
1406 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 21, NO. 3, MAY/JUNE 2024

Detecting Malicious Websites From the Perspective
of System Provenance Analysis

Peng Jiang , Jifan Xiao, Ding Li , Member, IEEE, Hongyi Yu, Yu Bai , Yao Guo , Member, IEEE,
and Xiangqun Chen

Abstract—Malicious websites are considered one of the top
threats to the modern Internet. Thus, it is critical to effectively
detect malicious websites for the security of the Internet. Con-
ventional technologies typically rely on URL blacklists, or static
and dynamic code analysis, which are known to have limitations.
In order to effectively detect malicious websites, in this paper, we
study malicious websites from the perspective of system provenance
analysis for the first time. We first conduct a systematic feature
engineering study on thousands of benign and malicious websites
from the perspective of system provenance data. In our study, we
discover eight useful features for malicious website detection. Based
on these eight features, we propose ProvWeb, a novel non-intrusive
system provenance-based tool, for malicious website detection. In
our evaluation, ProvWeb can achieve an F1 score of 93.7% ∼
99.7% for the four combinations of browsers and OSes (Windows
Chrome, Windows Firefox, Linux Chrome, Linux Firefox). This
result confirms that the features discovered in provenance graphs
are effective in detecting malicious websites.

Index Terms—System audit, website security.

I. INTRODUCTION

W EB technologies are ubiquitous today. At the same time,
malicious websites have also become one of the most

serious threats to modern Internet users [1], [2]. Malicious
websites are used as vessels for more sophisticated malware [3],
portals to collect massive personal and financial information [4],
miners to generate crypto-currencies for monetary benefits [5]
and tools for other malicious tasks. Malicious websites may
impersonate other benign websites, which could wreak havoc
on the reputation of legal websites.

Detecting malicious websites in the early stages could reduce
the harm to both customers and faithful companies. However,
it is also particularly challenging to detect malicious websites.

Manuscript received 14 April 2022; revised 12 March 2023; accepted 21
March 2023. Date of publication 29 May 2023; date of current version 16
May 2024. This work was supported in part by the National Key Research and
Development Program under Grant 2022YFB4501802, in part by the National
Natural Science Foundation of China under Grants 62172009 and 62141208,
in part by Huawei Research Fund, and in part by the CCF-Tencent Open Fund.
(Corresponding author: Ding Li.)

Peng Jiang, Jifan Xiao, Ding Li, Yao Guo, and Xiangqun Chen are with
the Key Laboratory of High-Confidence Software Technologies (MOE)
School of Computer Science, Peking University, Beijing 100871, China
(e-mail: pengjiang_pku2020@stu.pku.edu.cn; 2101111523@pku.edu.cn;
ding_li@pku.edu.cn; yaoguo@pku.edu.cn; cherry@pku.edu.cn).

Hongyi Yu and Yu Bai are with the Advanced Institute of Information
Technology, Hangzhou, Zhejiang 311200, China (e-mail: hyyu@aiit.org.cn;
ybai@aiit.org.cn).

Digital Object Identifier 10.1109/TDSC.2023.3277613

Existing techniques are either prone to sophisticated evasive
methods or have limitations in deployment.

One method to counter malicious websites is using blacklists
of malicious URLs [6]. However, adversaries may use new
URLs or benign domains to dodge the detection of blacklists. As
reported, 40% of malicious web pages are in good domains [7].
Detecting malicious websites in benign domains requires a very
fine-grained blacklist, which is daunting to build.

Another popular detection technique is static code analy-
sis [8], which detects malicious websites based on static code
features of HTML and JavaScript. The limitation of static code
analysis is that it is prone to code obfuscation and camouflag-
ing [9].

Unlike static code analysis, dynamic code analysis seeks
to monitor the runtime behaviors of browsers and JavaScript
engines while visiting websites [10]. By having runtime in-
formation, dynamic analysis methods are more robust to code
obfuscation and camouflaging. Hence, they are potentially more
accurate than static analysis techniques. However, dynamic anal-
ysis techniques may still be vulnerable to camouflaging if they
use some static code-level features [11]. Furthermore, existing
dynamic code analysis techniques require either modifications
to browsers or the building of plugins [10], [11], [12], which
limits the scope of applications of these techniques.

To better detect malicious websites, it is useful to study the
features of websites from a perspective different from conven-
tional techniques. Recently, system provenance analysis [13],
a non-intrusive technique that monitors system behaviors of
processes passively, has been applied to detect several types of
stealthy and complex attacks [14], [15], [16], [17]. Particularly, a
few recent studies have shown that system provenance analysis
can capture subtle system runtime features of processes [18],
which then leads to file-less attack detection [19], malicious
installation package detection [20], and abnormal process de-
tection [21].

Inspired by previous work, we argue that system provenance
is a useful feature, which is orthogonal to existing features,
for malicious website detection. System provenance analysis
is dynamic, so it is less prone to URL changing and code
camouflaging. Unlike existing dynamic analysis, system prove-
nance analysis does not require modifications to browsers or
the development of add-ons. In summary, system provenance
analysis has the potential to detect malicious websites effec-
tively. We summarize the differences between provenance-based
techniques and conventional techniques in Table I.

1545-5971 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Peking University. Downloaded on June 20,2024 at 07:39:59 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-2613-5224
https://orcid.org/0000-0001-7558-9137
https://orcid.org/0000-0001-5562-5102
https://orcid.org/0000-0001-5064-5286
mailto:pengjiang_pku2020@stu.pku.edu.cn
mailto:2101111523@pku.edu.cn
mailto:ding_li@pku.edu.cn
mailto:yaoguo@pku.edu.cn
mailto:cherry@pku.edu.cn
mailto:hyyu@aiit.org.cn
mailto:ybai@aiit.org.cn

JIANG et al.: DETECTING MALICIOUS WEBSITES FROM THE PERSPECTIVE OF SYSTEM PROVENANCE ANALYSIS 1407

TABLE I
COMPARISONS BETWEEN DIFFERENT MALICIOUS WEBSITE DETECTION METHODS

Unfortunately, there is no systematic study on how system
provenance analysis could be applied to detect malicious web-
sites. To close the gap between system provenance analysis and
malicious website detection, in this paper, we conduct the very
first systematic study on detecting malicious websites from the
perspective of system provenance analysis. The main research
question of our study is: can system provenance analysis tech-
niques be used to detect malicious websites?

To answer this question, we first conduct a systematic feature
engineering study on realistic malicious websites. We compare
the system provenance data of 4,000 malicious websites to
their counterparts of 4,000 benign websites. We discover several
important features that can be used to detect malicious websites.
Syntactically, we find that the number of nodes, the number of
edges, and the width of the provenance graph of a website can be
used to detect some obviously benign websites. Semantically, we
find that the distributions of file read, file write, dynamic library
usage, IP address accessed, and operation types of malicious
websites are also substantially different from their counterparts.

Based on our discovery, we propose the very first online
provenance-based malicious website detection tool, ProvWeb,
which abstracts the features we have discovered in our measure-
ment study with a novel algorithm and then feeds the features
to a well-designed classification model. Unlike conventional
dynamic analysis techniques, ProvWeb is non-intrusive, which
means it DOES NOT require any modifications to browsers.
Being non-intrusive may broaden the application scope of
ProvWeb. In our evaluation, ProvWeb can achieve an F1 score
of 93.7% ∼ 99.7% for the four combinations of browsers and
OSes (Windows Chrome, Windows Firefox, Linux Chrome,
Linux Firefox). Based on our study, we conclude that system
provenance analysis is capable of detecting malicious websites.

We summarize the contributions of this paper as follows:
� To the best of our knowledge, our study is the very first

large-scale systematic study on malicious website detec-
tion from the perspective of system provenance analysis.

� Our study confirms that system provenance data of ma-
licious websites are different from their counterparts of
benign websites. Notably, we discover three syntactic fea-
tures and five semantic features that can be used to detect
malicious websites.

� We propose the first system provenance analysis-based
tool, ProvWeb, for malicious website detection. Unlike
other dynamic analysis tools, ProvWeb does not require
any modifications to browsers.

� We conduct a thorough evaluation on ProvWeb.
� We build a dataset containing the system provenance data

of 4,000 benign websites and 4,000 malicious websites for
four different configurations of OSes and browsers.1

Other parts of this paper are organized as follows: in Section II,
we discuss the background information and motivating exam-
ples; in Section III, we discuss the threat model and assumptions
of our paper; in Section IV, we discuss the result of our empirical
feature engineering study; in Section V, we discuss our design of
ProvWeb; in Section VI, we discuss the evaluation of ProvWeb;
in Section VII, we discuss related work; in Section VIII, we
discuss possible threats to the validity of our approach; in
Section IX, we make conclusions about this paper.

II. BACKGROUND AND MOTIVATION

In this section, we discuss the background information and
the motivation that drives us to conduct this work.

A. Malicious Websites

Malicious websites are increasingly common today. URLs
used in malicious webpages mainly contain three types in
terms of their role [22]. Adversaries use malicious websites
to deliver viruses [3], collect personal data [23], mine crypto-
currencies [5], and perform other malicious tasks. One common
type of malicious website is drive-by download [3]. Adversaries
build malicious web pages that, once visited, another malware
will be inadvertently installed onto the victim’s host. Drive-by
downloads have caused multiple significant incidents recently.
For example, the Lurk criminal group stoles 45 million dollars
with drive-by download and other techniques [3].

Another common type of malicious website is phishing web-
sites [23], which impersonate legitimate websites to lure victims
into leaking their critical information, such as credentials for
bank accounts. Besides individual targets, adversaries may also
use phishing websites to attack enterprises, which may cause
a substantial amount of monetary loss. Although tremendous
efforts have been taken to address phishing websites, their threats
are still increasing. As reported by PhishTank [24], there are at
least hundreds of new phishing websites discovered every day.

1Our data is available at:https://github.com/provweb/provenanceweb

Authorized licensed use limited to: Peking University. Downloaded on June 20,2024 at 07:39:59 UTC from IEEE Xplore. Restrictions apply.

https://github.com/provweb/provenanceweb

1408 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 21, NO. 3, MAY/JUNE 2024

Cryptojacking [5], [25] websites, such as CoinHive [26],
also gained popularity recently because of the rising of crypto-
currencies. Adversaries may embed scripts that mine cryptocur-
rencies, such as Monero [27], which is a website that looks
normal and gains monetary benefits from mining. Cryptojacking
websites can cause high CPU usage to the victim’s computer,
which may decrease the lifetime of the victim’s device. Further-
more, adversaries may take advantage of the vulnerabilities of a
benign website to embed cryptocurrency mining scripts, which
may wreak havoc on the usability of the benign website.

Besides drive-by download, phishing, and cryptojacking,
there are multiple novel types of malicious websites [28]. First,
attackers inject scripts that specifically target authenticated site
administrators. The notorious Magecart malware, which steals
credit card details from checkout pages of eCommerce sites
by running a variety of different malicious JavaScript, spreads
through multiple online stores [29]. Second, websites also suffer
supply-chain attacks. For example, attackers may build ma-
licious scripts like widgets, tracking services, ad scripts, site
counters, or social add-ons that may lead to malicious behavior
on benign websites [30]. Third, attackers also build SEO spam
to manipulate the results of search engines [31].

Unfortunately, detecting malicious websites is a challenging
task. Because of the flexibility of HTML and JavaScript, ad-
versaries can easily obfuscate their code to bypass detectors. In
practice, detection techniques often suffer many problems, such
as incomplete features, ineffective models, etc. [32].

B. System Provenance

System provenance represents the log that records the com-
munications between applications and the OS. Typically, system
provenance data include file operations, network operations, and
process operations such as fork and IPC [13], [17]. System
provenance data are often represented by a graph model [13].
We will show an instance of such a graph in the next section as
a motivating example. System provenance data are traditionally
used for hunting APT attacks [14], [17], [21], [34], [35]. How-
ever, recent studies also show that system provenance data can
substantially expose the running behaviors of applications [18].
Based on this result, people have developed multiple techniques
to detect hijacked processes [19] and stealthy malware [36].

C. Motivating Example

In our observation, malicious websites and benign ones are
fundamentally different. These differences can leave hints in
provenance graphs. Particularly, we find two types of features
in provenance graphs of malicious websites, which are resulted
from the fundamental differences in functionalities and design
logic between malicious and benign websites. First, malicious
websites may leave positive features in provenance graphs.
Malicious websites may use certain system resources that are
rarely used by benign websites since they need to fulfill certain
malicious requirements that do not belong to benign websites.
On the flip side, malicious websites may also leave negative fea-
tures in provenance graphs. Due to different goals, a malicious
website may also ignore some design requirements of a benign

Fig. 1. A motivating example.

website, such as quality control. Thus, a malicious website may
not have some important system resources of benign websites
in its provenance graph.

We use two realistic websites in Fig. 1 as examples. Fig. 1(a)
is the provenance graph of a website that contains the Ramnit
worm. Fig. 1(b) shows the provenance graph of a benign website
www.blizzard.com. Fig. 1(a) contains two positive features. First,
it accesses the Host.ics file, which is used by Microsoft Internet
Connection Sharing. While it is a piece of important information
for worms to discover the next target in the same LAN, according
to our study for 4000 benign websites, NONE of them use this
file. Second, the virus in Fig. 1(a) writes some payloads to a
file named ”font_unique_name_table.pb” in the browser cache.
This operation is also uncommon in benign websites.

Fig. 1(a) also contains two negative features. First, the be-
nign website in Fig. 1(b) compresses its communicated data.
The compression leaves temporary files, such as Cab.tmp and
Tar.temp, in the provenance graph. Although data compression
is a common practice in benign websites, we observe that few
malicious websites compress their data. Similarly, we observe
that the benign website in Fig. 1(b) uses SensorAPI.dll to read
users’ geological information to provide personalized services.
However, in our study for 4000 benign websites and 4000
malicious websites, the probability for a malicious website to
use SensorAPI.dll is a magnitude lower than benign websites. In
other words, malicious websites rarely use sensor information.

In summary, the example in Fig. 1 indicates that the prove-
nance graphs of malicious websites can be fundamentally dif-
ferent from benign websites. This observation motivates our

Authorized licensed use limited to: Peking University. Downloaded on June 20,2024 at 07:39:59 UTC from IEEE Xplore. Restrictions apply.

www.blizzard.com

JIANG et al.: DETECTING MALICIOUS WEBSITES FROM THE PERSPECTIVE OF SYSTEM PROVENANCE ANALYSIS 1409

TABLE II
THE SYSTEM ENTITIES AND EVENTS WE CONSIDER

study to detect malicious websites based on features in system
provenance graphs. In this paper, one of the key goals is to find
general features that can separate malicious websites and benign
websites.

III. PROBLEM DEFINITION AND THREAT MODEL

We aim to characterize features that may separate the run-
ning behaviors of malicious websites from benign websites.
We define the system provenance graph of a website2 as an
attributed graph, G =< N,E, ln, r >. N is the set of nodes,
which contains the system subjects and system objects. In this
paper, system subjects and system objects are listed in Table II.
E is the set of edges, which are system events made by system
subjects to system objects. The types of events are also listed in
Table II. ln represents the label function of nodes, where ln(N)
returns the attributes of a node, such as file names, process IDs,
and executable names. r ∈ N is the root node of the graph, which
is the browser process that accesses the target website.

The problem we want to solve in this paper is: given a
provenance graph of websites M , we aim to answer whether
M is generated by a malicious website or a benign website.

We make typical assumptions of system provenance analy-
sis [17], [20], [21]. We assume that the OS kernel is not com-
promised by adversaries and system provenance data is accurate.
Our threat model also assumes the integrity of transmission and
storage of provenance data.

IV. FEATURE ENGINEERING

The main goal of this paper is to answer whether provenance
data is effective in detecting malicious websites. To achieve
this goal, we first conduct an empirical study on thousands of
realistic malicious websites. We aim to find effective features
in provenance data that can separate malicious websites from
benign websites. Particularly, we answer the following two
sub-questions

1) Are there syntactically level features?
2) Are there semantically level features?

A. Datasets

We collect samples of malicious websites from two different
sources: VirusShare [37] and PhishTank [38] where VirusShare
is a collection of known malware samples, and PhishTank
is a collection of up-to-date malicious websites URLs. For

2In our paper, a website is a synonym of the main page of the website

VirusShare, we crawl its samples that are in HTML format
dated from 2019/8/10 to 2020/11/10. We remove those samples
that are invalid, e.g., empty files. In the end, we obtained 1,500
valid VirusShare samples. For PhishTank, we monitor its latest
updates every day from 2020/12/25 - 2021/1/10. We only select
the URLs that are marked as verified and remove those that
cannot be accessed. We have collected a total of 2500 samples
from PhishTank. Thus, we have used 4,000 malicious samples in
total in our experiments. To build benign samples, we randomly
collected 4,000 samples from Alexa’s top 10,000 websites [39].

B. Experimental Environment and Data Collection

We build our experimental environment based on Cuckoo
Sandbox [40]. We run Cuckoo on four desktops with an I7 CPU,
32 GB memory, and Ubuntu 18.04 OS. On each desktop, we
run one Cuckoo instance. We select Chrome and Firefox as our
target browsers. We chose them because they and their variants
represent more than 81% market share in 2020.

To collect system provenance data, we implement agents
that monitor Windows ETW and Linux Sysdig events. Similar
agents have been used in previous papers [16], [17], [20], [21],
[41]. Types of system events collected by our agents are shown
in Table II. Similar to related work [17], we collect system
provenance data to a remote MongoDB. We implement the tool
that generates provenance graphs based on Nodoze [17].

In order to simulate realistic scenarios, we upload our samples
downloaded from VirusShare to an Apache server and access
each sample remotely. We then deploy the agents to Cuckoo
Sandbox and collect system provenance data. To generate prove-
nance graphs for each website, we visit the URL of each target
website for 45 seconds and collect all provenance data gen-
erated by browsers. To ensure the generated data is realistic,
we randomly generate events such as clicking and scrolling
under the protocol proposed in related work [42]. To ensure
that Cuckoo does not undermine the validity of our study in
realistic environments, we manually compared the provenance
graph of 100 websites generated in both Cuckoo Sandbox and
bare-metal machines. We find that the provenance graphs from
Cuckoo Sandbox are identical to their counterparts in bare-metal
machines, except for some events from Cuckoo’s agent. We then
filtered out the events generated by Cuckoo’s agent to make sure
our results are realistic.

To ensure the soundness of feature engineering, we use both
visualized and statistical methods. For syntactical features, we
first plot the distributions of the number of nodes, the number
of edges, and the widths of provenance graphs for benign and
malicious websites. Then, we use the Two Independent Samples
Non-parametric Test [43] to test the statistical significance of the
differences between the two distributions. We chose the Two
Independent Samples Non-parametric Test because it does not
require the assumption of normal distribution for the data. In our
statistical test, the null hypothesis is that the distributions of the
number of nodes between benign and malicious websites are the
same. We use p-value [44] as the evaluation metric and reject
the null hypothesis when p < 0.05.

Authorized licensed use limited to: Peking University. Downloaded on June 20,2024 at 07:39:59 UTC from IEEE Xplore. Restrictions apply.

1410 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 21, NO. 3, MAY/JUNE 2024

Fig. 2. The distribution of the numbers of nodes.

For semantic features, we first visualize the high-dimensional
features with t-SNE [45]. Then, we build a logistic regression
classifier for the Network feature and a k-NN classifier for
other semantic features to statistically measure how well can
the semantic features detect malicious websites. We run the
two classifiers with ten randomly generated test datasets. We
then report the detection accuracy. Finally, we use Kolmogorov-
Smirnov [46] test to ensure that the detection accuracy is statis-
tically higher than a random guess [47]. In our statistical test, we
say the detection accuracy is statistically higher than a random
guess if the p-value is smaller than 0.05.

C. Syntactic Features

To study features of malicious websites on the syntactic level,
we measure three metrics in our study: the number of nodes,
the number of edges, and the width of provenance graphs.
Particularly, we answer the following questions:
� RQ 1: Do benign and malicious websites have different

numbers of nodes?
� RQ 2: Do benign and malicious websites have different

numbers of edges?
� RQ 3: Are the widths of provenance graphs different be-

tween benign and malicious websites?
1) Number of Nodes: Fig. 2 shows the distribution of the

number of nodes for all malicious and benign websites in dif-
ferent browsers in different OSes. Interestingly, we find that
there exists a threshold that separates some benign websites
from malicious ones. For instance, for Chrome on Windows,
a website with more than 300 nodes in its provenance graph
is 20 times more likely to be benign than malicious. However,
for websites with fewer than 260 nodes, it is hard to separate

Fig. 3. The distribution of the numbers of edges.

malicious and benign websites purely based on the number of
nodes. We also have similar observations on the other three
combinations of browsers and OSes. Thus, we argue that the
number of nodes in provenance graphs can help narrow down the
range of benign websites and increase the accuracy of malicious
website detection.

Besides visually comparing the distributions, we run the
Two Independent Samples Non-parametric Test [43] to test
the statistical significance of the differences between the two
distributions. The result is in Table III, which shows that for
all configurations, the p-values are smaller than 0.05. Thus, we
reject the null hypothesis.

2) Number of Edges: Fig. 3 shows the distribution of the
number of edges of all malicious and benign websites for differ-
ent browsers in different OSes. We observe similar phenomena
as in the case of the number of nodes: when the number of edges
of a provenance graph is larger than a threshold, the provenance
graph is not likely to be generated by a malicious website. In
our study, for the four combinations of browsers and OSes,
when the numbers of edges are larger than 500, 750, 880, and
840, respectively, the corresponding websites are 10 times more
likely to be benign than malicious. Similarly, we conclude that
the number of edges is also an effective feature to help detect
certain websites that are obviously benign.

We also run the Two Independent Samples Non-parametric
Test and report the p-values in Table III, which shows that the
p-values for all configurations are smaller than 0.05.

3) Widths: To define the width of a provenance graph,
we first define the temporal spanning tree of a provenance
graph. Let TE be the set of edges in the temporal spanning
tree of a provenance graph, IN(n) be the set of in-edges

Authorized licensed use limited to: Peking University. Downloaded on June 20,2024 at 07:39:59 UTC from IEEE Xplore. Restrictions apply.

JIANG et al.: DETECTING MALICIOUS WEBSITES FROM THE PERSPECTIVE OF SYSTEM PROVENANCE ANALYSIS 1411

TABLE III
STATISTICAL DIFFERENCES BETWEEN MALICIOUS AND BENIGN WEBSITES FOR SYNTACTIC FEATURES

Fig. 4. The distribution of widths.

of node n, we have e1 ∈ IN(n) → e1 ∈ TE(n) ⇐⇒ ∀e2 ∈
IN(n), t(e1) < t(e2), where t(e1) represents the time stamps
of edge e. A similar concept of temporal spanning tree is also
used in previous work [20], [48]. Then the width of a provenance
graph is defined as the maximum number of nodes on each layer
of the temporal spanning tree of the provenance graph.

Fig. 4 shows the distribution of the widths of all websites.
Similarly, we find that there is a threshold for the width that
separates certain obviously benign websites from malicious
ones. Take Fig. 4(a) as an example. A graph with a width of 215
is equally likely to be benign or malicious. However, when the
width is 250 and more, the provenance graph is five times more
likely from a benign website. In summary, we also conclude that
the width is an effective feature to help detect obviously benign
websites.

Table III shows the p-values of the Two Independent Samples
Non-parametric Test. We conclude that the widths of provenance
graphs of benign and malicious websites are statistically differ-
ent.

4) Conclusion on Syntactic Features: Our study shows that
although syntactic features cannot directly detect malicious

websites, they are effective in detecting those obviously benign
websites and reduce the search space for other features. Specifi-
cally, we find a website that generates a “big” provenance graph
with more nodes, more edges, and wider than a certain threshold
are more likely to be benign. These features can help remove
some obviously benign websites and improve the accuracy of
detection. Based on our study, We believe that syntactic fea-
tures can be useful in helping distinguish benign websites from
malicious websites.

D. Semantic Features

To study the features of malicious websites on the semantic
level, we study how differently malicious websites use files,
networks, libraries, and other processes from benign websites.
We follow the same protocol and use the same data set as
Section IV-C. Particularly, we answer the following research
questions:
� RQ 4: Do malicious websites use files differently from

benign websites?
� RQ 5: Do malicious websites use dynamic libraries differ-

ently from benign websites?
� RQ 6: Do malicious websites and benign websites have

different patterns for operation types?
� RQ 7: Do malicious websites and benign websites have

different patterns for network operations?
� RQ 8: Do malicious websites and benign websites have

different patterns for process operations?
1) Files: To answer if malicious websites use files differently

from benign ones, we measure the distributions of file extensions
accessed by malicious and benign websites. Specially, we build
histograms for file read operations, and file write operations
separately. The read histogram is a key-value map where keys
are extensions of files read by a website, and values represent
how many times each extension has been read. The definition
of the write histogram is similar except that the operation is
changed to file write. For instance, assuming a website reads
A.dat, B.dat, and C.png and writes to D.dat, E.tmp, and F.tmp,
we build two histograms for the site: the read histogram, which
is {.dat : 2, .png : 1} and the write histogram, which is {.dat :
1, .tmp : 2}. The read histogram and the write histogram are
used as two separate feature vectors.

To visualize the differences between malicious websites and
benign websites in read-histograms and write histograms, we
plot them with t-SNE [45]. The visualization of read-histograms
is shown in Fig. 5 for different browser and OS configurations.

Authorized licensed use limited to: Peking University. Downloaded on June 20,2024 at 07:39:59 UTC from IEEE Xplore. Restrictions apply.

1412 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 21, NO. 3, MAY/JUNE 2024

Fig. 5. Visualization of read histograms.

Fig. 6. Visualization of write histograms.

In the figure, red represents malicious samples while blue rep-
resents benign samples. Similarly, we plot the write histograms
of websites with different configurations in Fig. 6.

We can see from Fig. 5 that the read histograms of malicious
websites and benign websites are well clustered. For instance,
in Fig. 5(a), there are a few clusters that are dominated by
either malicious or benign websites. Fig. 5(c) and (d) also
contain similar clusters. It seems that Fig. 5(b) does not have
obvious clusters of either type of website, but we can still find

TABLE IV
THE ACCURACY OF KNN CLASSIFIER ON HISTOGRAM FEATURES

a hyperplane (e.g., SVM) that separates benign websites from
malicious websites in higher-dimensional space.

Write histograms are less effective but still useful for mali-
cious website detection. Only Fig. 6(a) contains obvious clusters.
This is because the dimension of the writ histograms is only half
of the read histograms, which means that websites write to fewer
types of files than they may read. Nevertheless, write histograms
can also help separate benign websites from malicious websites.

To statistically evaluate whether malicious websites use files
differently from benign websites, besides visualization, we also
use k-Nearest Neighbours (kNN) to evaluate how samples from
the same class clustered quantitatively. kNN predicts the labels
of a target sample based on a number of data points surrounding
the target. If kNN achieves a good prediction accuracy in our
data, it means samples from the same category are well clus-
tered together. To evaluate our read and write histograms with
kNN, we randomly choose 800 websites from our data. Half
of them are malicious and half of them are benign. Then we
use other samples in our data to predict the labels of the 800
websites. To ensure the soundness of our experiment, we repeat
the experiment ten times with different randomly sampled test
data. We also use the Kolmogorov-Smirnov [46] test to ensure
that the accuracy is statistically higher than 50%, the accuracy
of a random guess. We report the prediction accuracy and the
corresponding p-value in Table IV.

Table IV shows the prediction accuracy for read histograms
is from 57.3% to 87.2%. For write histograms, the accuracy is
from 52.0% to 66.4%. The p-values are all smaller than 0.05,
which indicates that the accuracy is statistically higher than a
random guess. The accuracy values achieved by kNN in read
histograms are significantly larger than a random guess proving
that samples from the same category are well clustered. The
accuracy for write histograms is not as high but still better than
random guesses. In summary, our study shows that read and write
histograms are useful features for detecting malicious websites.

2) Dynamic Libraries: We also build a histogram for dy-
namic library usage of websites. Similarly, the library histogram
of a provenance graph is a key-value map where keys are names
of dynamic libraries loaded by websites, and values mean how
many times each library has been used. For instance, assuming
a website uses A.dll twice and B.dll once, we build the library
histogram for the site as {A.dll : 2, B.dll : 1}.

We visualize the library-histograms of benign and malicious
websites with t-SNE in Fig. 8 for different combinations of
browsers and OSes. We find that library histograms of malicious
and benign websites are also well clustered. In Fig. 8(a), (c), and
(d), we can see clusters that are either dominated by benign or

Authorized licensed use limited to: Peking University. Downloaded on June 20,2024 at 07:39:59 UTC from IEEE Xplore. Restrictions apply.

JIANG et al.: DETECTING MALICIOUS WEBSITES FROM THE PERSPECTIVE OF SYSTEM PROVENANCE ANALYSIS 1413

Fig. 7. Visualization of operation histograms.

Fig. 8. Visualization of library histograms.

malicious websites. The only exception is Fig. 8(b), where we
find the reason is that the Windows version of Firefox seems only
to use a fixed set of dynamic libraries. Thus library histograms
of all websites in the Windows version of Firefox are similar.

To statistically answer this research question, like Sec-
tion IV-D1, we also use kNN to quantitatively evaluate how
well library histograms can detect malicious websites. We use

the same protocol in Section IV-D1. The accuracy numbers and
p-values for ten different experiments are shown in Table IV,
which indicates that, except for the Windows version of Firefox,
the prediction accuracy is from 64.8% to 68.3%. These numbers
are statistically larger (with p < 0.05) than a random guess. In
summary, except for the Windows version of Firefox, we find
library histograms can be used as effective features for malicious
website detection.

3) Operation Types: We then investigate whether malicious
websites operate differently from benign ones by measuring the
operation histogram from the provenance graph of each website.
We consider the operation types listed in Table II. Similar to
read and write histograms, we calculate the frequency of each
operation type as a key-value map, where keys are operation
types and values are frequencies of each operation type. For
example, if a website reads files twice, forks processes once,
and writes to files once, then the histogram of operation types is
{read : 2, fork : 1, write : 1}.

The visualization of operation histograms with four configura-
tions is shown in Fig. 7, where red represents malicious websites,
and blue represents benign websites. We find that the operation
histograms are also well clustered. For example, in Fig. 7(a),
benign samples are mainly located in the center-left of the graph,
while malicious samples are in the peripheral parts. Similarly,
in Fig. 7(c), benign samples are mainly clustered in the central
part while malicious websites are scattered in other parts. We
can also observe clusters of either benign or malicious websites
in Fig. 7(b) and (d).

To statistically answer this research question, , we measure
the prediction accuracy with kNN based on operation histograms
with the same protocol in Section IV-D1 and repeat the experi-
ment ten times. The results and p-values are reported in Table IV.
The prediction accuracy of kNN on operation histograms ranges
from 81.9% to 91.2% with p-values smaller than 0.05 in our
study, which indicates that operation histograms can be used as
effective features for malicious website detection.

4) Network: This section tries to answer whether malicious
websites use IP addresses differently from benign websites.
Since IP addresses can vary significantly, we cannot build the
same histogram as we did in Section IV-D1. To address this chal-
lenge, we build a concentration vectorC instead. Our intuition is
that malicious websites are less organized. They may use more
resources from third parties. Thus, the IP addresses of malicious
websites may be more diffused than benign websites.

The concentration vector C is defined as C = (S, I), where
S is the number of subnets accessed by a website. For an IP
address, We take the first two octets as the mask for the subnet.
I is the number of IPs accessed by a website. The concentration
vectors of all websites are visualized in Fig. 9, where the x-axis
is S, the y-axis is I , red represents malicious websites, and blue
represents benign websites. The blue line and the red line are the
regression lines for benign and malicious websites, respectively.
The green line is the baseline, which represents every IP from a
unique subnet.

Fig. 9 shows that IPs of benign websites tend to be more
organized. The ratio I/S is larger for benign websites than for

Authorized licensed use limited to: Peking University. Downloaded on June 20,2024 at 07:39:59 UTC from IEEE Xplore. Restrictions apply.

1414 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 21, NO. 3, MAY/JUNE 2024

Fig. 9. The scatter graph of IP concentration vectors.

TABLE V
THE ACCURACY OF LOGISTIC REGRESSION CLASSIFIER ON IP CONCENTRATION

VECTOR

malicious websites. This result indicates that malicious websites
tend to access IPs from random locations. A similar observation
is also mentioned by Oest et al. [49].

To statistically evaluate the effectiveness of the network fea-
tures, we also train a simple logistic regression classification
model based on the concentration vector and perform the test on
our data set as we did in Section IV-D1 and repeat the experiment
ten times with different randomly sampled testing datasets. The
result is shown in Table V, which shows that the concentration
vector of IP addresses can classify malicious websites better
than a random guess with p-values smaller than 0.05.

5) Process: We measure and compare the distribution of
processes forked by browsers between malicious websites and
benign websites. Our result shows there are no significant dif-
ferences. The reason is that in our experiment, browsers only
fork processes that belong to browser packages. We do not find
any other processes. Yet, we notice that, in Chrome, malicious
websites fork more software_reporter processes, which report
crashes and errors, than benign websites. We hypothesize the
reason is that malicious websites are not well-developed and
have more bugs. However, the number of software_reporter
processes is generally small, so it cannot make the difference
statistically significant. As a result, we will not use this feature
in our detection.

E. Conclusion on Semantic Features

Our empirical results show that malicious websites and benign
websites are distinguishable in file read and write, network
usage, operation types, and dynamic library usage. Thus we
argue that file read histograms, write histograms, operation
histograms, library histograms, and concentration vectors of IP
addresses can be used as effective features for malicious website
detection.

V. DETECTION TOOL

We design and implement a malicious website detection tool
ProvWeb, which leverages our discoveries in Section IV to ana-
lyze system provenance graphs of browsers and detect whether
browsers have visited malicious websites.

A. Architecture and Workflow

Fig. 10 presents the workflow. ProvWeb is an online
provenance-based malicious website detection tool. Its input
is provenance event streams collected from each browser in-
stance. We leverage a similar technique in Wang et al. [19]
for provenance collection. The output of ProvWeb is a binary
classification on each of the browser instances, which indicates
whether the instance is visiting a malicious website.

ProvWeb includes two main components. The first is feature
extraction, which extracts the feature vectors from the prove-
nance event stream without explicitly building and traversing
provenance graphs. This algorithm allows ProvWeb to process
provenance events in real time. The feature vectors include the
features we discussed in Section IV. The second component
is feature aggregation, which combines different features in
the feature vector to detect malicious websites. The feature
aggregation part is a machine learning model that is offline
trained. However, ProvWeb uses the model to detect malicious
websites in real time.

B. Feature Vector

Formally, we define our feature vector as V =<
N,FR,FW,L,OP >. In the feature vector, N =<
nn, ne, w, C > is the numerical vector, where nn is the
number of nodes of a provenance graph, ne is the number of
edges,w is the width, andC = (S, I) is the concentration vector
of IP addresses. For other parts, FR is the file read histogram,
FW is the file write histogram, L is the library histogram, and
OP is the operation histogram. Details of elements in FR,
FW , L, and OP and reasons for selecting these features are
discussed in Section IV.

C. Feature Extraction

We first use the feature extraction step to build the feature
vector from the provenance event stream. Calculating the width

Authorized licensed use limited to: Peking University. Downloaded on June 20,2024 at 07:39:59 UTC from IEEE Xplore. Restrictions apply.

JIANG et al.: DETECTING MALICIOUS WEBSITES FROM THE PERSPECTIVE OF SYSTEM PROVENANCE ANALYSIS 1415

Fig. 10. The architecture of ProvWeb.

Algorithm 1: Feature Vector Building.

of a provenance graph requires the structure information of the
graph. The naive approach is to traverse the graph, which cannot
be achieved online. In our approach, we propose an algorithm
that directly calculates the feature vector without traversing the
provenance graph explicitly.

Algorithm 1 shows our process of building the feature vec-
tor. Instead of maintaining the provenance graph, ProvWeb
maintains two intermediate data structures, the node depth map
NDM (line 3) and the width cache W (line 4). Formally, the
node depth map is a key-value map NDM =< N, depth >,
where N is a node in the provenance graph, and depth is
the depth of the node on the temporal spanning tree of the
system provenance graph. The width cache is a key-value map

Fig. 11. The structure of feature aggregation.

W =< depth, num >. W [k] = m means there are m nodes of
which depths are k.

Our process to build the feature vector is then straightforward.
ProvWeb takes each event as an edge in the provenance graph.
For each event in the provenance stream, ProvWeb first adds
the destination of the event to NDM and updates its depth
if it is a new node (lines 7- 9). ProvWeb also updates the
operation histogram OP (line 12). If the event is a file read
or write event, ProvWeb updates FR and FW based on the
operation type (lines 13 - 15). If the event represents a dynamic
library loading, ProvWeb updates L. Then, if the event uses IP
addresses, ProvWeb also updates the concentration vector of IP
addresses. Finally, ProvWeb calculates nn and w, which equals
the size of the node depth map and the max value of the width
cache, respectively (lines 20-22).

D. Feature Aggregation

During the feature aggregation step, the tool accepts the
feature vectors and generates a probability of whether the given
feature vectors represent a browser instance that visits malicious
websites. At the high level, our model has two layers, as shown
in Fig. 11. The first layer is the representation layer, which
contains binary classification models for each of the features
in the feature vector, respectively. The second layer is the voting
layer, which combines the outputs of represents to generate the
final output. This design is inspired by stacking in ensemble
learning [50], which has been shown that can greatly improve
the generalization of a single model [51].

ProvWeb draws two strengths from stacking and uses in-
put attribute perturbation to improve stacking further. To be
more specific, ProvWeb uses different sub-models in the rep-
resentation layer, like stacking. As Krogh and Vedelsby [52]
proposed, the higher the sub-learner’s diversity is, the better

Authorized licensed use limited to: Peking University. Downloaded on June 20,2024 at 07:39:59 UTC from IEEE Xplore. Restrictions apply.

1416 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 21, NO. 3, MAY/JUNE 2024

the ensemble model performs. Second, unlike the majority
voting method used in typical ensemble learning algorithms,
the combination strategy of ProvWeb is to use the ”learning
method” in the voting layer [51], [53] as stacking does. This
learning-based voting layer attempts to minimize the weakness
and maximize the strengths of every sub-model [54]. ProvWeb
further improves stacking by feeding different sub-features into
sub-models which provides different perspectives to observe the
data, allowing a more robust model [55]. As we will evalu-
ate later, ProvWeb has higher accuracy than other alternative
techniques, such as simple majority voting and combining all
features as input.

There can be multiple choices for the actual models used in
both layers. In this paper, we implement several candidates and
select them based on empirical measurement. For the represen-
tation layer, candidate classifiers are:
� The logistic regression model for each of the numerical

features: nn, ne, w, and C, and the SVM model for
histograms: FR, FW , OP and L.

� MLP model for the concatenated numerical vector N =<
nn, ne, w, C > and SVM model for four histograms: FR,
FW , OP and L.

� Logistic regression model for all both numerical features:
nn, ne, w, and C and four histograms: FR, FW , OP and
L.

For the voting layer, candidates are:
� The SVM model which accepts the output of all classifiers

in the first layer
� The MLP model which accepts the output of all classifiers

in the first layer
� The logistic regression model which accepts the output of

all classifiers in the first layer
Formally, for the logistic regression model, we define each

sample as (xi, yi) where xi is one of the feature vectors and
yi ∈ {0, 1} is the label of the given sample. yi = 1 means
the given sample is malicious and yi = 0 means otherwise.
Then the regression model is to minimize the cost func-
tion 1

m

∑
(−yilog(h(Axi + b))− (1− yi)log(h(Axi + b))),

where m is the number of samples, h() is the sigmoid function,
and A and b are parameters for training.

To generate probabilities as the logistic regression model
does, we apply Platt scaling [56] to linear SVM classifiers.
Specifically, Platt scaling adds logistic regression to the output
of the SVM model. Formally, the linear SVM model with
Platt scaling has two parts. The first part is a normal linear
SVM classifier. We define the input of the model as (xi, yi)
where xi is the input feature and yi ∈ {−1, 1} is the label of
the given sample. yi = 1 means the given sample is malicious
and yi = −1 means otherwise. The SVM is to maximize the
target function maxw,bmin 1

|w|yi(wxi + b), where w and b are
parameters for training. The second part is a logistic regression
trained separately. In other words, our model minimizes the cost
function:

∑
(−tilog(h(Afi + b))− (1− ti)log(h(Afi + b))),

where ti =
yi+1
2 , fi is the output of the linear SVM model, and

A and b are trainable parameters.
The MLP models in both layers are the same. The basic

model has three layers, one input layer, one hidden layer,

and one output layer. Formally, the MLP model is defined
as follows: xi = relu(Wi ·X + bi) xh = relu(Wh · xi + bh)
xo = softmax(Wo · xh + bo), where X is the input feature
vector, Wi, Wh, Wo, bi, bh, and bo are trainable parameters,
xo is the final output.

VI. EVALUATION

To evaluate the performance of ProvWeb, we answer the
following research questions:
� How accurate is ProvWeb?
� What is the runtime system overhead of ProvWeb?

A. Experiment Protocol

To evaluate ProvWeb, we further downloaded 800 new mali-
cious website samples from VirusShare and PhishTank. We also
collected 400 new benign websites from Alexa’s top 10,000. In
total, we have 1,200 new websites in our testing set. We use the
data set mentioned in Section IV as the training set. Note that
there is no overlap between our testing and training sets. We use
a Ubuntu 18.04 desktop with an i7 CPU, and 32 GB memory to
train the detection model and test run-time detection overhead
of ProvWeb on the same machine.

B. Accuracy

To evaluate its accuracy, we compare ProvWeb with three
baseline models: SVM, MLP, and Logistic Regression (LR). For
baseline models, the input is the concatenation of all features.
We measure the recall, precision, and F1 score of ProvWeb and
the baseline models. The result is shown in Table VIII.

In our experiment, we find that all detection models have
achieved decent accuracy in malicious website detection. The
F1 scores of all models range from 82% to 99%. This number
indicates that the features we collected are effective in detecting
malicious websites. Particularly, ProvWeb performs consistently
better than baseline models. The F1-scores of ProvWeb range
from 93% to 99%, which are up to 11% higher than base-
line models. This result also validates our algorithm design of
ProvWeb.

1) Classifier Selection: In Section V-D, we designed three
candidates for the classifiers in the representation layer and the
voting layer, respectively. In this section, we also evaluate the
F1-score of ProvWeb with different combinations of classifiers.
The result is shown in Table VI, in which “X + Y” means we
use classifier X for the numerical vector and Y for other feature
vectors. Table VI shows that ProvWeb achieves the best accuracy
when we use LR for numerical vectors, SVM for other feature
vectors, and MLP for voting. We then use this configuration as
the default configuration of ProvWeb.

Majority Voting: We also apply the simple majority voting
in the final layer based on the classification results of the
representation layer. Since we get class probabilities in the
first layer, we choose the Soft Voting Classifier as the majority
voting [57]. Soft voting classifier predicts the class label based
on the argmax of the sums of the predicted probabilities. The
result is shown in the rows of LR+SVM+Vote, LR+SVM+Vote,

Authorized licensed use limited to: Peking University. Downloaded on June 20,2024 at 07:39:59 UTC from IEEE Xplore. Restrictions apply.

JIANG et al.: DETECTING MALICIOUS WEBSITES FROM THE PERSPECTIVE OF SYSTEM PROVENANCE ANALYSIS 1417

TABLE VI
PERFORMANCE OF THE HIERARCHICAL MODEL WITH DIFFERENT CLASSIFIERS

TABLE VII
PERFORMANCE OF THE HIERARCHICAL MODEL WITH DIFFERENT CLASSIFIERS WHEN THE RATIO OF TEST DATA AND TRAINING DATA IS 8:2

TABLE VIII
ACCURACY OF DETECTION MODELS

TABLE IX
ACCURACY OF DETECTION MODELS WHEN THE RATIO OF TEST DATA AND TRAINING DATA IS 8:2

TABLE X
ACCURACY OF DETECTION MODELS INCLUDING PROVWEB AND MAJORITY VOTING STRATEGY

and LR+SVM+Vote in Table X. Particularly, LR+SVM+Vote
means LR for the numerical vector and SVM for other feature
vectors, and Soft Voting Classifier for the voting layer. The
same goes for LR+SVM+Vote and LR+SVM+Vote. We find
that simple majority voting is relatively less effective than our
learning-based approach.

C. Generalization Analysis

Considering that malicious websites can evolve over time
and our samples can not enumerate all types of malicious
websites, in this section, we try to evaluate the effectiveness of
ProvWeb in detecting new malicious websites. To this end, we
follow common protocols in the machine learning community to

evaluate the generalizability of features and supervised learning
models [58]. Our evaluation protocol for generalizability is as
follows.

First, we visualize the combined feature vectors, which is
the concatenation of all input vectors, of the websites in the
dataset we used in Section IV, with t-SNE [45]. This experiment
intuitively shows how the combined feature vector can be used
to detect malicious websites.

Second, we run the cluster analysis [59], [60] to evaluate how
well-unsupervised methods can detect malicious websites. We
adopt three popular unsupervised clustering algorithms [61]:
K-means [62], Gaussian Mixture [63], and Spectral Cluster-
ing [64]. These three clustering algorithms are totally different
in principle. To be more specific, we set the number of clusters

Authorized licensed use limited to: Peking University. Downloaded on June 20,2024 at 07:39:59 UTC from IEEE Xplore. Restrictions apply.

1418 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 21, NO. 3, MAY/JUNE 2024

TABLE XI
CROSS-VALIDATION: EVALUATING MODEL GENERALIZATION PERFORMANCE

Fig. 12. Performance curve when the testing-to-training ratio changes from
2:8 to 8:2.

to two. We use them to evaluate how the feature vector detects
malicious websites from different angles and avoid possible bias
of using one single method.

In this experiment, we first visualize the clustering result with
t-SNE to intuitively evaluate how well the clustering algorithms
cluster data. Then, we report the average purity [65] of each
clustering algorithm, which numerically represents how well
can a clustering algorithm cluster samples from the same type
into the same cluster. We also tested whether the purity value is
higher than 50%, which is the number of random guesses, with
the Kolmogorov-Smirnov [46] test and reported the p-values.

Third, we use a nested 10 cross-validation [58] to evaluate the
generalizability of ProvWeb. A nested 10 cross-validation is a
classic method to evaluate the generalizability of machine learn-
ing models [58]. To this end, we randomly split the training data
into ten folds. To be more specific, the nested cross-validation
is to nest the hyperparameter optimization procedure under
the model selection procedure. It overcomes the optimistically
biased evaluation introduced by using the same cross-validation
procedure and dataset for tuning and selecting a model.

Fourth, to show that ProvWeb is generalizable when the
training set is much smaller than the testing set, we adjust the size
of the training set. Specifically, we adjust the testing-to-training
ratio from 2:8 to 8:2 gradually. Then, we evaluate whether
the model performance has significantly decreased when the
training set gets smaller and smaller.

1) Results: For the first experiment, we show the visualiza-
tion results of the four different configurations in Figs. 13(a),
(c), 14(a), and (c), respectively. We find benign samples are
mainly well clustered while malicious websites are scattered in
other parts. This result shows that the combined feature vector is
sufficient to separate malicious websites from benign websites.

Fig. 13. Visualization of Windows.

Fig. 14. Visualization of Linux.

Authorized licensed use limited to: Peking University. Downloaded on June 20,2024 at 07:39:59 UTC from IEEE Xplore. Restrictions apply.

JIANG et al.: DETECTING MALICIOUS WEBSITES FROM THE PERSPECTIVE OF SYSTEM PROVENANCE ANALYSIS 1419

TABLE XII
PURITY OF DIFFERENT CLUSTERING CLASSIFIERS ON THE CONCATENATION

FEATURE

For the second experiment, we plot the visualizations in
Figs. 13(b), (d), 14(b), and (d). These graphs intuitively show
that clustering algorithms can detect malicious websites based
on the combined feature vector. We report the average purity
number of different clustering models and configurations, along
with the p-values of the Kolmogorov-Smirnov test, in Table XII.
In general, Kmeans achieves the best Purity for the Windows
version of Firefox, while Gaussian Mixture is the best for other
browsers. The purity is from 58.5% to 87.7%. The p-values
are all smaller than 0.05, which means the purity values are
statistically higher than random guesses.

For the third experiment, we show the average validation
accuracy and its standard deviation in Table XI. We can see
the average score is close to the results shown in Table IX.
The standard variance of 10 evaluations is less than 0.02, which
means our supervised learning-based methods are robust to the
different splits of data.

For the last experiment, we report the results in Tables VII,
IX and Fig. 12. Though the size of the training set is only a
quarter of the size of the test set, the overall metrics of the new
model are only two percentage points lower than the previous
model. It means even a relatively small dataset can train a good
model based on our features. It should be noted that when the
testing-to-training ratio is 8:2, there are still more than 1,000
training samples.

Discussion: Our experiments show that it is possible to detect
malicious websites with unsupervised algorithms. However, it
is well-known that unsupervised algorithms are ineffective in
learning high dimensional data similar to our combined feature
vector [60]. Thus, the unsupervised models in our experiments
are less accurate than ProvWeb.

D. System Overhead

To understand the overhead of ProvWeb, we measure the
training time for offline model training and the CPU and memory
usage during online detection.

1) Training Time: The model of ProvWeb is trained offline.
The training time for ProvWeb includes two parts: (1) time
for abstracting features from system provenance data; (2) time
for training the detection model. In our study, the time cost
for abstracting features from 8,000 websites is 20 hours. The
main part (99%) for this time overhead is from iterating over
the system provenance database on the disk. We believe that
by carefully designing hashing policies and data schema, this
time could be substantially reduced. We leave this optimization
as our future work. The average time for training the detection
model in our study is 16 minutes on 8,000 websites. Note that

Fig. 15. Detection overhead per website.

the overhead for training is a one-time cost and the model does
not require retraining unless we need to upgrade it.

2) Real-Time Detection Overhead: We first measure CPU
and memory usage of our tool ProvWeb. In Windows, the
overhead of both CPU and memory are kept below 1%, which
seems to be less impacted by the number of visited websites.
Fig. 15 presents the Linux result, which shows how CPU and
memory usage goes w.r.t. the number of visited websites. We
found that CPU usage increases when more websites are visited
concurrently. More specifically, a simple website will cause a
3% CPU usage increase, while a complicated one will cause a
5%∼7% CPU usage overhead. In our deeper investigation, we
find that more than 99% of CPU usage overhead is caused by
sysdig itself. Similar overheads are also reported in previous
provenance data analysis work [17], [20], [21]. The memory
usage maintains within 0.1% regardless of the number of web-
sites visited. We then measure the detection time. On average,
ProvWeb takes only 0.32 ms to make a prediction.

In summary, the system overhead of ProvWeb is mainly
caused by the underline system provenance collection tool,
which contributes more than 99% of the runtime overhead. We
prevision that the system overhead of ProvWeb can be reduced
with an optimized provenance collection tool. However, we
leave the development of such tools to future work. Nevertheless,
the detection overhead of ProvWeb is still comparable to other
system provenance techniques [17], [20], [21].

VII. RELATED WORK

To the best of our knowledge, this paper is the first systematic
study on malicious websites from the perspective of system
provenance analysis. Conventionally, people rely on techniques
such as URL blacklisting [6], [66], static code analysis [8], and
dynamic code analysis [10] to identify threats from malicious
websites. Despite the effectiveness of conventional techniques,
our study and ProvWeb are orthogonal to them.

A. URL Blacklist

Static blacklisting is ineffective in detecting new malicious
websites because it suffers from the difficulty of building an
exhaustive list of all malicious URLs [67]. To alleviate the

Authorized licensed use limited to: Peking University. Downloaded on June 20,2024 at 07:39:59 UTC from IEEE Xplore. Restrictions apply.

1420 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 21, NO. 3, MAY/JUNE 2024

limitation, dynamic approaches based on URL features are
proposed [4], [6], [66], [68], [69], [70].

Recently, researchers also apply deep learning techniques for
malicious URL detection. Shibahara et al. applied a convolu-
tional neural network to detect malicious URL sequences [71].
Zhang et al. proposed a semi-supervised model to detect mali-
cious URLs [72]. Sahoo et al. conducted a survey on machine
learning-based malicious URL detection techniques [73]. De-
spite these progresses, URL blacklisting is still incomplete and
error-prone. Adversaries can use a new URL that has never been
detected or directly uses benign domains. As reported, 40%
of malicious web pages are in good domains [7]. Adversaries
may hijack a trusted website with tools like Darkleech [74].
As reported, in 2012–2013, 40,000 websites were infected by
Darkleach [75]. The well-known URL blacklist PhishTank also
reports thousands of new malicious URLs per day [38]. The
limitations of URL blacklisting indicate that other orthogonal
techniques are needed to secure web browsing.

B. Code Analysis

People also rely on code analysis techniques to detect mali-
cious websites. Prophiler [8] and Cujo [76] use static HTML fea-
tures and JavaScript features to predict if a web page is malicious
or benign. JStap [77] uses static features of Abstract Syntax Tree,
Control Flow Graph, and Dependency Graph to detect malicious
websites. The main limitation of above mentioned static-based
approaches is that they are not robust against obfuscation and
camouflaging [9].

Revolver [11] dynamically monitors the AST of JavaScript in
the JS engine of browsers and checks whether the dynamically
generated AST of JavaScript is benign. JSGraph [10], modifies
the browsers to record the DOM manipulation actions of web
pages so that it can detect web-based attacks. VisibleV8 [12]
modifies the Chrome engine to log native functions of JavaScript
code. Nazca [78] aims to detect malware download requests in
the network. It builds models based on web traffic. There are
also many other earlier approaches [79], [80], [81], [82], [83],
but they are all orthogonal to our work.

C. System Provenance Analysis

System provenance analysis has been applied in many areas
recently. Han et al. proposed Frappuccino, which uses system
provenance data to detect faults for Platform as a Service (PaaS)
users [84]. Xie et al. proposed an intrusion detection system
based on system provenance data mining [85]. SIGL applies
tree-based LSTM on system provenance data to detect malicious
package installation [20]. Wang et al. proposed a technique to
detect file-less malware with system provenance data [19].

A substantial number of techniques are proposed to address
Advanced Persistent Threats (APT) attacks. King et al. proposed
the idea of building dependency graphs on system provenance
data [13]. SPADE is one of the first practical tools that build
dependency graphs on system provenance data [86]. Based on
the dependency graph, Hossain et al. proposed SLEUTH to
track APT attacks in real time [41]. The same authors later
proposed a tag alternative propagation algorithm to address the

path explosion problem of system provenance analysis [87].
Similarly, Gao et al. proposed SAQL, a stream based language
to support real time system provenance data queries [14]. Gui
et al. proposed a new system provenance querying system [15].
Milajerdi et al. proposed HOLMES that improves SLEUTH by
combining detection with APT attack tracking [88]. Besides ap-
plying system provenance analysis to detect attacks, researchers
also proposed techniques to improve the system provenance data
collection systems [89], [90], [91] and storage systems [92],
[93], [94].

Although system provenance analysis has shown its use-
fulness in multiple security problems, none of the existing
approaches applies system provenance analysis to malicious
website detection. To the best of our knowledge, this work is
the first systematic research on malicious websites from the
perspective of system provenance analysis.

VIII. DISCUSSION

In this section, we discuss possible threats to the validity of
our study.

A. Datasets

To ensure our study can represent common types of malicious
websites, we perform experiments on two independent data
sources: VirusShare [37] and PhishTank [38]. The former is a
collection of malicious HTML and JavaScript files, and the latter
is a collection of phishing websites. Our data are collected with-
out any selection or filtering. We collect benign samples from
Alexa’s top 10,000 websites, which represent the most accessed
websites worldwide. We believe this data set could reflect the
distribution of recently discovered malicious websites and the
most popular benign websites. Adversaries may obfuscate or
camouflage the code of malicious websites. However, we do not
expect code obfuscation and camouflaging could substantially
change our conclusion since our study is based on dynamic
analysis.

We measure the provenance graph of each website on two
mainstream browsers, Chrome and Firefox, which represent
81% of the world market, and two mainstream OSes, Windows
7 and Ubuntu 18.04. We believe that the browsers and OSes we
used in this study could represent the current ecosystem.

B. Anti-VM

Our experiments are made in Virtualbox driven by Cuckoo
Sandboxes. Advanced malware may apply anti-VM techniques
to avoid exposing malicious behaviors in virtual machines,
which may affect the validity of our study. While anti-VM
techniques are popular in other types of malware, they are less
common in malicious websites because browsers do not expose
most of the system information required by popular anti-VM
techniques [95]. We have also manually checked our data set and
spotted no samples with anti-VM features. We believe the result
of our study is not significantly altered by anti-VM techniques.
Further, our study does not only look for malicious behaviors but
also looks for statistical differences in general behaviors between

Authorized licensed use limited to: Peking University. Downloaded on June 20,2024 at 07:39:59 UTC from IEEE Xplore. Restrictions apply.

JIANG et al.: DETECTING MALICIOUS WEBSITES FROM THE PERSPECTIVE OF SYSTEM PROVENANCE ANALYSIS 1421

malicious and benign websites. To change statistical patterns of
general behaviors, adversaries have to spend more efforts to
substantially change the structure of their websites, which could
further reduce the motivation to deploy evasive techniques. We
leave the technique to address malicious websites using anti-VM
techniques as future work.

C. Comparison to Other Techniques

ProvWeb is the very first provenance analysis technique
for malicious website detection. We do not directly compare
ProvWeb to existing techniques because they are fully orthog-
onal. System provenance analysis may help alleviate the lim-
itations of conventional techniques. Unlike URL blacklist and
static code analysis, system provenance analysis is robust against
URL changing and code obfuscation. Compared to conventional
dynamic analysis techniques, system provenance analysis does
not require modifications to browsers so that it can be applied to
broader scenarios. We believe ProvWeb can be applied together
with existing techniques and help enhance web security in
general.

D. Limitations

ProvWeb is based on the provenance analysis technique. The
prerequisite is that the collected provenance data must be integral
and trustworthy. However, attackers may engage in anti-forensic
activities to cover their tracks, including the erasure and manip-
ulation of provenance data [96], [97], [98]. For example, the
asynchronous multi-producer single-consumer architecture of
existing system provenance collectors imposes a lag between the
generation and consumption of a system call event. Paccagnella
et al. [97] proposed an attack that deletes system call events
generated by malicious processes from the ring buffers before
they have been submitted to the userspace component. What’s
worse, the provenance collector may voluntarily drop prove-
nance events when the system workload is very high, which is
reported by CVE-2019-833 [98]. In this paper, we assume that
the storage and transmission of the provenance data are trusted.
We also assume the integrity of the provenance data as well as
the provenance collector.

IX. CONCLUDING REMARKS

In this paper, we conduct the very first systematic study on
system provenance data of malicious websites. This study closes
the gap between system provenance analysis and malicious web
detection. Having a provenance-based technique enables non-
intrusive malicious website detection. Our study shows that the
system provenance data of malicious websites are substantially
different from the system provenance data of benign websites.
Based on our measurement study, we summarize eight system
provenance-based features for malicious website detection and
build a detection tool ProvWeb. Compared with conventional
techniques, ProvWeb is non-intrusive as it does not require
any modifications to browsers. In our evaluation, ProvWeb can
achieve an F1 score of 93.7%∼ 99.7% for the four combinations
of browsers and OSes (Windows Chrome, Windows Firefox,
Linux Chrome, Linux Firefox). Our study demonstrates that

system provenance analysis offers a non-intrusive and more
robust mechanism to detect malicious websites effectively. As
it has the potential to improve detection accuracy further if
combined with other existing techniques, we will explore more
possibilities in system provenance-based malicious website de-
tection techniques in the future.

REFERENCES

[1] Kaspersky, “Web threats,” 2019. [Online]. Available: https://usa.
kaspersky.com/resource-center/threats/web

[2] Mcafee, “Why web-based malware is the most serious threat to your
business,” 2017.

[3] JOSH LAKE, “What is a drive-by download and how can it infect your
computer?,” 2019. [Online]. Available: https://www.comparitech.com/
blog/information-security/drive-by-download/

[4] A. Oest et al., “PhishTime: Continuous longitudinal measurement of the
effectiveness of anti-phishing blacklists,” in Proc. 29th USENIX Secur.
Symp., 2020, pp. 379–396.

[5] M. Nadeau, “What is Cryptojacking? How to prevent, detect, and recover
from it,” 2020. [Online]. Available: https://www.csomisc.com/article/
3253572/whatiscryptojackinghow-to-prevent-detect-and-recover-from-
it.html

[6] S. Garera, N. Provos, M. Chew, and A. D. Rubin, “A framework for
detection and measurement of phishing attacks,” in Proc. ACM Workshop
Recurring Malcode, Jan. 22, 2021, Art. no. 1.

[7] S. Sjouwerman, “[Heads-up] 40 percent of malicious URLs found on good
domains. YIKES,” 2019. [Online]. Available: https://blog.knowbe4.com/
heads-up-40-percent-of-malicious-urls-found-on-good-domains.-yikes

[8] D. Canali, M. Cova, G. Vigna, and C. Kruegel, “Prophiler: A fast filter for
the large-scale detection of malicious web pages,” in Proc. 20th Int. Conf.
World Wide Web, 2011, pp. 197–206.

[9] A. Fass, M. Backes, and B. Stock, “HideNoSeek: Camouflaging mali-
cious JavaScript in benign ASTs,” in Proc. ACM SIGSAC Conf. Comput.
Commun. Secur., 2019, pp. 1899–1913.

[10] B. Li, P. Vadrevu, K. H. Lee, and R. Perdisci, “JSgraph: Enabling recon-
struction of web attacks via efficient tracking of live in-browser JavaScript
executions,” in Proc. Netw. Distrib. Syst. Secur. Symp., 2018.

[11] A. Kapravelos, Y. Shoshitaishvili, M. Cova, C. Kruegel, and G. Vigna,
“Revolver: An automated approach to the detection of evasive web-based
malware,” in Proc. 22nd USENIX Secur. Symp., 2013, pp. 637–652.

[12] J. Jueckstock and A. Kapravelos, “VisibleV8: In-browser monitoring of
JavaScript in the wild,” in Proc. Internet Meas. Conf., 2019, pp. 393–405.

[13] S. T. King and P. M. Chen, “Backtracking intrusions,” in Proc. 19th ACM
Symp. Operating Syst. Princ., 2003, pp. 223–236.

[14] P. Gao et al., “SAQL: A stream-based query system for real-time abnormal
system behavior detection,” in Proc. 27th USENIX Secur. Symp., 2018,
pp. 639–656.

[15] J. Gui et al., “APTrace: A responsive system for agile enterprise level
causality analysis,” in Proc. IEEE 36th Int. Conf. Data Eng., 2020,
pp. 1701–1712.

[16] S. M. Milajerdi, R. Gjomemo, B. Eshete, R. Sekar, and V. Venkatakrishnan,
“HOLMES: Real-time APT detection through correlation of suspicious
information flows,” in Proc. IEEE Symp. Secur. Privacy, 2019, pp. 1137–
1152.

[17] W. U. Hassan et al., “NoDoze: Combatting threat alert fatigue with
automated provenance triage,” in Proc. Netw. Distrib. Syst. Secur. Symp.,
2019.

[18] S. Wang et al., “Attentional heterogeneous graph neural network: Appli-
cation to program reidentification,” 2019.

[19] Q. Wang et al., “You are what you do: Hunting stealthy malware via data
provenance analysis,” in Proc. Symp. Netw. Distrib. Syst. Secur., 2020.

[20] X. Han et al., “SIGL: Securing software installations through deep graph
learning,” 2020.

[21] X. Han, T. Pasquier, A. Bates, J. Mickens, and M. Seltzer, “UNICORN:
Runtime provenance-based detector for advanced persistent threats,” 2020.

[22] S. Kim, J. Kim, and B. Kang, “Malicious URL protection based on attack-
ers’ habitual behavioral analysis,” Comput. Secur., vol. 77, pp. 790–806,
2018.

[23] R. M. Mohammad, F. Thabtah, and L. McCluskey, “Tutorial and critical
analysis of phishing websites methods,” Comput. Sci. Rev., vol. 17, pp. 1–
24, Jan. 19, 2021.

[24] PhishTank | join the fight against phishing, 2021. [Online]. Available: http:
//phishtank.org/index.php

Authorized licensed use limited to: Peking University. Downloaded on June 20,2024 at 07:39:59 UTC from IEEE Xplore. Restrictions apply.

https://usa.kaspersky.com/resource-center/threats/web
https://usa.kaspersky.com/resource-center/threats/web
https://www.comparitech.com/blog/information-security/drive-by-download/
https://www.comparitech.com/blog/information-security/drive-by-download/
https://www.csomisc.com/article/3253572/whatiscryptojackinghow-to-prevent-detect-and-recover-from-it.html
https://www.csomisc.com/article/3253572/whatiscryptojackinghow-to-prevent-detect-and-recover-from-it.html
https://www.csomisc.com/article/3253572/whatiscryptojackinghow-to-prevent-detect-and-recover-from-it.html
https://blog.knowbe4.com/heads-up-40-percent-of-malicious-urls-found-on-good-domains.-yikes
https://blog.knowbe4.com/heads-up-40-percent-of-malicious-urls-found-on-good-domains.-yikes
http://phishtank.org/index.php
http://phishtank.org/index.php

1422 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 21, NO. 3, MAY/JUNE 2024

[25] Forrest Stroud, “Cryptomining malware,” 2020. [Online]. Available:
https://www.webopedia.com/TERM/C/cryptomining-malware.html#::
text=Cryptomining%20malware%2C%20or%20cryptocurrency%
20mining,without%20a%20user%27s%20explicit%20permission

[26] C. Cimpanu, “Coinhive cryptojacking service to shut down in
march 2019,” 2019. [Online]. Available: https://www.zdnet.com/article/
coinhive-cryptojacking-service-to-shut-down-in-march-2019/

[27] The Monero Project, 2021. [Online]. Available: https://www.getmonero.
org//index.html

[28] Magecart Malware, Jun. 06, 2020. [Online]. Available: https:
//sucuri.net/guides/website-malware/#:%E2%88%BC:text%20=
What%20are%20the%20different%20types%20of%2%200website%
20malware%3F,8.%20Credit%20card%20st%20ealers%20%26%
20Ecommerce%20malware%20

[29] Magecart Malware, Jun. 16, 2022. [Online]. Available: https://malpedia.
caad.fkie.fraunhofer.de/details/js.magecart

[30] Supply-Chain Attacks, May 27, 2022. [Online]. Available:
https://www.darkreading.com/application-security/third-party-scripts-
websites-broad-open-attack-vector

[31] SEO Spam, Jun. 10, 2020. [Online]. Available: https://www.clickcease.
com/blog/what-is-seo-spam/

[32] B. Eshete, A. Villafiorita, and K. Weldemariam, “Malicious website detec-
tion: Effectiveness and efficiency issues,” in Proc. 1st SysSec Workshop,
2011, pp. 123–126.

[33] H. Shahriar and M. Zulkernine, “Phishtester: Automatic testing of phishing
attacks,” in Proc. 4th Int. Conf. Secure Softw. Integration Rel. Improvement,
2010, pp. 198–207.

[34] S. M. Milajerdi, B. Eshete, R. Gjomemo, and V. Venkatakrishnan,
“POIROT: Aligning attack behavior with kernel audit records for cyber
threat hunting,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur.,
2019, pp. 1795–1812.

[35] Y. Liu et al., “Towards a timely causality analysis for enterprise security,”
in Proc. Netw. Distrib. Syst. Secur. Symp., 2018.

[36] S. Wang et al., “Heterogeneous graph matching networks for unknown
malware detection,” in Proc. Int. Joint Conf. Artif. Intell., 2019, pp. 3762–
3770.

[37] VirusShare.com, 2021. [Online]. Available: https://virusshare.com/
[38] PhishTank > developer information, 2020. [Online]. Available: https://

www.phishtank.com/developer_info.php
[39] Amazon, “Alexa top sites,” 2020. [Online]. Available: https://aws.amazon.

com/marketplace/pp/B07QK2XWNV?qid=1555346599089&sr=0-
1&ref_=srh_res_product_title

[40] D. Oktavianto and I. Muhardianto, Cuckoo Malware Analysis. Birming-
ham, U.K.: Packt Publishing, 2013.

[41] M. N. Hossain et al., “SLEUTH: Real-time attack scenario reconstruction
from COTS audit data,” in Proc. 26th USENIX Secur. Symp., 2017, pp. 487–
504.

[42] T. Wang, “High precision open-world website fingerprinting,” in Proc.
IEEE Symp. Secur. Privacy, 2020, pp. 152–167.

[43] R. Conroy, “What hypotheses do “nonparametric” two-group tests actually
test?,” Statist. J., vol. 12, pp. 182–190, 2012.

[44] W. Conover, Practical Nonparametric Statistics, 3rd ed., ser. Wiley series
in probability and statistics. New York, NY, USA: Wiley, 1999.

[45] L. van der Maaten and G. Hinton, “Visualizing data using t-SNE,” J. Mach.
Learn. Res., vol. 9, no. 86, pp. 2579–2605, 2008.

[46] R. Simard and P. L’Ecuyer, “Computing the two-sided Kolmogorov-
Smirnov distribution,” J. Statist. Softw., vol. 39, no. 11, pp. 1–18, 2011.

[47] How would you determine whether a classifier is significantly
better than random guessing? Oct. 18, 2012. [Online]. Available:
https://www.researchgate.net/post/How-would-you-determine-whether-
a-classifier-is-significantly-better-than-random-guessing

[48] W. U. Hassan et al., “This is why we can’t cache nice things: Lightning-fast
threat hunting using suspicion-based hierarchical storage,” in Proc. Annu.
Comput. Secur. Appl. Conf., 2020, pp. 165–178.

[49] A. Oest, Y. Safaei, A. Doupe, G.-J. Ahn, B. Wardman, and
K. Tyers, “PhishFarm: A scalable framework for measuring the ef-
fectiveness of evasion techniques against browser phishing black-
lists,” in Proc. IEEE Symp. Secur. Privacy, Oct. 07, 2020,
pp. 1344–1361.

[50] T. G. Dietterich et al., “Ensemble learning,” Handbook Brain Theory
Neural Netw., vol. 2, pp. 110–125, 2002.

[51] D. H. Wolpert, “Stacked generalization,” Neural Netw., vol. 5, no. 2,
pp. 241–259, 1992.

[52] A. Krogh and J. Vedelsby, “Neural network ensembles, cross validation,
and active learning,” in Proc. Adv. Neural Inf. Process. Syst., G. Tesauro,
D. Touretzky, and T. Leen, Eds., MIT Press, 1994, pp. 231–238.

[53] Stack Ensemble Learning, Mar. 25, 2022. [Online]. Available:
https://machinelearningmastery.com/stacking-ensemble-machine-
learning-with-python/

[54] How to use “model stacking” to improve machine learning predictions,”
Jul. 15, 2021. [Online]. Available: https://medium.com/geekculture/how-
to-use-model-stacking-to-improve-machine-learning-predictions-
d113278612d4

[55] T. K. Ho, “The random subspace method for constructing decision forests,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 20, no. 8, pp. 832–844,
Aug. 1998.

[56] J. Platt et al., “Probabilistic outputs for support vector machines and
comparisons to regularized likelihood methods,” Adv. Large Margin Clas-
sifiers, vol. 10, no. 3, pp. 61–74, 1999.

[57] Soft Voting Classifier, Sep. 07, 2020. [Online]. Available: https://vitalflux.
com/hard-vs-soft-voting-classifier-python-example/

[58] MML Book, “Mathematics for machine learning,” in Mathematics for
Machine Learning. Cambridge, U.K.: Cambridge Univ. Press, 2020,
pp. 263–264.

[59] M. L. D. S. Brian, S. Everitt, and S. Landau, “An introduction to classi-
fication and clustering,” in Cluster Analysis, 5th Ed. Hoboken, NJ, USA:
Wiley, 2011.

[60] M. Steinbach, L. Ertöz, and V. Kumar, The Challenges of Clustering High
Dimensional Data. Berlin, Germany: Springer, 2004, pp. 273–309.

[61] Clustering Algorithms in Machine Learning, Sep. 21, 2020. [Online].
Available: https://www.freecodecamp.org/news/8-clustering-algorithms-
in-machine-learning-that-all-data-scientists-should-know/

[62] J. A. Hartigan and M. A. Wong, “Algorithm AS 136: A K-Means clustering
algorithm,” Appl. Statist., vol. 28, no. 1, pp. 100–108, 1979. [Online].
Available: http://dx.doi.org/10.2307/2346830

[63] D. N. Geary, “Mixture Models: Inference and Applications to Clustering,”
J. Roy. Stat. Soc. Ser. A, vol. 152, no. 1, pp. 126–127, Jan. 1989. [On-
line]. Available: https://ideas.repec.org/a/bla/jorssa/v152y1989i1p126--
127.html

[64] A. Y. Ng, M. I. Jordan, and Y. Weiss, “On spectral clustering: Analysis and
an algorithm,” in Proc. 14th Int. Conf. Neural Inf. Process. Syst. Natural
Synthetic, Cambridge, MA, USA: MIT Press, 2001, pp. 849–856.

[65] Evaluation of Clustering:Purity, Apr. 07, 2009. [Online]. Available:
https://nlp.stanford.edu/IR-book/html/htmledition/evaluation-of-
clustering-1.html

[66] C. Whittaker, B. Ryner, and M. Nazif, “Large-scale automatic classifica-
tion of phishing pages,” 2010.

[67] S. Sheng, B. Wardman, G. Warner, L. Cranor, J. Hong, and C. Zhang, An
Empirical Analysis of Phishing Blacklists. Pittsburgh, PA, USA: Carnegie
Mellon Univ., 2009.

[68] J. Ma, L. K. Saul, S. Savage, and G. M. Voelker, “Beyond blacklists:
Learning to detect malicious web sites from suspicious URLs,” in Proc.
15th ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining, Sep. 21, 2020,
Art. no. 1245.

[69] J. Ma, L. K. Saul, S. Savage, and G. M. Voelker, “Identifying suspicious
URLs: An application of large-scale misc learning,” in Proc. 26th Annu.
Int. Conf. Mach. Learn., Sep. 21, 2020, pp. 1–8.

[70] A. Oest et al., “Sunrise to sunset: Analyzing the end-to-end life cycle and
effectiveness of phishing attacks at scale,” in Proc. 29th USENIX Secur.
Symp., 2020, pp. 361–377.

[71] T. Shibahara et al., “Malicious URL sequence detection using event de-
noising convolutional neural network,” in Proc. IEEE Int. Conf. Commun.,
2017, pp. 1–7.

[72] Y.-L. Zhang et al., “POSTER: A PU learning based system for potential
malicious URL detection,” in Proc. ACM SIGSAC Conf. Comput. Commun.
Secur., 2017, pp. 2599–2601.

[73] D. Sahoo, C. Liu, and S. C. H. Hoi, “Malicious URL detection using
machine learning: A survey,” 2020.

[74] B. Duncan, “Campaign evolution: Darkleech to pseudo-Darkleech and
beyond,” 2016. [Online]. Available: https://unit42.paloaltonetworks.
com/unit42-campaign-evolution-darkleech-to-pseudo-darkleech-and-
beyond/

[75] DAN GOODIN, “Rampant Apache website attack hits visitors
with highly malicious software,” 2013. [Online]. Available:
https://arstechnica.com/information-technology/2013/07/darkleech-
infects-40k-apache-site-addresses/

[76] K. Rieck, T. Krueger, and A. Dewald, “Cujo: Efficient detection and
prevention of drive-by-download attacks,” in Proc. 26th Annu. Comput.
Secur. Appl. Conf., 2010, pp. 31–39.

[77] A. Fass, M. Backes, and B. Stock, “JStap: A static pre-filter for malicious
JavaScript detection,” in Proc. ACM 35th Annu. Comput. Secur. Appl.
Conf., 2019, pp. 257–269.

Authorized licensed use limited to: Peking University. Downloaded on June 20,2024 at 07:39:59 UTC from IEEE Xplore. Restrictions apply.

https://www.webopedia.com/TERM/C/cryptomining-malware.html#::text=Cryptomining%20malware%2C%20or%20cryptocurrency%20mining,without%20a%20user%27s%20explicit%20permission
https://www.webopedia.com/TERM/C/cryptomining-malware.html#::text=Cryptomining%20malware%2C%20or%20cryptocurrency%20mining,without%20a%20user%27s%20explicit%20permission
https://www.webopedia.com/TERM/C/cryptomining-malware.html#::text=Cryptomining%20malware%2C%20or%20cryptocurrency%20mining,without%20a%20user%27s%20explicit%20permission
https://www.zdnet.com/article/coinhive-cryptojacking-service-to-shut-down-in-march-2019/
https://www.zdnet.com/article/coinhive-cryptojacking-service-to-shut-down-in-march-2019/
https://www.getmonero.org//index.html
https://www.getmonero.org//index.html
https://sucuri.net/guides/website-malware/#:%E2%88%BC:text%20=What%20are%20the%20different%20types%20of%2%200website%20malware%3F,8.%20Credit%20card%20st%20ealers%20%26%20Ecommerce%20malware%20
https://sucuri.net/guides/website-malware/#:%E2%88%BC:text%20=What%20are%20the%20different%20types%20of%2%200website%20malware%3F,8.%20Credit%20card%20st%20ealers%20%26%20Ecommerce%20malware%20
https://sucuri.net/guides/website-malware/#:%E2%88%BC:text%20=What%20are%20the%20different%20types%20of%2%200website%20malware%3F,8.%20Credit%20card%20st%20ealers%20%26%20Ecommerce%20malware%20
https://sucuri.net/guides/website-malware/#:%E2%88%BC:text%20=What%20are%20the%20different%20types%20of%2%200website%20malware%3F,8.%20Credit%20card%20st%20ealers%20%26%20Ecommerce%20malware%20
https://sucuri.net/guides/website-malware/#:%E2%88%BC:text%20=What%20are%20the%20different%20types%20of%2%200website%20malware%3F,8.%20Credit%20card%20st%20ealers%20%26%20Ecommerce%20malware%20
https://malpedia.caad.fkie.fraunhofer.de/details/js.magecart
https://malpedia.caad.fkie.fraunhofer.de/details/js.magecart
https://www.darkreading.com/application-security/third-party-scripts-websites-broad-open-attack-vector
https://www.darkreading.com/application-security/third-party-scripts-websites-broad-open-attack-vector
https://www.clickcease.com/blog/what-is-seo-spam/
https://www.clickcease.com/blog/what-is-seo-spam/
https://virusshare.com/
https://www.phishtank.com/developer_info.php
https://www.phishtank.com/developer_info.php
https://aws.amazon.com/marketplace/pp/B07QK2XWNV{?}qid=1555346599089&sr=0-1&ref_=srh_res_product_title
https://aws.amazon.com/marketplace/pp/B07QK2XWNV{?}qid=1555346599089&sr=0-1&ref_=srh_res_product_title
https://aws.amazon.com/marketplace/pp/B07QK2XWNV{?}qid=1555346599089&sr=0-1&ref_=srh_res_product_title
https://www.researchgate.net/post/How-would-you-determine-whether-a-classifier-is-significantly-better-than-random-guessing
https://www.researchgate.net/post/How-would-you-determine-whether-a-classifier-is-significantly-better-than-random-guessing
https://machinelearningmastery.com/stacking-ensemble-machine-learning-with-python/
https://machinelearningmastery.com/stacking-ensemble-machine-learning-with-python/
https://medium.com/geekculture/how-to-use-model-stacking-to-improve-machine-learning-predictions-d113278612d4
https://medium.com/geekculture/how-to-use-model-stacking-to-improve-machine-learning-predictions-d113278612d4
https://medium.com/geekculture/how-to-use-model-stacking-to-improve-machine-learning-predictions-d113278612d4
https://vitalflux.com/hard-vs-soft-voting-classifier-python-example/
https://vitalflux.com/hard-vs-soft-voting-classifier-python-example/
https://www.freecodecamp.org/news/8-clustering-algorithms-in-machine-learning-that-all-data-scientists-should-know/
https://www.freecodecamp.org/news/8-clustering-algorithms-in-machine-learning-that-all-data-scientists-should-know/
http://dx.doi.org/10.2307/2346830
https://ideas.repec.org/a/bla/jorssa/v152y1989i1p126--127.html
https://ideas.repec.org/a/bla/jorssa/v152y1989i1p126--127.html
https://nlp.stanford.edu/IR-book/html/htmledition/evaluation-of-clustering-1.html
https://nlp.stanford.edu/IR-book/html/htmledition/evaluation-of-clustering-1.html
https://unit42.paloaltonetworks.com/unit42-campaign-evolution-darkleech-to-pseudo-darkleech-and-beyond/
https://unit42.paloaltonetworks.com/unit42-campaign-evolution-darkleech-to-pseudo-darkleech-and-beyond/
https://unit42.paloaltonetworks.com/unit42-campaign-evolution-darkleech-to-pseudo-darkleech-and-beyond/
https://arstechnica.com/information-technology/2013/07/darkleech-infects-40k-apache-site-addresses/
https://arstechnica.com/information-technology/2013/07/darkleech-infects-40k-apache-site-addresses/

JIANG et al.: DETECTING MALICIOUS WEBSITES FROM THE PERSPECTIVE OF SYSTEM PROVENANCE ANALYSIS 1423

[78] L. Invernizzi et al., “Nazca: Detecting malware distribution in large-scale
networks,” in Proc. Netw. Distrib. Syst. Secur. Symp., 2014, pp. 23–26.

[79] P. Ratanaworabhan, V. B. Livshits, and B. G. Zorn, “Nozzle: A defense
against heap-spraying code injection attacks,” in Proc. USENIX Secur.
Symp., 2009, pp. 169–186.

[80] C. Curtsinger, B. Livshits, B. Zorn, and C. Seifert, “Zozzle: Low-overhead
mostly static JavaScript malware detection,” in Proc. USENIX Secur.
Symp., 2011, pp. 3–3.

[81] M. Cova, C. Kruegel, and G. Vigna, “Detection and analysis of drive-by-
download attacks and malicious JavaScript code,” in Proc. 19th Int. Conf.
World Wide Web, 2010, pp. 281–290.

[82] B. Eshete, “Effective analysis, characterization, and detection of malicious
web pages,” in Proc. 22nd Int. Conf. World Wide Web, 2013, pp. 355–360.

[83] P. Saxena, D. Akhawe, S. Hanna, F. Mao, S. McCamant, and D. Song,
“A symbolic execution framework for JavaScript,” in Proc. IEEE Symp.
Secur. Privacy, 2010, pp. 513–528.

[84] X. Han, T. Pasquier, T. Ranjan, M. Goldstein, and M. Seltzer, “FRAPpuc-
cino: Fault-detection through runtime analysis of provenance,” in Proc.
9th USENIX Workshop Hot Top. Cloud Comput., 2017, pp. 18–18.

[85] Y. Xie, D. Feng, Z. Tan, and J. Zhou, “Unifying intrusion detection and
forensic analysis via provenance awareness,” Future Gener. Comput. Syst.,
vol. 61, pp. 26–36, 2016.

[86] A. Gehani and D. Tariq, “SPADE: Support for provenance auditing in
distributed environments,” in Proc. ACM/IFIP/USENIX Int. Conf. Distrib.
Syst. Platforms Open Distrib. Process., 2012, pp. 101–120.

[87] M. N. Hossain, S. Sheikhi, and R. Sekar, “Combating dependence ex-
plosion in forensic analysis using alternative tag propagation semantics,”
in Proc. IEEE Symp. Secur. Privacy, 2020, pp. 1139–1155.

[88] S. M. Milajerdi, R. Gjomemo, B. Eshete, R. Sekar, and V. N. Venkatakr-
ishnan, “HOLMES: Real-time APT detection through correlation of sus-
picious information flows,” in Proc. IEEE Symp. Secur. Privacy, 2019,
pp. 1137–1152.

[89] Y. Ji et al., “Enabling refinable cross-host attack investigation with efficient
data flow tagging and tracking,” in Proc. 27th USENIX Secur. Symp., 2018,
pp. 1705–1722.

[90] T. Pasquier et al., “Runtime analysis of whole-system provenance,” in Proc.
ACM SIGSAC Conf. Comput. Commun. Secur., 2018, pp. 1601–1616.

[91] A. Bates, D. J. Tian, K. R. Butler, and T. Moyer, “Trustworthy whole-
system provenance for the Linux kernel,” in Proc. 24th USENIX Secur.
Symp., 2015, pp. 319–334.

[92] K. H. Lee, X. Zhang, and D. Xu, “LogGC: Garbage collecting audit log,” in
Proc. ACM SIGSAC Conf. Comput. Commun. Secur., 2013, pp. 1005–1016.

[93] M. N. Hossain et al., “Dependence-preserving data compaction for scalable
forensic analysis,” in Proc. 27th {USENIX} Secur. Symp., 2018, pp. 1723–
1740.

[94] Y. Tang et al., “NodeMerge: Template based efficient data reduction
for Big-Data causality analysis,” in Proc. ACM SIGSAC Conf. Comput.
Commun. Secur., 2018, pp. 1324–1337.

[95] P. Chen, C. Huygens, L. Desmet, and W. Joosen, “Advanced or not? A
comparative study of the use of anti-debugging and anti-VM techniques
in generic and targeted malware,” in ICT Systems Security and Privacy
Protection, J.-H. Hoepman and S. Katzenbeisser, Eds., Berlin, Germany:
Springer, 2016, pp. 323–336.

[96] CAPEC-268: Audit log manipulation, Aug. 17, 2020. [Online]. Available:
https://capec.mitre.org/data/definitions/268.html

[97] R. Paccagnella, K. Liao, D. Tian, and A. Bates, “Logging to the danger
zone: Race condition attacks and defenses on system audit frameworks,” in
Proc. ACM SIGSAC Conf. Comput. Commun. Secur., 2020, pp. 1551–1574.

[98] M. Stemm, “CVE-2019–8339, a falco capacity related vulnerability,” May
19, 2019 [Online]. Available: https://sysdig.com/blog/cve-2019--8339-
falco-vulnerability/?msclkid=4c2c25afa9b511ec815c58c5f800beec

Peng Jiang received the BS degree in electrical engi-
neering from Southeast University in July 2016 and
the MS degree in electrical and computer engineering
from Cornell University in 2018. Currently, he is
working toward the PhD degree with the Key Lab-
oratory of High-Confidence Software Technologies
(MOE), School of Computer Science, Peking Uni-
versity. His research interests include security and
system.

Jifan Xiao received the BS degree in computer sci-
ence from Peking University in July 2021. Currently,
he is working toward the PhD degree with the Key
Laboratory of High-Confidence Software Technolo-
gies (MOE), School of Computer Science, Peking
University. His research interests include system se-
curity and network security.

Ding Li (Member, IEEE) is an assistant professor
with the Key Laboratory of High-Confidence Soft-
ware Technologies (MOE), School of Computer Sci-
ence, Peking University. His research interests in-
clude program analysis and system provenance analy-
sis. Particularly, he is interested in applying machine
learning techniques to make program analysis and
system provenance analysis more efficient, and accu-
rate.

Hongyi Yu received the degree of master’s of Science
in advanced computer science from the University of
Essex in November 2019. Currently, he works with
the Advanced Institute of Information Technology as
a Big Data analysis engineer in the field of network
security.

Yu Bai received the BE degree in communication
and information systems from the PLA Electronic
Engineering Institute in July 2012. Currently, he is the
deputy director of the laboratory with the Advanced
Institute of Information Technology (AIIT), Peking
University. His research interests include information
security and machine learning.

Yao Guo (Member, IEEE) received the PhD de-
gree in computer engineering from the University of
Massachusetts at Amherst in 2007. He is currently
a full professor with the Key Laboratory of High-
Confidence Software Technologies (MOE), School
of Computer Science, Peking University. His general
research interests include operating systems, mobile
computing, and applications, low-power design, and
software engineering.

Xiangqun Chen received the BS and MS degrees
in computer science from Peking University. She
is currently a professor with the Key Laboratory
of High-Confidence Software Technologies (MOE),
School of Computer Science, Peking University. Her
research interests include operating systems and soft-
ware engineering.

Authorized licensed use limited to: Peking University. Downloaded on June 20,2024 at 07:39:59 UTC from IEEE Xplore. Restrictions apply.

https://capec.mitre.org/data/definitions/268.html
https://sysdig.com/blog/cve-2019--8339-falco-vulnerability/{?}msclkid=4c2c25afa9b511ec815c58c5f800beec
https://sysdig.com/blog/cve-2019--8339-falco-vulnerability/{?}msclkid=4c2c25afa9b511ec815c58c5f800beec

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

