Check for
Updates

Put Your Memory in Order: Efficient Domain-based

Memory Isolation for WASM Applications

Hanwen Lei
Key Lab of HCST (PKU), MOE;
SCS, Peking University
lei_hanwen@stu.pku.edu.cn

Peng Jiang
Key Lab of HCST (PKU), MOE;
SCS, Peking University
pengjiang_pku2020@stu.pku.edu.cn

Ding Li
Key Lab of HCST (PKU), MOE;
SCS, Peking University
ding_li@pku.edu.cn

ABSTRACT

Memory corruption vulnerabilities can have more serious conse-
quences in WebAssembly than in native applications. Therefore,
we present PKUWA, the first WebAssembly runtime with memory
isolation. Our insight is to use MPK hardware for efficient mem-
ory protection in WebAssembly. However, MPK and WebAssembly
have different memory models: MPK protects virtual memory pages,
while WebAssembly uses linear memory that has no pages. Map-
ping MPK APIs to WebAssembly causes memory bloating and low
running efficiency. To solve this, we propose Domain Isolated Linear
Memory (DILM), which protects linear memory at function-level
granularity. We implemented DILM into the official WebAssembly
runtime to build PKUWA. Our evaluation shows that PKUWA can
prevent memory corruption in real projects with a 1.77% average
overhead and negligible memory cost.

CCS CONCEPTS

« Security and privacy — Software and application security.

KEYWORDS
WebAssembly; Memory Isolation; MPK

1 INTRODUCTION

WebAssembly is a bytecode language with portability, speed, and
memory efficiency [33]. It compiles from C/C++, Rust, Go, etc.
[43], and runs on independent runtimes and browsers [70]. The We-
bAssembly linear memory architecture is vulnerable to attacks such

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0050-7/23/11...$15.00
https://doi.org/10.1145/3576915.3623205

Ziqi Zhang
Key Lab of HCST (PKU), MOE;
SCS, Peking University
ziqi_zhang@pku.edu.cn

Zhineng Zhong
Key Lab of HCST (PKU), MOE;
SCS, Peking University
zhongzhineng@pku.edu.cn

Yao Guo
Key Lab of HCST (PKU), MOE,;
SCS, Peking University
yaoguo@pku.edu.cn

904

Shaokun Zhang
Key Lab of HCST (PKU), MOE;
SCS, Peking University
skzhang@pku.edu.cn

Ningyu He
Key Lab of HCST (PKU), MOE;
SCS, Peking University
ningyu.he@pku.edu.cn

Xiangqun Chen
Key Lab of HCST (PKU), MOE,;
SCS, Peking University
cherry@pku.edu.cn

as modifying static variables through stack overflow [43]. Since
linear memory allows arbitrary memory access, existing software-
based defenses for native applications are not as effective in We-
bAssembly. Stack and Heap Canaries [20] only prevent sequential
buffer overflow, which is not enough for WebAssembly [43]. Ad-
dress Space Layout Randomization (ASLR) [63] is less effective in We-
bAssembly because the attacker can scan the whole memory space
without causing page faults. Metadata-based Defenses [34, 42, 53, 59]
such as shadow memory [59] and code-pointer integrity (CPI) [42]
are not suitable for WebAssembly because they require storing
metadata in a piece of secure memory. However, there is no such
secure area in linear memory. OOP Security features that exist in
languages (such as Java, JavaScript, and Python) [7, 28, 48, 64] are
also not applicable to WebAssembly because it is a low-level byte-
code that supports multiple languages, including C. Introducing the
OOP security features can break the portability of WebAssembly.
Therefore, a stronger memory protection mechanism is needed for
WebAssembly.

To strengthen the security of WebAssembly, in this paper, we
aim to design a novel memory isolation approach for WebAssembly
that limits memory-related attacks to a small segment of linear
memory called domain. This approach prevents arbitrary memory
accesses and mitigates WebAssembly-specific memory vulnerabili-
ties. Our approach is inspired by the MPK-based memory protection
approaches for native applications [55, 65], which use the Intel MPK
hardware feature to create protected memory regions for native
applications and defend against overflow-based attacks with high
efficiency [35, 55, 65]. We leverage the same hardware feature to cre-
ate isolated domains in WebAssembly, aiming for a highly efficient
linear memory protection approach.

Although it sounds promising, building a memory isolation ap-
proach based on Intel MPK for WebAssembly is fundamentally
challenging due to the Memory Model Mismatch between the
linear memory of WebAssembly and the page-based memory model
of MPK. MPK adds a special protection key to each entry in the page
table, which means it has to protect memory on a granularity at
the page level, e.g., the developer needs to first call mmap to allocate

https://doi.org/10.1145/3576915.3623205
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3576915.3623205&domain=pdf&date_stamp=2023-11-21

CCS *23, November 26-30, 2023, Copenhagen, Denmark

a page and then protect the page with pkey_mprotect. Unfortu-
nately, since the concept of pages does not exist in WebAssembly, the
developer cannot use mmap in WebAssembly. Even if we forcibly
port them to the WebAssembly runtime, adopting such an incom-
patible isolation model (e.g., the APIs and instructions discussed in
Section 2.3) will break the default assumption of WebAssembly, lead-
ing to potential memory bloating and high-performance overhead.
Note that although there are several enhancements to using MPK in
native applications, including 1ibmpk [55], ERIM [65], Hodor [35],
PKU-safe [39], EPK [31], and many other techniques [41, 67], they
are all page-based and suffer the same problem in WebAssemly as
the vanilla version of MPK APIs.

For linear memory bloating, calling mmap to obtain a page-aligned
memory address will unnecessarily expand the linear memory,
even if the WebAssembly application does not require that much
memory. This expansion happens each time the developer calls
pkey_mprotect and mmap, which can lead to quick memory bloat.
This problem is particularly concerning for WebAssembly appli-
cations, as the linear memory grows continuously and cannot be
reduced once it has expanded. As a result, memory leakage can
occur and impact the usability of the application. According to
our evaluation, using mmap and pkey_mprotect can consume up
to 10 times more memory than the standard version of WebAssem-
bly. Thus, developers must manage memory manually to prevent
bloating and ensure optimal.

For high runtime overhead, calling mmap and pkey_mprotect
in WebAssembly is much slower than calling them in native apps.
Accessing these functions requires the use of WebAssembly Sys-
tem Interface (WASI), which has slower APIs due to the sand-
boxed design in WebAssembly. When accessing system resources,
WASI APIs must cross two boundaries, resulting in complex and
time-consuming calls. In our evaluation, directly using mmap and
pkey_mprotect can slow down WebAssembly apps by 18.79% on
average, with 2.82 times slower WASI calls compared to system
calls.

To solve the challenge of memory model mismatch, we propose
PKUWA (Protection Key in User space for WASM) to provide mem-
ory protection for WebAssembly. Our key insight is to use functions
as protection units due to their clear entry and exit points, allowing
for automatic security checks. Additionally, a function is an inde-
pendent entity, and typically accessing objects are concentrated on
the same memory area. By using functions as the granularity for
memory protection, we can reduce the need for domain switching
compared to using memory objects. The key idea in our solution is
the Domain Isolated Linear Memory (DILM) model, which is pro-
posed to divide the linear memory into different domains, limiting
each WebAssembly function to access memory in only one domain.
With DILM, we can isolate memory and prevent memory-related
vulnerabilities in WebAssembly.

More importantly, DILM is compatible with Intel MPK, which
enables efficient memory isolation. By assigning different protec-
tion keys to different domains in DILM, PKUWA can use the MPK
hardware to quickly detect unauthorized memory access. However,
implementing DILM on MPK and ensuring efficiency is not trivial.
There are two main technical challenges. The first one is how to
minimize the WASI calls when using PKUWA. Since WASI calls are

905

Hanwen Lei et al.

slow in WebAssembly, it is inefficient to implement all PKUWA in-
terfaces as WASI calls. To overcome this challenge, PKUWA avoids
costly WASI calls and improves performance by adding a new in-
struction to WebAssembly that modifies the permission bits in PKRU.
The second challenge is how to manage memory in different do-
mains effectively. Since memory in different domains has different
protection keys, a naive approach would require frequent switch-
ing of the protection keys to access memory in all domains, which
is inefficient. To overcome this challenge, we design a novel dis-
tributed linear memory management module that avoids switching
protection keys while keeping the memory in different domains,
achieving both time and memory efficiency in linear memory usage.

We have implemented a prototype of PKUWA in Wasmtime [72].
To demonstrate the effectiveness of PKUWA, we present a case
study that shows how PKUWA can protect linear memory from
well-known vulnerabilities. To evaluate the efficiency of PKUWA,
we collected ten applications from open-source projects that can run
on the WebAssembly standalone runtime and ported them using
PKUWA. Our experiment shows that DILM can reduce the runtime
overhead by 9.89% on average compared to the naive approach that
directly uses the page-based programming model of native applica-
tions. For memory overhead, PKUWA does not introduce noticeable
extra memory consumption compared to the vanilla Wasmtime.
On the other hand, the memory consumption for using MPK APIs
directly is 1.51x - 10.81x higher than the vanilla Wasmtime. Our
evaluation confirms that directly using the MPK programming
model for native apps in WebAssembly can significantly bloat the
linear memory and degrade the performance of WebAssembly. It
also shows that PKUWA can address these problems effectively and
efficiently. Overall, our evaluation demonstrates that PKUWA is
able to achieve its goal against memory corruption attacks with
little performance overhead.

Main contributions of this paper include:

e We introduce a novel linear memory abstraction, PKUWA,
that enables WebAssembly applications to run with strong
isolation.

e We propose the Domain Isolated Linear Memory (DILM)
model, which is compatible with linear memory and can be
implemented with MPK.

e We implement PKUWA in the Wasmtime runtime and eval-
uate its performance on real open-source applications.

The source code of PKUWA is publicly available at:
https://github.com/PKU-ASAL/PKUWA

2 BACKGROUND

In this section, we discuss background information about the lin-
ear memory of WebAssembly and its security issues. We will also
discuss the background information about MPK.

2.1 Linear Memory of WebAssembly

Linear memory is a single continuous byte array that the runtime
maps from a reserved virtual memory space. Unlike other bytecode
languages, WebAssembly does not provide any memory manage-
ment or garbage collection scheme. This design allows developers or
compilers to fully control the runtime performance. Linear memory
has three properties [43, 49, 70]:

Put Your Memory in Order: Efficient Domain-based
Memory Isolation for WASM Applications

[Junmapped Memory ~Stack 'I$
Overflow
Stack
Heap
Heap
Data Grows
(Writable & Data
Read-Only)
T Stack-to-Data Text
Stack Overflow (Read—OnIy)
«— 00—
WebAssembly Native

Figure 1: Example of the arbitrary file written in WebAssem-
bly and native.

e P1: Monotonicity. Linear memory can only grow and never
shrink. Once the application frees some memory, it remains in
the linear memory until the application ends.

o P2: Density. Linear memory has no gaps, and the memory is
contiguous. Unlike native platforms, there are no unmapped
spaces between different sections of linear memory.

o P3: Arbitrary Memory Access. The application and the devel-
opers have full control over all data in the linear memory. The
application can read and write to the entire memory.

Linear memory was designed for efficiency and portability as a
compilation target in WebAssembly. It allows for sequential mem-
ory allocation without worrying about freeing memory. However,
unlike native applications, it cannot to free memory. This means
that linear memory can only grow and can cause memory bloat if
not managed efficiently.

2.2 Security Risks of WebAssembly

Recent studies [36, 43, 49] reveal that WebAssembly suffers from
memory corruption vulnerabilities, which may cause more se-
vere consequences than attacking native code (e.g., C/C++) in some
scenarios [43, 61]. Figure 1 illustrates the problem of linear memory
by comparing the simple layout of WebAssembly memory (left)
and the secure layout of native memory (right). The WebAssem-
bly memory mainly comprises three parts: the heap section, the
data section, and the stack section. The simplicity of WebAssembly
memory differs from native memory in two aspects. First, the data
section does not differentiate the data with different permissions
(e.g., read-only data and writable data), and all the data in this
section is readable (P3). Second, there is no unmapped memory
between different sections, and the space from the stack section
to the data section is contiguous (P2). On the other hand, the na-
tive memory is more complex. First, the data section is split into
multiple segments, e.g., read-only section (.rodata) and writable
section (.data). The constant strings are immutable during exe-
cution. Second, native memory has unmapped memory between
different sections. Accessing such memory will trigger a SIGSEGV
signal.

As shown in Listing 1, this code snippet demonstrates how an
adversary may exploit memory corruption to perform arbitrary file
write. The code receives user input and stores it in buf at line 2 and
line 4. Then, the code opens a file and appends a constant string
to it from line 7 to line 9. In this example, "file.txt", "a", and

906

CCS 23, November 26-30, 2023, Copenhagen, Denmark

"Append constant text." are constant strings that should not
be modified.

// Somewhere in the binary
char buf[32];

// Stack-based buffer overflow
scanf("%[*\n]", buf);

// Write "constant" string into "constant" file
FILE *f = fopen("file.txt", "a");

fprintf(f, "Append constant text.");

fclose(f);

© PN R W N =

Listing 1: Stack-based buffer overflow that causes an arbitrary
file write.

For WebAssembly, an overflow on the local variable buf may
allow the user to write arbitrary data in arbitrary files. Note that in
Figure 1, the data section follows the stack section. If the user input
is larger than the size of buf, buf may overflow to the data section
and overwrite the constant strings. For Listing 1, a malicious user
can modify the file write process (line 7 to line 9) by constructing a
malicious input to overflow. As a consequence, the attacker is able
to control the target file to write ("file.txt" at line 7), the file
opening mode ("a" at line 7), and what to write in the file ("Append
constant text." atline 8). Thus, the attacker can write arbitrary
data to arbitrary files. Note that this type of attack does not work
for native applications.

2.3

Intel Memory Protection Key (MPK) is a new hardware feature
that allows fast and flexible modification of memory permissions in
user space. MPK uses a field in the Page Table Entries (PTEs) called
protection key and a hardware register called PKRU. The protection
key indicates the access rights of the memory page, and PKRU stores
the current protection keys and their corresponding permissions.
The hardware checks the permission by comparing PKRU with the
protection key of the PTE on every memory access. MPK is efficient
because it enables the program to manipulate the permissions of
multiple memory pages in user space without invoking the kernel.
Therefore, the overhead of the permission check is negligible and
the overhead of the PKRU permission switch is minimal [62, 65, 71].
The concept of memory protection key is adopted by various archi-
tectures, not only by Intel MPK. These architectures include ARM
memory domain [5], RISC-V’s Donky [57], IBM’s Power architec-
ture [16], HP PA-RISC [54], and Itanium (IA-64) [13].

Listing 2 illustrates how to use MPK according to the official
Linux document [38]. The developer first calls pkey_alloc to create
a new protection key PKEY_DISABLE_WRITE, which means the key
is not writable (line 1). Then the developer calls mmap to allocate a
new memory page (line 2) and calls pkey_mprotect to assign the
page to pkey (line 3). Note that pkey_mprotect only works on page-
aligned memory. During the execution stage (line 4), the memory
of ptr is secure and cannot be modified. To change the memory
content, the developer first changes the permission of pkey to @
(writable; line 5), then updates the memory content (line 6), and
finally restores the permission of pkey to PKEY_DISABLE_WRITE
(line 7).

Memory Protection Keys

CCS *23, November 26-30, 2023, Copenhagen, Denmark

1 pkey = pkey_alloc(@, PKEY_DISABLE_WRITE);

2 ptr = mmap(NULL, PAGE_SIZE, PROT_NONE,

< MAP_ANONYMOUS |MAP_PRIVATE, -1, 0);

ret = pkey_mprotect(ptr, PAGE SIZE PROT_READ | PROT_WRITE, pkey);

3
4 //... application runs here

5 pkey_set(pkey, 0); // clear PKEY_DISABLE_WRITE
6 *ptr = foo; // assign something

7

pkey_set(pkey, PKEY_DISABLE_WRITE);
again

// set PKEY_DISABLE_WRITE

—

Listing 2: A typical example of using MPK to protect memory.

The programming model of MPK (Listing 2) is not compatible
with WebAssembly’s linear memory because it uses the page-based
memory model and WebAssembly does not support mmap and page-
aligned memory. Note that libmpk [55] and many other optimiza-
tions of MPK [31, 35, 39, 56, 65] also use the page-based memory
model, thereby can not be directly applied to WebAssembly. By call-
ing mmap, WebAssembly appends a new virtual memory page at the
end of the linear memory, which would waste memory space. Fur-
thermore, mmap is much slower in WASI than a system call, which
would reduce the performance of WebAssembly applications. Our
evaluation shows that directly using the unmodified MPK program-
ming model can increase the linear memory size by up to 1.63 times
and increase the WebAssembly application overhead by 18.79% on
average even when only 5% of memory objects are protected by
MPK. Different from libmpk, in PKUWA, we introduce a new mem-
ory isolation model that addresses the mismatch between the linear
memory and the page-based protection model. We also effectively
utilize the nature of WebAssembly, which only allows control flow
to jump to the beginning of code blocks, to prevent ROP-based by-
passing attacks. Moreover, we use a strategy of swapping memory
between different domains to reduce the runtime cost and memory
bloating. More details will be described in Section 4.

2.4 Threat Model

In this paper, we focus on the memory vulnerability. We consider a
WebAssembly app containing malicious functions (attacker), trusted
functions (victim), and normal functions. Malicious functions con-
tain vulnerabilities that the attacker can use. Trusted functions
contain sensitive data or control flow that the adversary tries to
attack.

The malicious functions can be utilized in two ways: (1) the
attacker can actively exploit the vulnerabilities in the malicious
functions, or (2) the malicious function can directly run the mali-
cious code. For example, the malicious function can be supplied by
a malicious user in the third-party library. To exploit the vulnerabil-
ities in malicious functions, the adversary can feed special trigger
input or utilize function return values (e.g., pointers). We do not
make any assumptions or constraints on the type of functions as
long as the functions comply with WebAssembly semantics.

We assume the trusted functions do not contain vulnerabilities
and do not proactively leak sensitive data from legitimate output.
We consider the hardware and the OS as trusted. We consider Spec-
tre attacks [40], side-channel attacks [12, 74], and fault attacks [52]
to be out of the scope of this paper because they exploit hardware
vulnerabilities and are unrelated to memory vulnerabilities.

907

Hanwen Lei et al.

3 LINEAR MEMORY WITH ISOLATION
DOMAINS

We introduce a new memory isolation model for the WebAssembly
linear memory, called DILM, that addresses the mismatch between
the linear memory and the page-based protection model of MPK.
Unlike conventional MPK-based memory protection models on na-
tive code, which can only protect memory page-by-page [14, 65],
the DILM model is function- and domain-based, which allows con-
trolling the access rights of functions to memory domains. The
function- and domain-based memory isolation enables DILM to
map memory segments of arbitrary length to the domain linear
memory, which is not feasible in conventional MPK-based mem-
ory protection models. The DILM model has the following three
advantages:

e Memory Isolation. DILM provides in-process memory isola-
tion for WebAssembly applications. Under the DILM model, a
function cannot access the memory without authorization. This
isolation gives WebAssembly applications a similar level of mem-
ory protection as native applications.

e Backward Compatibility. DILM is fully compatible with the ex-
isting linear memory model. In other words, current WebAssem-
bly applications can run seamlessly on a runtime that supports
DILM.

o Efficiency. DILM can be implemented on top of MPK to ensure
efficiency. We will discuss the details of optimizations in Section 4.

Figure 2 illustrates the idea of the DILM model in its middle
and right parts. The middle part shows four domains (Domain 0-3),
each with several segments of linear memory in different colors.
The right part displays five WebAssembly functions, which can
be linked to various domains. The connection between a function
and a domain indicates that the function has access to the memory
within that domain. DILM will block a function from accessing a
domain that it is not linked to. For instance, the malicious function
in Figure 2 has no access to the memory in Domain 3.

Formal Definition. Formally, we define the DILM model as a
bipartite graph G = (F, D, dy, E), where each f; € F is a WebAssem-
bly function, each d; € D is an isolated domain, dy is a special
initial domain, and E = {(f;,d;)} is a set of edges that links F
and D. An isolated domain dj € D is a subset of the linear mem-
ory L with two properties: 1) isolated domains are disjoint (i.e.,
Vdg,dp € D,dy N dy, =), and 2) every address in L belongs to one
domain (i.e., |Jdy = L). Thus, the isolated domains partition the
linear memory L. We do not assume that the addresses are con-
tiguous in each isolated domain. A domain may consist of multiple
segments of linear memory. In the DILM model, an edge (f;, d;)
indicates that f; can access the addresses in d;. If f; attempts to
access the addresses in dj but (f;, d;) ¢ E, the DILM model will
REJECT such access, enforcing memory isolation. We distinguish
two types of edges: level-1 and level-2 edges. A level-1 edge grants
read-only permission to the function for a specific domain. A level-
2 edge grants read and write permissions to the function for the
corresponding domain. We adopt this two-level permission system
inspired by process address space in operating systems [30]. We
also require that each function is connected to EXACTLY ONE
domain. This prevents an adversary from using a function as a
bridge to access data from other domains illegitimately. Initially,

Put Your Memory in Order: Efficient Domain-based
Memory Isolation for WASM Applications

CCS 23, November 26-30, 2023, Copenhagen, Denmark

Application Binary
Code Code
Domain M t] i ; 1 ; § i
[omain Managemen v [Allocator) | i { Domain 0 \‘[Normal Function 1]
Memory Management ’ ’ \
- Permission Switch][Permisfion Setting][Allocation/Free] /// \{ Normal Function 2]
LinearlMemory ’ []
Userspace [{ i i] R i {| |pata | { Trusted Function 3 D]
WASI P H
WebA bly Runtime Allocator| i Domain 2]’ R
Syscall (z J:. [[)| Trusted Function 4
\
(Virtual Memory]
Kernel Space \ N
_.l Page Table PTE[] key N [Anocam,] ! i { Domain 3 }/ Malicious Function SA]
1 N : :
Hardware L] pkpy | | Physical Memory)

Figure 2: The Domain Isolated Linear Memory (DILM) model.

we connect all functions to the special domain dy. Developers can
switch a function from dj to other domains later.

Operations on DILM: We define a set of operations on the DILM
graph G. These operations are exposed to developers so that they
can realize memory isolation in their WASM applications. We detail
the operations as follows:

Create creates a new isolated domain dy in D.

Release deletes an isolated domain dy from D.

Add adds a segment of linear memory to one isolated domain.
Swap moves a segment of linear memory from one domain to
another.

Switch changes the connected domain of a function to another.

To maintain compatibility with the linear memory monotonicity

of WASM, our DILM design does not include an operation for delet-
ing a linear memory segment from a domain. Instead, it only allows
swapping linear memory segments between domains(Swap). We
rely on a user-level memory allocator to manage the linear memory
in each domain and achieve memory efficiency, as we explain in
Section 4.2. This is similar to conventional WASM.
Domain Access Control. We use a function-based domain access
control system in DILM. This system allows a function f; to access
a memory protected in an isolated domain d; only if (f;,d;) € E
(i.e., f; has access to dj). For instance, if a function a needs to access
a memory in domain d; that it cannot access, it has to invoke a
function b in domain d; to access the data indirectly. Note that b
does not return the data in domain d; to a, but rather acts as a proxy
function that computes on the data and returns the result to a. The
arguments and return values are copied to the target domain (the
domain of b for arguments and the domain of a for return values)
before being used by the target function. This prevents the data in
domain d; from leaking to a. Moreover, DILM prohibits functions
from passing (or returning) cross-domain pointers. When a caller
calls a callee in another domain, the arguments and return values of
the callee cannot be pointers. This is because adversaries may use
cross-domain pointers to access the data in other domains illegally.
Only when the caller and callee are in the same domain they can
use pointers to pass arguments and return values. This ensures the
data security in different domains.

4 DESIGN OF PKUWA

We propose a new runtime for WASM applications, PKRUWA (Protection

Key in User space for WASM), based on DILM.

A pure software implementation of the DILM model would in-

cur high overhead [58, 65, 69], as it would require checking the
memory access permission of each function. Therefore, we lever-
age MPK [38] to realize DILM more efficiently in PKRUWA. Figure 2
shows the general architecture of PKRUWA, which extends the linear
memory management module in the existing WASM runtime with
DILM. PKUWA uses MPK to implement the DILM model and its five
operations. Moreover, PKUWA provides modules for domain and
memory management, as well as optimizations to reduce memory
consumption and runtime overhead.
Special Domains. PKUWA defines two special domains in DILM:
Domain 0 and Domain 1. Domain 0 is the initial domain dy that
all functions start with. Domain 1 is a privileged domain that only
the monitor function can access. The monitor function manages
the meta-data of domains for PKUWA. PKUWA does not allow any
user-defined function to access Domain 1.

4.1 Realizing DILM with MPK

PKUWA implements DILM based on the protection keys of MPK.
Specifically, PKUWA assigns a unique MPK protection key to each
isolation domain. Since Intel MPK supports 16 protection keys,
PKUWA can have at most 16 isolation domains. Among the 16
domains, Domain 1 is reserved by PKUWA for domain and memory
management. Domain 0 and Domains 2-15 are available to users.
The information about the domains, such as the mapping between
the domains and protection keys, is stored in the PKUWA meta-data
in Domain 1.

We realize the domains through MPK as follows. Given an isola-
tion domain with n segments of linear memory dg ={s1,82,...,5n}
where s; is a segment of linear memory, PKUWA first finds the
corresponding Linux virtual memory pages of these segments from
the WASM runtime. Because the linear memory is mapped from a
contiguous space in the virtual memory, we can use the address of
each segment to identify the virtual memory page. In the runtime,
we maintain the base address of the virtual memory space that is
mapped to the linear memory. Given the linear memory address of
the segment (consisting of a base address and an offset), we can add

CCS *23, November 26-30, 2023, Copenhagen, Denmark

the offset to the virtual memory’s base to get the segment’s virtual
address. Then we can align the virtual address to identify the virtual
memory page. Assume the set of corresponding Linux virtual pages
of segments of linear memory in dj is py = {p1, p2...pm}, we assign
each p; the MPK protection key of domain dy.

Note that a segment s; € d; may not be page-aligned on virtual
memory, meaning that it may not fully occupy the last virtual page
it corresponds to. Therefore, there may be a wasted virtual memory
area at the end of the last page. To address this issue, PRUWA
leverages a Linear Memory Manager (LMM) to utilize the memory
efficiently, which we will discuss in detail in Section 4.2.

4.1.1 Realizing the Five Operations. PKUWA implements Create by
generating a domain ID in the meta-data and linking it to an MPK
protection key. The operation Release is implemented to remove
the domain ID and its corresponding MPK protection key.

The main challenge for implementing Create and Release is ef-
ficiency. PKUWA has to invoke the pku_alloc function through
WASI to allocate an MKP protection key. However, this process is
slow in practice. Therefore, we propose a lazy-free strategy that
reuses existing MPK protection keys.

In the lazy-free strategy, when Release is invoked to free a domain,
PKUWA does not free the MPK protection key. Instead, it retains
the MPK protection key for future use and clears the protection
key in the virtual memory pages. Finally, before making the linear
memory in the freed domain available to other domains, PKUWA
sets it to zero to ensure data security.

The rationale behind the lazy-free strategy is to avoid pku_free
WASI calls. After we free the protection key, we need to clear
the memory in it to avoid leaking sensitive data. We can reserve
this memory and defer memory cleanup until the next memory
allocation. At the same time, the high overhead of WASI calls is
avoided.

PKUWA implements the Add and Swap operations by keeping
track of free memory lists for different domains. When the developer
wants to Add new memory to a domain, PKUWA searches the
corresponding domain’s memory list and finds a memory chunk
that is large enough to meet the request. If such a memory chunk
does not exist, PKUWA invokes mmap to allocate new memory pages.
When Swap is invoked, PKUWA moves the memory chunk from
the source domain’s memory list to the target domain’s memory
list.

PKUWA achieves Switch by maintaining and modifying a func-
tion table. The table records the associations between functions
and domains. Each entry represents a domain, and each element in
the entry represents a function. An entry contains one element if
and only if the function is associated with the domain. To switch
a function from a domain d; to another domain d;, PKUWA first
removes the element from the entry of d; and then adds it to the
entry of d;.

4.1.2 Domain Access Control. PKUWA ensures that unauthorized
functions cannot access a domain that is beyond their scope. We use
the PKRU register to control the access permission of the domains.
This register has 32 bits, and every 2 bits indicates the domain’s
permission on one protection key. One bit indicates the read per-
mission, and the other bit indicates the write permission. Setting a

909

Hanwen Lei et al.

permission bit means that programs have permission to access the
virtual page.

When a function f; attempts to access a linear memory in a
specific domain d;, PKUWA first verifies whether (f;, d;) is in E by
checking the metadata in Domain 1. If (f;, d;) is not in E, PKUWA
aborts the execution of the function. Otherwise, PKUWA finds
the corresponding virtual pages of the linear memory. Then it
resets all permission bits in the PKRU register and only enables
the corresponding permission for the MPK protection key of the
domain d;. Finally, PKUWA runs f;. By doing this, PKUWA only
allows f; to access the memory in domain d;. If it tries to access
memory in other domains, the MPK hardware will automatically
reject the access.

The security of the domain switch is ensured by the privileged
Domain 1, which stores PKRU states of all the domains in its meta-
data. Each PKRU state represents the domain’s permission on all 16
protection keys. When a domain switch occurs, the control flow
is first transferred to the monitor, a privileged function that can
access Domain 1, to load the PKRU state of the target domain from
the metadata and set the PKRU register accordingly. Because Do-
main 1 is a privileged domain, functions, except for the monitor,
cannot access Domain 1’s data. Thus, the metadata and PKRU states
are secured.

To reduce the runtime overhead of access control checks for
every function call in a WASM application, we designed a Call
Gate mechanism for PRKUWA. The main idea is that functions in
the same domain have the same permission to access the memory
in that domain. Therefore, we only need to check the access control
and set the MPK permissions when a function calls another function
in a different domain. For example, in Figure 2, Normal Function 1
can call Normal Function 2 without any checks, since they are both
in the same domain. However, if Normal Function 1 wants to call
Trusted Function 3 in another domain, it has to call gate(fi, argos),
where f;. is Trusted Function 3 and arguvx is its parameter list. The
Call Gate function will then verify the access control and set the
PKRU bit for the target domain.

The Call Gate is a function gate that wraps cross-domain calls.
If a function fj needs to call a function f; in a different domain,
it cannot directly call f, otherwise MPK will reject the memory
accesses in f. Instead, it has to call gate(fi, argv+), where argo* is
the parameter list of fi.. The Call Gate function will then perform
the access control checks and set the permission bit in PKRU for fi.’s
domain.

We can think of the Call Gate as a direct function in WebAssem-
bly. However, WebAssembly applications are vulnerable to function
hijacking, which lets an adversary overwrite the function table and
redirect a function call to another one [43]. If we implement the
Call Gate as a function, attackers could call a function in differ-
ent domains by corrupting the heap metadata [43]. Furthermore,
making the call gate a WASI API can also harm the efficiency of
WebAssembly applications.

Therefore, we do not use a call gate function but add a new
instruction to the WebAssembly instruction set, WAWRPKRU. This in-
struction has a similar meaning to WRPKRU in native applications. In
particular, WAWRPKRU modifies the state of the PKRU register within
WebAssembly applications. To implement the Call Gate, we insert

Put Your Memory in Order: Efficient Domain-based
Memory Isolation for WASM Applications

WAWRPKRU and the code to verify the permission of a function to a
domain before every cross-domain call.

The nature of WebAssembly guarantees the security of WAWRPKRU-
based Call Gate. In WebAssembly, code and data are separate. It
also prevents common ROP attacks [2, 60] because it does not al-
low jumps to arbitrary addresses. WebAssembly only allows the
control flow to jump to the beginning of code blocks (e.g., functions
and loops). Thus, there is no way for the attacker to jump to the
WAWRPKRU instruction, and our Call Gate is safe in practice.

4.2 Linear Memory Management on DILM

Similar to the conventional WebAssembly runtime, DILM maintains
the property of monotonicity in the linear memory. The memory in
each domain can be managed flexibly. This design decision ensures
backward compatibility but also requires an extra mechanism for
efficient linear memory management. Therefore, we introduce a
LMM to prevent the memory in each domain from exploding.

LMM provides malloc and free functions to developers. It inter-
nally maintains two lists of free and busy linear memory segments,
respectively. When a developer calls malloc, our LMM first checks
if it can reuse some free memory segments. If not, it uses the We-
bAssembly instruction memory . grow to extend the linear memory.
Otherwise, it directly returns the free memory to the developer.
When the developer calls free, the LMM moves the freed memory
from the busy list to the free list.

The main challenge in designing LMM is to make PKUWA effi-
cient in managing multiple isolation domains that are controlled
by MPK. PKUWA has to scan all the virtual memory that is pro-
tected by MPK in every domain to manage the memory in different
domains. However, since LMM can only access the MPK protection
key of one domain at a time, this scanning process requires frequent
changes of MPK permissions, which leads to high overhead.

To address this challenge, LMM adopts a decentralized memory
management model, where each domain handles all the memory
with the same permission. LMM relies on the monitor to manage
the permissions of different domains. Each domain has an allocator
that handles the isolated memory in the domain. The allocator is
created when the domain needs to allocate memory for the first
time. When the application calls different functions, the monitor
verifies the permission of the target function and switches to the
corresponding domain. The memory allocator offers malloc and
free primitives for functions to allocate memory objects in a fine-
grained way.

The monitor maintains a list of free pages that can be distributed
to different allocators. The allocators maintain a list of free mem-
ory chunks in memory pages. When a function needs to allocate
new memory, the monitor selects the allocator according to the
permission of the function. The allocator inspects the list of free
memory chunks and allocates the memory chunk with the smallest
size that can hold the requested memory. If there is no free memory
chunk, the allocator requests the monitor to allocate new memory
pages. Then the monitor inspects the list of memory pages and
allocates the memory pages with the smallest size that can hold the
requested memory from the allocator. If there is no free memory
page, the monitor requests the WebAssembly runtime to allocate 16
contiguous pages via the WebAssembly instruction memory . grow.

910

CCS 23, November 26-30, 2023, Copenhagen, Denmark

The monitor allocates the requested memory page to the allocator
and keeps other pages in its list.

The advantage of the decentralized memory management model
is that PKUWA can conveniently merge memory chunks of the same
permissions into one chunk within domains. This is because each
domain only needs to manage the memory of one permission. The
domain allocator will never need to merge two chunks of different
permissions.

Figure 2 also shows how PKUWA manages the linear memory

with decentralized domain allocators. The figure shows five do-
mains, and each domain has a domain allocator. The linear memory
is split into multiple memory segments, and each domain contains
multiple segments.
Flexible Memory Swap. LMM uses a strategy of swapping mem-
ory between different domains to reduce the runtime cost of mem-
ory allocation. Instead of making system calls to release and request
memory, the allocator reuses the memory pages freed by one do-
main and assigns them to another domain. The monitor maintains
a list of free memory pages that are returned by the allocator when
a domain releases a contiguous block of at least 16 pages. This
threshold matches how WebAssembly extends the linear memory
by allocating virtual memory, but it can be tuned according to the
application’s memory usage pattern. When a domain needs new
memory, the monitor first tries to allocate from the list, clearing
the memory pages before handing them to the allocator.

4.3 Guardian Pages

PKUWA uses the DILM to create guardian pages between the stack,
data, and heap sections of the linear memory. This mechanism
prevents the arbitrary file write attack shown in Listing 1. Although
developers can implement such a mechanism manually with DILM,
it would be tedious. Therefore, PKUWA provides the guardian pages
by default.

To implement guardian pages, PKUWA allocates two memory
segments in Domain 1 and places them between the stack, heap,
and data sections. Note that no functions can access the memory in
Domain 1. Hence, if an attacker tries to access the data in other sec-
tions through stack overflow, she will encounter the guardian pages
and trigger a memory access error. Thus, PKUWA can stop overflow
attacks that aim to corrupt application data in other sections.

4.4 Inter-Domain Calls

Transferring cross-domain arguments and return values when call-
ing functions can be a challenge. This is because DILM prohibits
functions from passing or returning pointers across domains. There-
fore, in order for PKUWA to function properly, it must copy the
arguments and return values to the target domain. If the argu-
ments and return values are basic types of WebAssembly, they will
be copied to the operand stack by the runtime, as the runtime is
responsible for maintaining these types.

The process of passing pointers and nested structures is a bit com-
plex. To overcome this, PKUWA utilizes a shared memory where
the contents pointed by pointers and nested structures are copied.
Both the target and source domains can access the protection key
of the shared memory. To facilitate data transfer to the shared mem-
ory, PKUWA offers a specialized copy-API for programmers. The

CCS *23, November 26-30, 2023, Copenhagen, Denmark

programmers must specify the size of arguments/return values in
the copy-APL In the case of nested structures, the copy-API may
need to be invoked iteratively. This copying mechanism is similar
to previous works such as Donky [57] and Intel SGX Edger8r [15].

4.5 Library Calls and Implicit Calls

Another challenge is to handle library calls and implicit calls. Func-
tions in a library may have complex dependencies. It is difficult for
developers to assign functions in libraries to different domains in a
fine-grained manner. To reduce the burden on developers, PKUWA
assigns all library function calls to the default domain and uses the
same copy mechanisms to secure the data in library calls.

Implicit functions may be automatically generated, making it
difficult for PKUWA to assign them to domains. PKUWA handles
them in a similar way as C++ overloading (for implicit functions).
PKUWA takes the name and argument types of the implicit func-
tion to identify the function address. Then PKUWA adds domain
switching code around the function call.

5 BUILDING APPLICATIONS WITH PKUWA

To facilitate the development of WASM applications with PKUWA,
we provide a set of APIs for C/C++ and Rust that enable developers
to leverage the isolation domains of PKUWA. Moreover, we offer
a set of compilation toolchains to optimize the performance of
PKUWA-based applications.

The workflow of building an application on PKUWA consists of
the following steps. Developers first write the application source
code with PKUWA APIs. Then, the source code is processed by
the frontend compiler, which converts the APIs to WebAssembly
bytecode including our new instruction (WAWRPKRU). The output
of the frontend compiler is the WASM binary code (*.wasm), which
is passed to the backend compiler of the PKUWA runtime. In this
step, the user-space instructions are compiled into the machine
code. For the instructions that need system resources, the backend
compiler uses the WASI library to generate machine code for system
calls. The WASI library includes the WASI general APIs and the
APIs for domain management. After the compilation, the machine
code runs on the WebAssembly runtime and interacts with the
hardware.

5.1 Application Programming Interface

We provide main APIs for DILM in Table 1, including Create, Re-
lease, Switch, and Call Gate. We don’t provide interfaces for Add and
Swap to avoid high overheads. Instead, developers can use malloc
and free to implicitly perform these operations. This design en-
sures that developers can only obtain new memory from a domain
through our LMM, which will try to reuse existing linear memory
first. In addition to the operations of DILM, we also provide the
pku_init function to initialize PKUWA’s metadata, such as the
function table, the allocator of Domain 0, the monitor and allocator
of Domain 1, and the protection key and permission of Domain 0
and Domain 1.

The high-level programming workflow for using PKUWA is as
follows. First, the developer should invoke pku_init to set up the
PKUWA environment and connect all functions to Domain 0. Then,
the developer can use domain_create to create an isolation domain

911

Hanwen Lei et al.

Table 1: Main PKUWA APIs.

API

int pku_init(void)

int domain_create()

int domain_free(int domain_id)
PKU_CALL_REGISTER(domain_id, func)
PKU_CALL(func, argv®)

Description

PKUWA initialization.

Create a new isolated domain
Release an isolated domain
Switch func to a new domain
The Call Gate for calling func

and receive a domain ID. After creating a domain, developers can
use PKU_CALL_REGISTER to Switch a function from Domain 0 to a
new domain. After switching, the function is considered as trusted
and has access to the isolated domain memory. When there is a
cross-domain function invocation, the developer must explicitly use
PKU_CALL to wrap the function call. Finally, when the memory of a
domain is no longer needed, the developer can use domain_free
to clean up the domain.

5.2 Frontend Compiler

The frontend compiler takes the source code written in C/C++ or
Rust with our APIs as input and produces a valid *wasm executable
that can run on PKUWA as output. The main challenge for the
frontend compiler is to translate our APIs into the corresponding
WASM bytecode.

For all APIs except for PKU_CALL, PKUWA implements them as
new API calls in WASL Thus, the frontend compiler only has to map
the corresponding API calls to WASI calls. For PKU_CALL, PKUWA
embeds its logic, along with the new WASM instruction, WAWRPKRU,
to bypass WASI system calls and directly modify the permission of
protection keys. This is because WASI invocation is slow, and the
application may require frequent domain switching. If PKU_CALL
also used the WASI interface, the extra overhead would be high.

5.3 Backend Compiler

The backend compiler of PKUWA takes the WebAssembly binaries
produced by the frontend compiler and generates machine code
from them. It can handle most WebAssembly instructions using
existing rules, but it has special rules for the new permission switch
instruction, WAWRPKRU.

PKUWA's backend compiler is built on Cranelift [3], a fast code
generator that outputs machine code. Cranelift uses two interme-
diate representations (IRs): Clif and Vcode. Clif is a high-level IR,
while Vcode is a low-level IR. The compiler first translates the We-
bAssembly binary format into Clif, then lowers Clif to Vcode, and
finally emits machine code from Vcode.

To compile WAWRPKRU, PKUWA extends Clif and Vcode with new
rules. For Clif, PKUWA defines the basic semantics of WAWRPKRU,
such as the input and output operands, input types, and output type
inference. For Vcode, PKUWA imposes two register constraints due
to the requirement of the new instructions. The register constraints
are: 1) %ecx and %edx must be 0, and 2) the input and output of the
new instructions must be stored in %eax. The first constraint can be
met by explicitly assigning 0 to %ecx and %edx using the mov instruc-
tion. The second constraint is more complex. In this phase, every
WebAssembly instruction (including WAWRPKRU) will be translated
into a sequence of machine code instructions. PKUWA employs
the GET_REGS function in the Vcode interface to ensure that the

Put Your Memory in Order: Efficient Domain-based
Memory Isolation for WASM Applications

Payload in PKUWA:
— Sensitive Data in domain 0
Length_arg Sensitive Data Payload, Buffer in domain 3

(Payload_len + 1000)

Payload

<l

Request memcpy

(Payload_len + 1000)

Sensitive Data

Sensitive Data

Payload
Payload ————————————————— <= Buffer (bp)
Length_arg Heap
(Payload_len + 1000) Stack =
Server &
Response Data E=

Figure 3: The HeartBleed vulnerability (CVE-2014-0160) and
how to use PKUWA to protect sensitive data from it.

input/output of the machine code sequence (of the WebAssembly
instruction) is stored in %eax at the end of the sequence [4]. For
output, this ensures the second constraint. But for input, this is
not sufficient because we need to store the input at the start of
the sequence. To solve this problem, PKUWA explicitly adds a mov
instruction to copy the input to %eax at the start of the sequence.

6 CASE STUDIES

To demonstrate the effectiveness of PKUWA in protecting We-
bAssembly applications, we use realistic vulnerabilities besides the
attack shown in Listing 1, which is mitigated by our guardian pages
described in Section 4.3. The studied vulnerabilities are HeartBleed,
PDFAlto, and libjpeg. We select these CVEs due to two reasons. First,
as these CVEs have been extensively analyzed in the literature on
memory isolation or related attacks [17-19, 21, 46, 47, 55, 65], we
can make PKUWA conceptually comparable with prior isolation
mechanisms. Second, as there are few applications written directly
in WebAssembly, we instead select CVEs in other languages and
try to protect WebAssembly binaries that are compiled from these
languages against the vulnerabilities. Due to the page limit, we only
discuss the case of HeartBleed in this section and leave other cases
in Appendix A.

6.1 HeartBleed Vulnerability

HeartBleed (CVE-2014-0160) is a severe vulnerability in the OpenSSL
library [50] that exposes server data to malicious clients through
SSL connections. A client can craft a request that makes the server
return more data than expected in the response. This extra data
may include sensitive information, such as private keys and session
keys. The root cause of HeartBleed is that OpenSSL fails to validate
the argument (the length of the data to be copied) for a memcpy
function.

Listing 3 and Figure 3 show a code snippet and a demonstration
for HeartBleed. The code is from the official SSL implementation [6],
with some semantic-preserving changes for presentation. The vari-
able bp points to the start of the buffer, which stores the response
data copied from pl (Line 25 and Figure 3). The length argument
(length_arg) in the request should be (but is not checked) equal to
the actual size of the payload (payload_len in Figure 3). Therefore,
a malicious client can specify a large length argument that exceeds
payload_len. Line 25 will copy extra data that follows payload in
the server’s memory space (the sensitive data in Figure 3). These
stolen data will be sent to the client in the response. As Figure 3

912

CCS 23, November 26-30, 2023, Copenhagen, Denmark

shows, if the client sets length_arg to payload_len+1000, the
server will return sensitive data in the response.

int dtls1_read_bytes(SSL *s, ...) {

&iis1_process_heartbeat(s) 8
dtls1_process_heartbeat(SSL *s) {

unsigned char *p = &s->s3->rrec.datal[@], *pl;
unsigned int length_arg, padding = 16;

9 /* Read type and payload length */

10 unsigned short hbtype = *p++;

11 // Read paylod from p

12 n2s(p, length_arg);

13 pl = p;

14

15 if (hbtype == TLS1_HB_REQUEST) {

16 unsigned char *buffer, *bp;

17 // Allocate memory for the response
18 buffer = OPENSSL_malloc(1+2+length_arg+padding);
19 bp = buffer;

20

21 /* Response type, length and copy payload */
22 *bp++ = TLST1_HB_RESPONSE;

23 s2n(length_arg, bp);

24 // Copy payload data to bp

25 memcpy(bp, pl, length_arg);

26

27 3}

28

29 }

Listing 3: HeartBleed vulnerability in OpenSSL.

The HeartBleed vulnerability poses a greater threat in WebAssem-
bly than in native platforms. This is because, in native platforms,
the memory allocated dynamically is not always contiguous. For
Listing 3, the memory space after pl may not be allocated at line 25.
Copying from such an address will cause SIGSEGV. However, in
WebAssembly, the objects in the linear memory are contiguous by
default (P2 in Section 2.1). The memory after pl is always allocated.
Therefore, the attacker can access additional data without raising
any exceptions.

int domain = domain_create(3);
PKU_CALL_REGISTER(domain, dtlsl_read_bytes);

F.’I.<l.J,CALL(dtls1,read,bytes(ssl,
SSL3_RT_APPLICATION_DATA, buf, len, peek));

Listing 4: Protecting sensitive data from HeartBleed with
PKUWA.

Listing 4 demonstrates how a developer can use PKUWA to
isolate the overflow in dt1s1_read_bytes. The first step is to cre-
ate a domain (Domain 2) with domain_create (Line 1), and then
use PKU_CALL_REGISTER to associate dt1s1_read_bytes with the
domain (line 3). This also detaches dt1s1_read_bytes from the
original Domain 0, which means that dt1s1_read_bytes can no
longer access the data in Domain 0. All the variables allocated in
dtlsl1_read_bytes (s, pl, bp) are stored in Domain 2. As Figure 3
illustrates, the payload and buffer are separated from the sensi-
tive data on the server. When the attacker tries to read extra data
after payload in Figure 3, the payload exits Domain 2 while other
sensitive data remains in Domain 0. Therefore, memcpy at line 25 in
Listing 3 can only access the data within Domain 2. Thus PKUWA
can prevent HeartBleed vulnerability.

CCS *23, November 26-30, 2023, Copenhagen, Denmark

7 EVALUATION

We presented the design and implementation of PKUWA, a system
that protects the linear memory of WebAssembly, in Section 6. In
this section, we evaluate the performance of PKUWA by answering
the following research questions:

RQ1: How does the DILM reduce the runtime and memory
overhead compared to applying MPK isolation models of native
applications directly to WebAssembly?

RQ2: What is the overhead of domain switching caused by
PKUWA? How do other factors, such as the number of domain
switches, the number of isolated domains, and the size of allo-
cated memory, affect the overhead?

ROQ3: How effective are the optimizations of lazy-domain free
and memory swaps in reducing overhead?

7.1 Implementation

We developed a PKUWA prototype based on Wasmtime [72], the
official WebAssembly runtime. We also created a static library for
both C/C++ and Rust to offer user-level APIs of Section 5.1. For
Wasmtime, we modified its instruction parser, instantiator, Cranelift
compiler, and WASI interfaces to support RDPKRU and WRPKRU, and
implemented the guard pages in Section 5.3.

To implement the DILM model, we added three WASI calls in
the WASI library to manage the protection keys. The memory
protection keys must be managed by the OS, but WebAssembly
applications cannot access OS resources. The three WASI calls are
pkey_allocate, pkey_free, and pkey_protect. pkey_allocate
assigns a new memory protection key to domains. pkey_free re-
leases a memory protection key. pkey_protect protects a given
memory region with a memory protection key.

7.2 Experimental Setup

We conducted the experiments in a Proxmox virtual machine with
8-core vCPU, 16GB memory, and Ubuntu 18.04 LTS with Linux
kernel 4.15. We evaluated our system using a microbenchmark and
a macrobenchmark. For the microbenchmark, we designed multi-
ple small programs to measure the efficiency of domain switches
precisely. For the macrobenchmark [70], we used ten open-source
WebAssembly projects with their official test suites. The projects
include bzip2 [10] (a popular data compression tool on modern
Unix/Linux systems, 5164 LOC), eSpeak [23] (an open source speech
synthesizer, 13119 LOC), Face-detection [44] (a face detection appli-
cation based on deep learning, 7242 LOC), GNU-Chess [11] (an in-
telligent chess game, 7974 LOC), WhiteDB [75] (a memory database,
15837 LOC), tsf [37] (a typed stream format in WebAssembly, 23459
LOC), cjpeg [32] (compress an image file, 8948 LOC), djpeg [32]
(decompress a JPEG file, 10225 LOC), coreutils [27] (utilities of
the GNU operating system, 136610 LOC), and ripgrep [25] (a line-
oriented search tool, 38327 LOC). Our macrobenchmark covered
both computational and I/O-intensive applications from embedding
and standalone scenarios.

Comparison Baselines. We compare PKUWA with two base-
lines: No-Switch and Naive-Isolation. No-Switch represents ex-
isting WebAssembly applications that do not use memory isolation.

913

Hanwen Lei et al.

This baseline has no performance overhead (performance upper-
bound) and no defenses (security lower-bound). Naive-Isolation
represents a simple implementation of memory isolation using
the mmap, mprotect and pkey_mprotect system calls. These are
the only system calls that can manage memory permission on na-
tive platforms. We implement Naive-Isolation in WebAssembly
by adding new WASI interfaces. These interfaces invoke the cor-
responding system calls. Note that mprotect and pkey_mprotect
require the input pointer to be page-aligned (see Section 2.3). There-
fore, when the developer wants to protect a memory object with
Naive-Isolation, she must call mmap, which will forcibly extend the
linear memory by at least one page. This approach increases linear
memory size.

There are several approaches, such as libmpk [55] and similar
approaches [31, 35, 39, 56, 65], that are similar in concept to the
Naive-Isolation baseline in the page-based protection model. The
main runtime and memory overhead of using MPK directly in
WebAssembly are primarily due to applying the page-based model
in linear memory. Consequently, libmpk and its equivalents yield
similar outcomes to our Naive-Isolation baseline.

For each research question, we repeat the experiments ten times
and report the average performance. We then run the Wilcoxon test
to ensure the statistical significance of the results. All our results
for comparison achieve p < 0.05.

7.3 Effectiveness of DILM

We compare DILM with Naive-Isolation and No-Switch by test-
ing their performance and memory usage on official test suites
of our benchmark. We record execution time and peak memory
consumption and report the relative overhead of PKUWA and
Naive-Isolation compared to No-Switch. We note that the peak
memory consumption occurs at the end of execution since We-
bAssembly linear memory only grows monotonically. We report
the relative overhead of PKUWA and Naive-Isolation with respect
to No-Switch.

For PKUWA, we use a function-based protection model and
randomly select 5%, 25%, 50%, 75%, and 100% of the functions to
simulate the domain switch. We modify the WebAssembly runtime
to implement this simulation. When the runtime executes a function
call, it randomly puts the callee into a different domain and performs
the call gate logic described in Section 4.1.2 with a probability of 5%,
25%, 50%, 75%, and 100%. These levels represent different workloads
and assumptions for PKUWA and Naive-Isolation.

For Naive-Isolation, we use a page-based protection model and
randomly select 5%, 25%, 50%, 75%, and 100% of the memory objects
allocated by malloc to apply MPK protection. We dynamically hook
the malloc API in the WebAssembly runtime to achieve this. For
each malloc, we randomly decide if this memory object needs to
be protected with a probability of 5%, 25%, 50%, 75%, and 100%. If
so, we use mmap to allocate a new page and pkey_mprotect to set
the permission with a protection key.

One challenge for evaluating Naive-Isolation is permission switch-
ing. To achieve isolation, we should use different MPK keys with
minimal permissions for protected memory, which is impossible
since it requires a lot of manual work. So we simulate the switches
in our experiments. For Naive-Isolation, we do not change the

Put Your Memory in Order: Efficient Domain-based
Memory Isolation for WASM Applications

PKRU register when we call pkey_mprotect, favoring it by ignoring
switch costs. However, the main bottleneck for Naive-Isolation is
on mmap and pkey_mprotect, so our protocol doesn’t affect the
conclusion.

Runtime Overhead. Figure 4 compares the latency overhead of
PKUWA and the Naive-Isolation baseline for different percentages
of protected memory. The y-axis represents the overhead percent-
age and the x-axis represents the application name. For PKUWA,
the average overhead percentage for 5%, 25%, 50%, and 75% are
1.77%, 2.86%, 4.04%, and 5.04%, respectively. The maximum over-
head for 5%, 25%, 50%, and 75% are 4.13%, 6.94%, 7.54%, and 8.32%,
respectively. For the worst-case scenario (100%), the average over-
head is 6.72% and the maximum overhead is 9.53%. For all cases,
the overhead of PKUWA is less than 10%, which is acceptable for
most applications.

For the Naive-Isolation baseline, the average overhead percent-
age for 5%, 25%, 50%, and 75% are 18.79%, 34.48%, 46.20%, and 54.59%,
respectively. The average overhead for the worst case (100%) is
64.01% and the maximum overhead is 85.29%. On average, the over-
head of PKUWA is 9.89x lower than that of Naive-Isolation baseline.
Addressing Linear Memory Bloating. We evaluate PKUWA, No-
Switch, and Naive-Isolation on ten open-source WASM apps to
compare their memory usage and see how well PKUWA avoids
memory bloating. Table 2 shows the results. PKUWA and No-Switch
use the same memory for all apps, so we only report PKUWA’s
memory usage with 100% protection level and omit No-Switch’s
results. For Naive-Isolation, we only report 5% and 100% protection
levels due to space limit. Other configurations are between these
levels. We see that under 5% protection levels, Naive-Isolation uses
1.63X more memory than PKUWA and No-Switch on average. This
is because MPK protects memory at page level, so Naive-Isolation
has to allocate a new page with mmap for each object. Usually, the
object does not fill the page, causing memory waste at the end of
pages. PKUWA manages memory in a fine-grained way. It can use
free chunks within domains to protect objects, avoiding the memory
blotaing problem. Due to space limitations, we have included the
results for the number of inter-domain calls and copy operations
in our GitHub repository.

Table 2: The maximum memory usage (in KB) of various
applications is shown in the following table.

Application | PKUWA(100%) Naive(5%) Naive(100%)
bzip2 7360 11,412 (1.55X) | 39,360 (5.35x)
espeak 320 496 (1.55x) 1,964 (6.14x)
facedetection 1088 1,788 (1.64) 7,248 (6.66X)
gnuchess 64 102 (1.59%) 476 (7.44X)
whitedb 257,408 441,472 (1.72x) | 1,953,152 (7.59X)
tsf 640 1,340 (2.09%) | 6,916 (10.81x)
cipeg 896 1,352 (1.51x) 7,056 (7.86X)
djpeg 128 196 (1.53%) 848 (6.63X)
coreutils 384 580 (1.51x) 3,184 (8.29%)
ripgrep 1,280 2,060 (1.61x) 11,280 (8.81x)

914

CCS 23, November 26-30, 2023, Copenhagen, Denmark

Answer to RQ1: For all the ten applications in our macrobench-
mark, PKUWA achieves low overheads of 1.77%, 2.86%, 4.04%,
and 5.04% for isolating 5%, 25%, 50%, and 75% functions, respec-
tively. Compared with the Naive-Isolation baseline, PKUWA
reduces the overhead by 9.89x. PKUWA does not incur any
memory overhead compared with No-Switch, while the Naive-
Isolation may increase the linear memory by more than 10X in
the worst case.

7.4 Domain Switch Overhead

We conducted a controlled experiment to measure the overhead of
domain switches. We compared the overhead of one domain switch
to No-Switch and Naive-Isolation baselines. We also studied how
switching overhead is affected by other factors such as the number
of PKU_CALL, isolated domains, and allocated memory size. We
constructed two programs: a target application with one PKU_CALL
and two domain switches, and a No-Switch baseline application.
Specifically, for the target application, we design a function foo
that only contains one add operation. Then we put foo in Domain 2
and call foo from another function in Domain 0. Note that Domain
1is a privileged domain and cannot be used by the application. The
No-Switch application is an original WebAssembly application that
only contains foo. We compared the time to call foo between the
target application and the No-Switch application using direct and
indirect call methods.

For reference, we also evaluate the average time of system calls
and WASI calls. We use a representative system call, open, to mea-
sure the average time for different cases. open is a simple system
call that opens a file. We choose open because it has an official
implementation in both system calls and WASI calls, thus we can
use it to compare PKUWA between system calls and WASI calls.

Table 3: The average running time for different call types.

Call Type Cost (ns)
@ Direct Call (No-Switch) 39 +4.05
@ Indirect Call (No-Switch) 46 + 3.56
® Direct Call (PKUWA) 280 £9.18
@ Indirect Call (PKUWA) 322+ 7.74
® open Syscall 861 + 34.53
® open WASI 2429 + 70.54

Table 3 shows the average time and error range of calling a
function in nanoseconds. We can see that PKUWA is slower than the
No-Switch baseline but much faster than WASI call. PKUWA adds
241ns and 276ns to direct call (comparing ® and @) and indirect
call (comparing @ and @), respectively. This overhead is 7.54x
smaller than the open WASI call (®) and 2.67X smaller than the
open system call (®).

We investigate the effect of three factors on the domain switch
overhead: the number of PKU_CALL instructions (#Switches), the
number of isolated domains (#Domains), and the size of allocated
memory. We vary #Switches from 0 to 200K, #Domains from one to
fifteen, and the allocated memory size from 0 to 8MB. We find that
these factors do not influence the switching cost. The switching

CCS *23, November 26-30, 2023, Copenhagen, Denmark

CZ1 Naive-5% [Z1 Naive-25% [ZZ3 Naive-50% [EZ Naive-75% B2 Naive-100%

[PKUWA-5%

Hanwen Lei et al.

[PKUWA-25% [0 PKUWA-50% [EZ0 PKUWA-75% [PKUWA-100%

80%
-
B 60% 7
0]
_E F
o 40%
>
o —
20%
0% 4%
cjpeg djpeg bzip2 espeak facedetection gnuchess wh|tedb coreutils ripgrep

Figure 4: Comparison of latency overhead on the marcobenchmark between PKUWA (upper) and Naive-Isolation (lower). For
both techniques, we report the ratio of additional latency over the No-Switch baseline.

cost of PKUWA is determined by the WRPKRU instruction, which
has a constant execution time.

Answer to RQ2: The switch overhead is on the nanosecond
level and is not affected by the total number of domain switches
or the number of isolated domains.

7.5 Ablation Study on Optimizations

We evaluate the performance of the optimizations in Sections 4.1.1
and 4.2: lazy domain free and flexible memory swap. Figure 5 com-
pares the two optimizations.

We test the impact of lazy-free by creating and freeing a new
isolated domain repeatedly. We use a simple function bar that cre-
ates a domain with domain_create and frees it with domain_free.
We vary the number of times we run bar from 1 to 1000. The left
part of Figure 5 shows the average latency. The figure shows that
without lazy-free, the application spends a lot of time calling WASI
interfaces. With lazy free, PKUWA only needs to clear the mem-
ory of the freed domain and avoid slow WASI calls. According to
Figure 5, lazy-free can reduce the latency by 3.43x.

35K
—_— e w/o Lazy Free —_ | e w/o Swap
2 1500 1 — w/ Lazy Free @ — w/ Swap
= ” = | m No-switch
21250 4 Frverneeiseeeeeiencien, & 30K
c =
9 1000 A S
3 g 25K A
S 7501 i
o >
g 500 - S 20k
S I [9) B
2 250 g .
04+ T T T r 15K T T
0 250 500 750 1000 2K 4K
#Calls Malloc Size (KB)

Figure 5: Optimization effect of domain lazy free and memory
swap.

We evaluated flexible memory swap’s effectiveness by measur-
ing a WebAssembly application’s memory usage. We allocated 4MB
of memory in one domain, then freed it. In another domain, we
allocated new memory ranging from 64KB to 4MB. The memory
footprint is shown in Figure 5. Without swap, memory usage in-
creased linearly with allocated memory size, but with swap, it
remained consistent. Freed memory is reused by other domains,
eliminating the need for new memory allocation.

915

Answer to RQ3: The two optimizations, lazy domain free and
flexible memory swap, can reduce the overall latency and mem-
ory footprint.

8 DISCUSSIONS

More Protection Keys. PKUWA is based on MPK and can use
16 protection keys. libmpk can virtualize more protection keys
than MPK’s hardware support. For WebAssembly applications that
require more than 16 protection keys, developers can combine
libmpk with PKUWA for better scalability.

Alternatives to Intel MPK. Our prototype of PKUWA uses Intel
MPK, but the DILM model is not hardware-specific. It works with
any memory protection scheme similar to MPK, such as those in
ARM, RISC-V, PowerPC, and Itanium CPUs [5, 13, 16, 57].
Granularity. Enclosure [26] defines Object Granularity Isolation
(OGI) which places each object in a separate isolation domain. How-
ever, OGI can cause significant domain switch overhead as each
object requires two domain switches (one to start and one to end
the access). Hence, we have chosen to use function-level isolation
as it is easier to manage and better suited to page-based hardware
isolation mechanisms. Functions group objects together in the same
domain, which allows them to be stored on the same page. Access-
ing these objects only requires two domain switches before and
after the function call.

9 RELATED WORK

Software Based Isolation. There are several approaches that lever-
age software techniques, such as program analysis techniques [1, 26,
69], runtimes of dynamic languages [9, 22, 29, 77], and OS-level fea-
tures [8, 45]. However, these techniques are orthogonal to PKUWA
and cannot be directly utilized in WASM.

MPK-based Memory Isolation. MPK-based techniques [31, 35,
39, 55, 56, 65] can reduce the overhead of context switches between
sandbox and native binaries. 1ibmpk provides a secure software ab-
straction to use MPK [55]. ERIM provides a more secure mechanism
for to use of MPK [65]. PKU-safe [39] uses MPK to protect heaps.
EPK [31] enhances the efficiency of MPK in native applications.
Some other techniques are proposed to improve the security of
native applications [35, 56, 57, 68]. All these techniques adopt the
page-based isolation model, which does not fit the linear memory
of WebAssembly.

Put Your Memory in Order: Efficient Domain-based
Memory Isolation for WASM Applications

Other Hardware-Enforced Memory Isolation. Researchers have
developed various hardware extensions to ensure memory isola-
tion on main processors, such as Mondrian Memory Protection
(MMP) [76] and CODOMS [66]. Intel X86 ISA has instructions for
safe memory access [24, 51] and RISC instruction (CHERI) allows
for fine-grained separation and memory isolation [73]. The DILM
can be applied to other hardware implementations, along with
being designed for MPK.

10 CONCLUSION

When using MPK in WebAssembly, it can be challenging due to
potential memory bloating and reduced efficiency when trying
to directly use the MPK APIs. This is because of the differences
between the linear memory of WebAssembly and the page-based
protection model of MPK. To overcome this issue, we propose
the DILM model to create isolated domains at the function level
in WebAssembly. Our evaluation shows that PKRUWA provides
strong isolation guarantees while only having an average runtime
overhead of 1.77% and negligible memory overhead.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their valuable
feedback. Ding Li and Yao Guo are corresponding authors. This
work was partly supported by the National Key R&D of China
(2022YFB4501802) and the National Natural Science Foundation of
China (62141208, 62172009).

REFERENCES

[1] Martin Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay Ligatti. 2005. Control-Flow
Integrity. In Proceedings of the 12th ACM Conference on Computer and Communi-
cations Security (Alexandria, VA, USA) (CCS ’05). Association for Computing Ma-
chinery, New York, NY, USA, 340-353. https://doi.org/10.1145/1102120.1102165
Bytecode Alliance. 2016. WebAsssembly Design - Security - Memory Safety.
Retrieved April 12, 2023 from https://github.com/WebAssembly/design/blob/
master/Security. md#memory-safety
Bytecode Alliance. 2023. Cranelift.
wasmtime/tree/main/cranelift
Bytecode Alliance. 2023. Cranelift Document. https://github.com/
bytecodealliance/wasmtime/blob/main/cranelift/docs/index.md

ARM. 2001. ARM Developer Suite Developer Guide. http://infocenter.arm.com/
help/index jsp?topic=/com.arm.doc.dui0056d/BABBJAED.html

OpenSSL Project Authors. 2021. OpenSSL. https://www.openssl.org/

Nataliia Bielova. 2013. Survey on JavaScript security policies and their en-
forcement mechanisms in a web browser. The Journal of Logic and Algebraic
Programming 82, 8 (2013), 243-262.

Andrea Bittau, Petr Marchenko, Mark Handley, and Brad Karp. 2008. Wedge:
Splitting Applications into Reduced-Privilege Compartments. In 5th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 08). USENIX
Association, San Francisco, CA, 309-322.

Zack Bloom. 2020. Cloud Computing without Containers. https://blog.cloudflare.
com/cloud- computing-without-containers/

bzip2 and libbzip2. 2022. https://www.sourceware.org/bzip2

GNU Chess. 2022. https://www.gnu.org/software/chess

Bart Coppens, Ingrid Verbauwhede, Koen De Bosschere, and Bjorn De Sutter. 2009.
Practical Mitigations for Timing-Based Side-Channel Attacks on Modern X386
Processors. In Proceedings of the 2009 30th IEEE Symposium on Security and Privacy
(SP °09). IEEE Computer Society, USA, 45-60. https://doi.org/10.1109/SP.2009.19
Intel Corporation. 2000. Intel IA-64 architecture software developer’s manual,
revision 1.1.

Intel Corporation. 2016. Intel(R) 64 and IA-32 Architectures Software Developer’s
Manual. https://software.intel.com/en-us/articles/intel-sdm

Intel Corporation. 2017. Intel Software Guard Extensions (Intel SGX) SDK. https:
//software.intel.com/sgx-sdk

IBM Corporation. 2017. Power ISA version 3.0b.
The MITRE Corporation. 2018. CVE-2018-14498.
bin/cvename.cgi?name=CVE-2018-14498

o
[

https://github.com/bytecodealliance/

[10
[11]
[12]

[13]

[14

[15]

jpunpun
Y

https://cve.mitre.org/cgi-

916

(18

[19

[20

[21

[22

™
fla’

[33

&
=)

(35]

[36

[40

CCS 23, November 26-30, 2023, Copenhagen, Denmark

The MITRE Corporation. 2018. CVE-2018-19664.
bin/cvename.cgi?name=CVE-2018-19664

The MITRE Corporation. 2021. CVE-2021-46822.
bin/cvename.cgi?name=CVE-2021-46822

Crispin Cowan, Calton Pu, Dave Maier, Heather Hintony, Jonathan Walpole,
Peat Bakke, Steve Beattie, Aaron Grier, Perry Wagle, and Qian Zhang. 1998.
StackGuard: Automatic Adaptive Detection and Prevention of Buffer-Overflow
Attacks. In Proceedings of the 7th Conference on USENIX Security Symposium -
Volume 7 (San Antonio, Texas) (SSYM’98). USENIX Association, USA, 5.
NATIONAL VULNERABILITY DATABASE. 2022. CVE-2022-32324.
//mvd.nist.gov/vuln/detail/CVE-2022-32324

Ulfar Erlingsson, Silicon Valley, Martin Abadi, Michael Vrable, Mihai Budiu,
and George C. Necula. 2006. XFI: Software Guards for System Address Spaces.
In Proceedings of the 7th USENIX Symposium on Operating Systems Design and
Implementation - Volume 7 (Seattle, WA) (OSDI ’06). USENIX Association, USA,
6.

eSpeak text to speech. 2022. http://espeak.sourceforge.net

Tommaso Frassetto, Patrick Jauernig, Christopher Liebchen, and Ahmad-Reza
Sadeghi. 2018. IMIX: In-Process Memory Isolation Extension. In Proceedings of the
27th USENIX Conference on Security Symposium (Baltimore, MD, USA) (SEC’18).
USENIX Association, USA, 83-97.

Andrew Gallant. 2023. ripgrep. https://github.com/BurntSushi/ripgrep

Adrien Ghosn, Marios Kogias, Mathias Payer, James R. Larus, and Edouard
Bugnion. 2021. Enclosure: Language-Based Restriction of Untrusted Libraries.
In Proceedings of the 26th ACM International Conference on Architectural Sup-
port for Programming Languages and Operating Systems (Virtual, USA) (ASP-
LOS °21). Association for Computing Machinery, New York, NY, USA, 255-267.
https://doi.org/10.1145/3445814.3446728

GNU. 2016. Coreutils. https://www.gnu.org/software/coreutils/coreutils.html
Li Gong. 2009. Java security: a ten year retrospective. In 2009 Annual Computer
Security Applications Conference. IEEE, 395-405.

Google. 2020. Chromium V8 isolates. https://chromium.googlesource.
com/chromium/src/+/master/third_party/blink/renderer/bindings/core/v8/
V8BindingDesign.md#Isolate

Mel Gorman. 2023. Process Address Space. https://www.kernel.org/doc/gorman/
html/understand/understand007.html

Jinyu Gu, Hao Li, Wentai Li, Yubin Xia, and Haibo Chen. 2022. EPK: Scalable and
Efficient Memory Protection Keys. In 2022 USENIX Annual Technical Conference
(USENIX ATC 22). USENIX Association, Carlsbad, CA, 609-624.

M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B. Brown.
2001. MiBench: A Free, Commercially Representative Embedded Benchmark
Suite. In Proceedings of the Workload Characterization, 2001. WWC-4. 2001 IEEE
International Workshop (WWC “01). IEEE Computer Society, USA, 3-14.
Andreas Haas, Andreas Rossberg, Derek L. Schuff, Ben L. Titzer, Michael Holman,
Dan Gohman, Luke Wagner, Alon Zakai, and JF Bastien. 2017. Bringing the
Web up to Speed with WebAssembly. In Proceedings of the 38th ACM SIGPLAN
Conference on Programming Language Design and Implementation (Barcelona,
Spain) (PLDI 2017). Association for Computing Machinery, New York, NY, USA,
185-200. https://doi.org/10.1145/3062341.3062363

Niranjan Hasabnis, Ashish Misra, and R. Sekar. 2012. Light-Weight Bounds Check-
ing. In Proceedings of the Tenth International Symposium on Code Generation and
Optimization (San Jose, California) (CGO ’12). Association for Computing Ma-
chinery, New York, NY, USA, 135-144. https://doi.org/10.1145/2259016.2259034
Mohammad Hedayati, Spyridoula Gravani, Ethan Johnson, John Criswell,
Michael L. Scott, Kai Shen, and Mike Marty. 2019. Hodor: Intra-Process Isolation
for High-Throughput Data Plane Libraries. In Proceedings of the 2019 USENIX
Conference on Usenix Annual Technical Conference (Renton, WA, USA) (USENIX
ATC ’19). USENIX Association, USA, 489-503.

Aaron Hilbig, Daniel Lehmann, and Michael Pradel. 2021. An Empirical Study of
Real-World WebAssembly Binaries: Security, Languages, Use Cases. In Proceedings
of the Web Conference 2021 (Ljubljana, Slovenia) (WWW ’21). Association for
Computing Machinery, New York, NY, USA, 2696-2708. https://doi.org/10.1145/
3442381.3450138

JetStream2. 2022. https://browserbench.org/JetStream

The kernel development community. 2023. Memory Protection Keys.
//www.kernel.org/doc/html/latest/core-api/protection-keys.html

Paul Kirth, Mitchel Dickerson, Stephen Crane, Per Larsen, Adrian Dabrowski,
David Gens, Yeoul Na, Stijn Volckaert, and Michael Franz. 2022. PKRU-Safe:
Automatically Locking down the Heap between Safe and Unsafe Languages. In
Proceedings of the Seventeenth European Conference on Computer Systems (Rennes,
France) (EuroSys "22). Association for Computing Machinery, New York, NY, USA,
132-148. https://doi.org/10.1145/3492321.3519582

Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner Haas,
Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz,
and Yuval Yarom. 2019. Spectre Attacks: Exploiting Speculative Execution. In
2019 IEEE Symposium on Security and Privacy (SP). 1-19. https://doi.org/10.1109/
SP.2019.00002

https://cve.mitre.org/cgi-

https://cve.mitre.org/cgi-

https:

https:

https://doi.org/10.1145/1102120.1102165
https://github.com/WebAssembly/design/blob/master/Security.md#memory-safety
https://github.com/WebAssembly/design/blob/master/Security.md#memory-safety
https://github.com/bytecodealliance/wasmtime/tree/main/cranelift
https://github.com/bytecodealliance/wasmtime/tree/main/cranelift
https://github.com/bytecodealliance/wasmtime/blob/main/cranelift/docs/index.md
https://github.com/bytecodealliance/wasmtime/blob/main/cranelift/docs/index.md
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0056d/BABBJAED.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0056d/BABBJAED.html
https://www.openssl.org/
https://blog.cloudflare.com/cloud-computing-without-containers/
https://blog.cloudflare.com/cloud-computing-without-containers/
https://www.sourceware.org/bzip2
https://www.gnu.org/software/chess
https://doi.org/10.1109/SP.2009.19
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/sgx-sdk
https://software.intel.com/sgx-sdk
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-14498
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-14498
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-19664
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-19664
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-46822
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-46822
https://nvd.nist.gov/vuln/detail/CVE-2022-32324
https://nvd.nist.gov/vuln/detail/CVE-2022-32324
http://espeak.sourceforge.net
https://github.com/BurntSushi/ripgrep
https://doi.org/10.1145/3445814.3446728
https://www.gnu.org/software/coreutils/coreutils.html
https://chromium.googlesource.com/chromium/src/+/master/third_party/blink/renderer/bindings/core/v8/V8BindingDesign.md#Isolate
https://chromium.googlesource.com/chromium/src/+/master/third_party/blink/renderer/bindings/core/v8/V8BindingDesign.md#Isolate
https://chromium.googlesource.com/chromium/src/+/master/third_party/blink/renderer/bindings/core/v8/V8BindingDesign.md#Isolate
https://www.kernel.org/doc/gorman/html/understand/understand007.html
https://www.kernel.org/doc/gorman/html/understand/understand007.html
https://doi.org/10.1145/3062341.3062363
https://doi.org/10.1145/2259016.2259034
https://doi.org/10.1145/3442381.3450138
https://doi.org/10.1145/3442381.3450138
https://browserbench.org/JetStream
https://www.kernel.org/doc/html/latest/core-api/protection-keys.html
https://www.kernel.org/doc/html/latest/core-api/protection-keys.html
https://doi.org/10.1145/3492321.3519582
https://doi.org/10.1109/SP.2019.00002
https://doi.org/10.1109/SP.2019.00002

CCS *23, November 26-30, 2023, Copenhagen, Denmark

[41]

[42]

[43

[44
[45

[46]

[47]

N
&

[49]

[50]
[51]

[52]

[53

(54

[55]

[56]

[57]

[58]

[59]

[60]

Koen Koning, Xi Chen, Herbert Bos, Cristiano Giuffrida, and Elias Athanasopou-
los. 2017. No Need to Hide: Protecting Safe Regions on Commodity Hardware. In
Proceedings of the Twelfth European Conference on Computer Systems (Belgrade,
Serbia) (EuroSys °17). Association for Computing Machinery, New York, NY, USA,
437-452. https://doi.org/10.1145/3064176.3064217

Volodymyr Kuznetsov, Laszlo Szekeres, Mathias Payer, George Candea, R. Sekar,
and Dawn Song. 2014. Code-Pointer Integrity. In 11th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 14). USENIX Association,
Broomfield, CO, 147-163.

Daniel Lehmann, Johannes Kinder, and Michael Pradel. 2020. Everything Old is
New Again: Binary Security of WebAssembly. In 29th USENIX Security Symposium
(USENIX Security 20). USENIX Association, USA, 217-234. https://www.usenix.
org/conference/usenixsecurity20/presentation/lehmann

libfacedetection. 2022. https://github.com/ShigiYu/libfacedetection

James Litton, Anjo Vahldiek-Oberwagner, Eslam Elnikety, Deepak Garg, Bobby
Bhattacharjee, and Peter Druschel. 2016. Light-Weight Contexts: An OS Abstrac-
tion for Safety and Performance. In 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 16). USENIX Association, Savannah, GA, 49—
64. https://www.usenix.org/conference/osdi16/technical-sessions/presentation/
litton

Yutao Liu, Tianyu Zhou, Kexin Chen, Haibo Chen, and Yubin Xia. 2015. Thwarting
Memory Disclosure with Efficient Hypervisor-Enforced Intra-Domain Isolation.
In Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communi-
cations Security (Denver, Colorado, USA) (CCS ’15). Association for Computing
Machinery, New York, NY, USA, 1607-1619. https://doi.org/10.1145/2810103.
2813690

Patrice Lopez. 2022. Pdfalto. https://github.com/kermitt2/pdfalto/issues/144
mend.io. 2017. WHAT ARE THE MOST SECURE PROGRAMMING LANGUAGES?
https://www.mend.io/most-secure-programming-languages/

Alexandra E. Michael, Anitha Gollamudi, Jay Bosamiya, Evan Johnson, Aidan
Denlinger, Craig Disselkoen, Conrad Watt, Bryan Parno, Marco Patrignani, Marco
Vassena, and Deian Stefan. 2023. MSWasm: Soundly Enforcing Memory-Safe
Execution of Unsafe Code. Proc. ACM Program. Lang. 7, POPL, Article 15 (jan
2023), 30 pages. https://doi.org/10.1145/3571208

MITRE. 2014. CVE-2014-0160. https://nvd.nist.gov/vuln/detail/CVE-2014-0160
Lucian Mogosanu, Ashay Rane, and Nathan Dautenhahn. 2018. Microstache: A
lightweight execution context for in-process safe region isolation. In Research
in Attacks, Intrusions, and Defenses: 21st International Symposium, RAID 2018,
Heraklion, Crete, Greece, September 10-12, 2018, Proceedings 21. Springer, 359-379.
Kit Murdock, David Oswald, Flavio D. Garcia, Jo Van Bulck, Daniel Gruss, and
Frank Piessens. 2020. Plundervolt: Software-based Fault Injection Attacks against
Intel SGX. In 2020 IEEE Symposium on Security and Privacy (SP). 1466-1482.
https://doi.org/10.1109/SP40000.2020.00057

Nicholas Nethercote and Julian Seward. 2007. How to Shadow Every Byte
of Memory Used by a Program. In Proceedings of the 3rd International Con-
ference on Virtual Execution Environments (San Diego, California, USA) (VEE
’07). Association for Computing Machinery, New York, NY, USA, 65-74. https:
//doi.org/10.1145/1254810.1254820

Hewlett Packard. 1994. PA-RISC 1.1 architecture and instruction set reference
manual, third edition.

Soyeon Park, Sangho Lee, Wen Xu, Hyungon Moon, and Taesoo Kim. 2019.
Libmpk: Software Abstraction for Intel Memory Protection Keys (Intel MPK). In
Proceedings of the 2019 USENIX Conference on Usenix Annual Technical Conference
(Renton, WA, USA) (USENIX ATC ’19). USENIX Association, USA, 241-254.
David Schrammel, Samuel Weiser, Richard Sadek, and Stefan Mangard. 2022.
Jenny: Securing Syscalls for PKU-based Memory Isolation Systems. In 31st
USENIX Security Symposium (USENIX Security 22). USENIX Association,
Boston, MA, 936-952. https://www.usenix.org/conference/usenixsecurity22/
presentation/schrammel

David Schrammel, Samuel Weiser, Stefan Steinegger, Martin Schwarzl, Michael
Schwarz, Stefan Mangard, and Daniel Gruss. 2020. Donky: Domain Keys - Efficient
in-Process Isolation for RISC-V and X86. In Proceedings of the 29th USENIX
Conference on Security Symposium (SEC’20). USENIX Association, USA, Article
95, 18 pages.

David Sehr, Robert Muth, Cliff Biffle, Victor Khimenko, Egor Pasko, Karl Schimpf,
Bennet Yee, and Brad Chen. 2010. Adapting Software Fault Isolation to Con-
temporary CPU Architectures. In Proceedings of the 19th USENIX Conference on
Security (Washington, DC) (USENIX Security’10). USENIX Association, USA, 1.
Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitry
Vyukov. 2012. AddressSanitizer: A Fast Address Sanity Checker. In Proceed-
ings of the 2012 USENIX Conference on Annual Technical Conference (Boston, MA)
(USENIX ATC’12). USENIX Association, USA, 28.

Hovav Shacham. 2007. The Geometry of Innocent Flesh on the Bone: Return-
into-Libc without Function Calls (on the X86). In Proceedings of the 14th ACM
Conference on Computer and Communications Security (Alexandria, Virginia, USA)
(CCS ’07). Association for Computing Machinery, New York, NY, USA, 552-561.
https://doi.org/10.1145/1315245.1315313

917

[61

[62

=
=

(68

[69

(71

[72]

[73

(74]

A

Hanwen Lei et al.

Quentin Stiévenart, Coen De Roover, and Mohammad Ghafari. 2022. Secu-
rity Risks of Porting C Programs to WebAssembly. In Proceedings of the 37th
ACM/SIGAPP Symposium on Applied Computing (Virtual Event) (SAC °22). As-
sociation for Computing Machinery, New York, NY, USA, 1713-1722. https:
//doi.org/10.1145/3477314.3507308

Mincheol Sung, Pierre Olivier, Stefan Lankes, and Binoy Ravindran. 2020. Intra-
Unikernel Isolation with Intel Memory Protection Keys. In Proceedings of the 16th
ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environ-
ments (Lausanne, Switzerland) (VEE "20). Association for Computing Machinery,
New York, NY, USA, 143-156. https://doi.org/10.1145/3381052.3381326
PaX Team. 2002. PaX Address Space Layout Randomization (ASLR).
//pax.grsecurity.net/docs/aslr.txt

Stephen Turner. 2014. Security vulnerabilities of the top ten programming
languages: C, Java, C++, Objective-C, C#, PHP, Visual Basic, Python, Perl, and
Ruby. Journal of Technology Research 5 (2014), 1.

Anjo Vahldiek-Oberwagner, Eslam Elnikety, Nuno O. Duarte, Michael Sammler,
Peter Druschel, and Deepak Garg. 2019. ERIM: Secure, Efficient in-Process Isola-
tion with Protection Keys (MPK). In Proceedings of the 28th USENIX Conference
on Security Symposium (Santa Clara, CA, USA) (SEC’19). USENIX Association,
USA, 1221-1238.

Lluis Vilanova, Muli Ben-Yehuda, Nacho Navarro, Yoav Etsion, and Mateo Valero.
2014. CODOMs: Protecting Software with Code-Centric Memory Domains. In
Proceeding of the 41st Annual International Symposium on Computer Architecuture
(Minneapolis, Minnesota, USA) (ISCA °14). IEEE Press, 469-480.

Alexios Voulimeneas, Jonas Vinck, Ruben Mechelinck, and Stijn Volckaert. 2022.
You Shall Not (by)Pass! Practical, Secure, and Fast PKU-Based Sandboxing. In
Proceedings of the Seventeenth European Conference on Computer Systems (Rennes,
France) (EuroSys "22). Association for Computing Machinery, New York, NY, USA,
266-282. https://doi.org/10.1145/3492321.3519560

Alexios Voulimeneas, Jonas Vinck, Ruben Mechelinck, and Stijn Volckaert. 2022.
You Shall Not (by)Pass! Practical, Secure, and Fast PKU-Based Sandboxing. In
Proceedings of the Seventeenth European Conference on Computer Systems (Rennes,
France) (EuroSys "22). Association for Computing Machinery, New York, NY, USA,
266-282. https://doi.org/10.1145/3492321.3519560

Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L. Graham. 1993.
Efficient Software-Based Fault Isolation. In Proceedings of the Fourteenth ACM
Symposium on Operating Systems Principles (Asheville, North Carolina, USA)
(SOSP ’93). Association for Computing Machinery, New York, NY, USA, 203-216.
https://doi.org/10.1145/168619.168635

Wenwen Wang. 2022. How Far We’ve Come - A Characterization Study of
Standalone WebAssembly Runtimes. In 2022 IEEE International Symposium on
Workload Characterization (IISWC). USA, 228-241. https://doi.org/10.1109/
IISWC55918.2022.00028

Xiaoguang Wang, SengMing Yeoh, Pierre Olivier, and Binoy Ravindran. 2020.
Secure and Efficient In-Process Monitor (and Library) Protection with Intel MPK.
In Proceedings of the 13th European Workshop on Systems Security (Heraklion,
Greece) (EuroSec '20). Association for Computing Machinery, New York, NY, USA,
7-12. https://doi.org/10.1145/3380786.3391398

Wasmtime. 2020. A small and efficient runtime for WebAssembly & WASIL
https://wasmtime.dev/

Robert N. M. Watson, Jonathan Woodruff, Peter G. Neumann, Simon W. Moore,
Jonathan Anderson, David Chisnall, Nirav Dave, Brooks Davis, Khilan Gudka, Ben
Laurie, Steven J. Murdoch, Robert Norton, Michael Roe, Stacey Son, and Munraj
Vadera. 2015. CHERIL: A Hybrid Capability-System Architecture for Scalable
Software Compartmentalization. In Proceedings of the 2015 IEEE Symposium
on Security and Privacy (SP ’15). IEEE Computer Society, USA, 20-37. https:
//doi.org/10.1109/SP.2015.9

Mario Werner, Thomas Unterluggauer, Lukas Giner, Michael Schwarz, Daniel
Gruss, and Stefan Mangard. 2019. ScatterCache: Thwarting Cache Attacks via
Cache Set Randomization. In 28th USENIX Security Symposium (USENIX Security
19). USENIX Association, Santa Clara, CA, 675-692.

WhiteDB. 2022. http://whitedb.org

Emmett Witchel, Josh Cates, and Krste Asanovi¢. 2002. Mondrian Memory
Protection. In Proceedings of the 10th International Conference on Architectural
Support for Programming Languages and Operating Systems (San Jose, California)
(ASPLOS X). Association for Computing Machinery, New York, NY, USA, 304-316.
https://doi.org/10.1145/605397.605429

Bennet Yee, David Sehr, Gregory Dardyk, J. Bradley Chen, Robert Muth, Tavis
Ormandy, Shiki Okasaka, Neha Narula, and Nicholas Fullagar. 2009. Native Client:
A Sandbox for Portable, Untrusted x86 Native Code. In 2009 30th IEEE Symposium
on Security and Privacy. 79-93. https://doi.org/10.1109/SP.2009.25

https:

MORE CASE STUDIES BESIDES § 6

In this section, we discuss more case studies about how PKUWA
can prevent memory vulnerabilities.

https://doi.org/10.1145/3064176.3064217
https://www.usenix.org/conference/usenixsecurity20/presentation/lehmann
https://www.usenix.org/conference/usenixsecurity20/presentation/lehmann
https://github.com/ShiqiYu/libfacedetection
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/litton
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/litton
https://doi.org/10.1145/2810103.2813690
https://doi.org/10.1145/2810103.2813690
https://github.com/kermitt2/pdfalto/issues/144
https://www.mend.io/most-secure-programming-languages/
https://doi.org/10.1145/3571208
https://nvd.nist.gov/vuln/detail/CVE-2014-0160
https://doi.org/10.1109/SP40000.2020.00057
https://doi.org/10.1145/1254810.1254820
https://doi.org/10.1145/1254810.1254820
https://www.usenix.org/conference/usenixsecurity22/presentation/schrammel
https://www.usenix.org/conference/usenixsecurity22/presentation/schrammel
https://doi.org/10.1145/1315245.1315313
https://doi.org/10.1145/3477314.3507308
https://doi.org/10.1145/3477314.3507308
https://doi.org/10.1145/3381052.3381326
https://pax.grsecurity.net/docs/aslr.txt
https://pax.grsecurity.net/docs/aslr.txt
https://doi.org/10.1145/3492321.3519560
https://doi.org/10.1145/3492321.3519560
https://doi.org/10.1145/168619.168635
https://doi.org/10.1109/IISWC55918.2022.00028
https://doi.org/10.1109/IISWC55918.2022.00028
https://doi.org/10.1145/3380786.3391398
https://wasmtime.dev/
https://doi.org/10.1109/SP.2015.9
https://doi.org/10.1109/SP.2015.9
http://whitedb.org
https://doi.org/10.1145/605397.605429
https://doi.org/10.1109/SP.2009.25

Put Your Memory in Order: Efficient Domain-based
Memory Isolation for WASM Applications

A.1 PDFAlto

Our second case is the heap overwrite vulnerability caused by
overflow in the latest stable version of PDFAlto v0.4 (CVE-2022-
32324). Listing 5 shows the code !. The code constructs a file path
(thePath) and its directory length (dirname_length) from line 4 to
line 9. Then it copies the directory path to dirname from line 11 to
line 14. The function strncat(char *dest, const char *src,
size_t n) appends n characters of src to dest. The overflow
happens at line 13. This line assumes that dirname is *\0’, so it
uses strncat to fill the space. However, at line 12, malloc does not
initialize the memory, so dirname may not be *\@’. The strncat
may start from the middle of dirname, overflow the buffer, and
overwrite nearby heap objects.

1 int initPath()

2 {

3 cos

4 char* thePath;

5 thePath = (char*)malloc(theLength + 1);

6 int dirname_length;

7 wai_getExecutablePath(thePath, thelLength,
8 &dirname_length);

9 thePath[theLength]l = '\0';

10

11 char *dirname;

12 dirname = (char*)malloc(dirname_length + 1);
13 strncat(dirname, thePath, dirname_length);
14 dirname[dirname_length] = '\0';

15 e

16 }

Listing 5: The heap overflow vulnerability in PDFAlto v0.4.

Similar to HeartBleed, PKUWA can help developers isolate the
function that is vulnerable to a heap overflow and prevent it from ac-
cessing sensitive data. For example, developers can create a new iso-
lated domain that only contains the data of the function initPath.
This ensures that strncat can only overwrite the data within the
domain, and not the data outside of it.

1 int domain = domain_create(0);

2 ...

3 PKU_CALL_REGISTER(domain, initPath);
4 ...

5 PKU_CALL(initPath());

Listing 6: Protecting sensitive data from heap buffer overflow
with PKUWA.

Listing 6 shows a demo code. The developer creates an isolated
domain (line 1) and registers the vulnerable code with it (line 3).
As a result, thePath and dirname are stored in the isolated mem-
ory space, and dirname is not adjacent to other objects. When
heap overflow occurs at line 13 of Listing 5, no sensitive data is
overwritten, and the application security is preserved.

A.2 Libjpeg

In this section, we discuss three vulnerabilities in libjpeg.

1'We modified the code for clarity.

CCS 23, November 26-30, 2023, Copenhagen, Denmark

A.2.1 CVE-2021-46822. CVE-2021-46822 is a heap-based buffer
overflow vulnerability in the libjpeg library. In this CVE, the PPM
reader incorrectly loads a 16-bit binary PPM file into a grayscale
buffer. The vulnerability is caused by a heap-based buffer overflow
in the get_word_rgb_row function. Listing 7 shows the function.
At line 27 and line 32, the code reads the raw-format PPM file
(rescale) to the buffer (ptr). Both rescale and ptr variables are
stored in the source variable. However, the size of image_width
may exceed the size of the buffer (ptr) and cause a buffer overflow,
which may overwrite nearby heap objects.

1 int process_data() {

2 cee

3 cjpeg_source_ptr source = (ppm_source_ptr)

4 (*cinfo->mem->alloc_small)((j_common_ptr)cinfo, JPOOL_IMAGE,
5 SIZEOF (ppm_source_struct));
6

7 source->pub.get_pixel_rows = get_word_rgb_row;

8

9 JDIMENSION num_scanlines = (*source->get_pixel_rows)

10 (&cinfo, source);

11

12}

13 METHODDEF (JDIMENSION)

14 get_word_rgb_row (j_compress_ptr cinfo, cjpeg_source_ptr sinfo) {
15 ppm_source_ptr source = (ppm_source_ptr) sinfo;

16

17 register JSAMPROW ptr = source->pub.buffer[0];

18 register U_CHAR * bufferptr = source->iobuffer;

19 register JSAMPLE *rescale = source->rescale;

20

21 for (JDIMENSION col = cinfo->image_width; col > @; col--) {
22 register unsigned int temp;

23 temp = UCH(*bufferptr++) << 8;

24

25 if (temp > maxval)

26 ERREXIT(cinfo, JERR_PPM_OUTOFRANGE);

27 *ptr++ = rescale[temp];

28 temp = UCH(*bufferptr++) << 8;

29

30 if (temp > maxval)

31 ERREXIT(cinfo, JERR_PPM_OUTOFRANGE);

32 *ptr++ = rescale[temp];

33

34 }

35

36 }

Listing 7: The heap-based buffer overflow in libjpeg.

To address this vulnerability, PRKUWA can isolate the vulnerable
functions from the sensitive data as shown in Listing 8. In this
solution, an isolated domain is created (line 1), and the vulnerable
code is placed within it (line 3). All the variables that are related
to the overflow code (including source and ptr) are stored in the
isolated memory space. By doing so, PKUWA ensures that when a
heap-based buffer overflow occurs (line 27 and line 32 of Listing 7), it
does not overwrite any data outside the domain, thereby preserving
the application’s security. The results for other vulnerabilities are
similar to this vulnerability, but due to space limitations, we have
included them in our GitHub repository.

int domain = domain_create(0);

1
2 ...
3 PKU_CALL_REGISTER(domain, process_data);
4 ...
5 PKU_CALL(process_data());

Listing 8: Protecting libjpeg with PKUWA.

918

	Abstract
	1 Introduction
	2 Background
	2.1 Linear Memory of WebAssembly
	2.2 Security Risks of WebAssembly
	2.3 Memory Protection Keys
	2.4 Threat Model

	3 Linear Memory with Isolation Domains
	4 Design of PKUWA
	4.1 Realizing dilm with MPK
	4.2 Linear Memory Management on dilm
	4.3 Guardian Pages
	4.4 Inter-Domain Calls
	4.5 Library Calls and Implicit Calls

	5 Building Applications with PKUWA
	5.1 Application Programming Interface
	5.2 Frontend Compiler
	5.3 Backend Compiler

	6 Case Studies
	6.1 HeartBleed Vulnerability

	7 Evaluation
	7.1 Implementation
	7.2 Experimental Setup
	7.3 Effectiveness of dilm
	7.4 Domain Switch Overhead
	7.5 Ablation Study on Optimizations

	8 Discussions
	9 Related Work
	10 Conclusion
	Acknowledgments
	References
	A More Case Studies Besides § 6
	A.1 PDFAlto
	A.2 Libjpeg

 HistoryItem_V1
 AddMaskingTape

 Range: all pages
 Mask co-ordinates: Horizontal, vertical offset 298.44, 61.03 Width 14.12 Height 18.15 points
 Origin: bottom left

 1
 0
 BL

 2
 AllDoc
 2

 CurrentAVDoc

 298.4363 61.0328 14.1152 18.1481

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 0
 15
 14
 15

 1

 HistoryList_V1
 qi2base

