

ulate 100 clients, each of which belongs to one type that 

WWW ’23, April 30–May 04, 2023, Austin, TX, USA 

has two disjoint categories of data. Thus in total, we have 
5 types. Note that the heterogeneity of data distribution is 
more apparent under this scenario since user preference is 
more diverse. 
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