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ABSTRACT
To achieve extremely high performance in HPC, many re-
searchers have proposed customized operating systems that
are tailored to HPC workload characteristics and emerging
hardware. Hence, we argue that the HPC cluster will move
away from the single OS environment to a cluster with nu-
merous heterogeneous OSes. However, existing HPC cluster
management still assumes that all nodes are equipped with
the same OS and fails to consider OS heterogeneity during
job scheduling. As a result, such unawareness loses most
performance benefits provided by specialized OSes.
This paper quantitatively investigates the problem of ig-

noring OS heterogeneity in the current HPC cluster manage-
ment and analyzes performance trade-offs inside heteroge-
neous OSes. Preliminary results on a variety of HPC OSes
and applications confirm the performance penalty of the ex-
isting cluster scheduler. We then propose a cluster scheduler
prototype that incorporates OS heterogeneity into cluster
configuration, resource monitoring, and job placement. We
also present open challenges for future research on OS het-
erogeneity aware HPC clusters.

CCS CONCEPTS
• Software and its engineering → Ultra-large-scale sys-
tems;Multiprocessing / multiprogramming / multitask-
ing.
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1 INTRODUCTION
High-performance computing (HPC) has become a funda-
mental infrastructure in many fields, such as scientific com-
puting, digital finance and social governance. As it is su-
per large-scale, a 1% performance improvement over HPC
applications can save millions of dollars in computing ex-
penses. To obtain optimal performance, customized OSes
for HPC become increasingly popular in both industry and
academia [7, 9, 10, 23]. However, customizing OS sacrifices
generality and requires different OSes to accelerate different
types of HPC applications. As a result, the HPC cluster will
move away from the single general OS environment to a
cluster with multiple heterogeneous specialized OSes [22].
In the current HPC scenarios, with the increasing com-

plexity of applications and the growing demand for parallel
computing, large-scale supercomputers and similar hard-
ware capabilities are being divided into computational units
through methods such as cloud computing and dynamic
partitioning. Considering the existence of such computing
scenarios, deploying a single OS on all nodes will inevitably
result in performance degradation or functional deficiencies
at the kernel level. Therefore, it is more appropriate to re-
place it with the deployment of diverse computing OSes on
different computing nodes to cope with various potential
computing tasks.

OS heterogeneity brings many challenges for HPC cluster
management. Based on our industry practice, there are two
key research problems that need more exploration.

1) Existing cluster job scheduling is unaware of OS hetero-
geneity. The cluster scheduler assumes that all comput-
ing nodes have the same OS installed with the same
OS functionalities, capabilities, and features. Thus, the
cluster scheduler fails to place jobs on nodes equipped
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with the most suitable OS. According to our study, the
lack of OS heterogeneity awareness may lose most per-
formance benefits provided by specialized OSes and
can even lead to negative performance penalties due
to a mismatch between applications and OSes.

2) It is difficult to configure, tune, and analyze OS het-
erogeneity. Unlike the general OS, such as Linux, cus-
tomized HPC OSes introduce lots of trade-offs tailored
to HPC applications. Without proper specification, un-
derstanding, and adaptation of these trade-offs, cluster
management cannot determine the best scheduling
policy. Even worse, heterogeneous OSes involve much
more factors and parameters to balance and tune, sig-
nificantly increasing the complexity of scheduler man-
agement.

This paper conducts a quantitative study to investigate
performance penalties due to OS heterogeneity unawareness
in existing HPC cluster management and performance trade-
offs inside heterogeneous OSes. Experiments on several HPC
applications and OSes show that current cluster management
systems (e.g., Slurm [34], a widely-used job scheduler) incur
about 10% performance degradation compared to the ideal
job placement (§3.1). Evaluation using mOS [33], a repre-
sentative OS customized for HPC, demonstrates application
performance trade-offs caused by different OS configurations.
Improper configurations of specialized OSes even cause more
than 230% performance variance (§3.2). Our studies confirm
that the best scheduling mechanism for future HPC clusters
depends on the awareness of OS heterogeneity and appro-
priate matching between OSes and applications.

Based on our studies, this paper advocates that OS hetero-
geneity needs to be incorporated into the whole scheduling
cycle of HPC clusters, including user configuration, resource
monitoring, and job placement (§3.3). During the design pro-
cess of our cluster scheduler prototype, we identify some
open challenges regarding efficient OS heterogeneity pro-
filing, dynamic heterogeneity tuning, and support for more
complicated scenarios. We discuss these challenges in §4.

The contributions of this paper include:

• We identify an unexplored research problem that OS
heterogeneity is ignored by current HPC cluster man-
agement, causing significant performance degradation.

• We quantify the extent of performance loss due to OS
heterogeneity unawareness and performance trade-
offs of heterogeneous OSes with a variety of HPC OSes
and applications.

• Wepropose anHPC job scheduling prototype and open
research challenges to bring awareness of OS Hetero-
geneity to the HPC cluster.

2 BACKGROUND
2.1 Heterogeneous OS for HPC
Facedwith awide range of diverse HPCworkloads, achieving
the optimal performance requires for heterogeneous OSes to
match OS implementation and policies with application char-
acteristics. There are many research and industry projects
to build specialized OSes. Some OSes customized kernel im-
plementation based on Linux (e.g., CNK [11]Argo [26] and
KPGO [35]), while other projects build new systems with
different OS architectures, such as micro-kernel [12, 15],
lightweight kernel [16, 29], and unikernel [17]. Furthermore,
we can integrate different kernels into one OS via multi-
kernel [7, 10] or kernel co-location [9, 23] approaches to
generate more heterogeneous OSes, such as FusedOS[24],
Hobbes[3], mOS[33], IHK/McKernel[8], and MySyS [14].
Unlike the general-purpose OSes that try to balance the

performance of all possible application usage, specialized
OSes usually optimize only a few types of applications and
customize parts of OS functionalities.
For those specialized OSes, the configuration of kernel

parameters has a significant impact on its performance. Dif-
ferent kernel parameter settings will have different effects on
system resource allocation, functional characteristics, and
other attributes. This results in varying performance and
affinity for different application scenarios and tasks. In exist-
ing customized OSes targeting the HPC field, it is difficult to
identify a unified trend or determine an optimal configura-
tion for kernel parameters. Therefore, even with the same
specialized kernel, OS heterogeneity can still be observed
due to differences in kernel parameter configuration.

As a result, different OSes, and specialized OS with differ-
ent kernel parameter configuration, exhibit a wide range of
heterogeneity in many OS services and subsystems, such as
scheduling policy, memory management, and inter-process
communication. To facilitate heterogeneous OS development
and deployment, some researchers propose a development,
compilation, and deployment toolchain to help users easily
implement and customize new systems [18]. However, het-
erogeneous OS management under a cluster environment is
still an unexplored research problem.

2.2 Node Allocation in HPC
The management and allocation of massive computing re-
sources play a critical role in optimizing the performance of
HPC. For cluster management tools, the types and scales of
potential tasks are unknown and uncertain. Therefore, it is
difficult to incorporatemultiple different node schedulers and
corresponding scheduling algorithms through pre-defined
methods. Additionally, considering that node allocation itself
requires the occupation of computational resources on the
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Figure 1: The general workflow of cluster scheduling. (a) represents existing schedulers that manage a cluster with a single OS;
(b) is the proposed scheduler that incorporates OS heterogeneity throughout the entire management workflow.

management node, deploying multiple hierarchical sched-
ulers would also result in a loss of computational resources.
The above considerations have led to the adoption of various
common default algorithms and a single scheduler in current
mainstream strategies. Figure 1(a) shows the overall architec-
ture of the general cluster scheduling workflow. Users submit
jobs to the management node and provide task configura-
tion and requirements via user interfaces. The management
node realizes the core logic of cluster scheduling. It includes
three key functionalities. 1) It sorts the job queue which
essentially determines job priority. 2) It receives runtime sta-
tistics of computing nodes and analyzes cluster status, such
as resource utilization and load balance. 3) It distributes jobs
to computing nodes based on various scheduling policies.
Computing nodes form the resource pool of the cluster. The
OS on each node carries out the actual job execution. Addi-
tionally, a daemon collects and monitors system status, and
communicates with the management node.

Existing HPC scheduling policies consider different factors
to place jobs, such as multi-objective performance optimiza-
tion [2], node topology [37], and resource fairness [19, 32].
However, all current strategies assume that a single OS is
used by all computing nodes, they do not take OS hetero-
geneity into account when allocating nodes.

3 AWARENESS OF OS HETEROGENEITY
3.1 Cluster-wide OS Heterogeneity
Due to performance specificity, an HPC cluster will deploy
multiple heterogeneous OSes to meet different application
requirements. However, existing cluster management strate-
gies ignore the OS heterogeneity of different nodes. There-
fore, the current cluster scheduler fails to determine an opti-
mal node allocation, resulting in performance losses.

To quantify the performance degradation in current clus-
ter scheduling, we conducted evaluations using several HPC

benchmarks in a heterogeneous cluster consisting of a man-
agement node and four computing nodes. Each node is a
virtual machine with 16GB memory, 32 cores (AMD EPYC
7742 processor), and 100GB storage. The heterogeneous OS
chosen is mOS with 16 isolated cores. mOS [33] runs both a
Linux and a lightweight kernel (LWK) simultaneously on the
same computer. A configurable number of cores can be re-
served by the lightweight kernel, while other cores run Linux.
The lightweight kernel executes performance-critical system
calls and fast-path operations, and schedules applications
in a run-to-completion, non-preemptive way. Heavyweight
kernel operations and control interfaces are offloaded to
Linux cores. A special command is needed to run applica-
tions with LWK features enabled, otherwise, the application
will be executed as in normal Linux. We evaluate three typi-
cal HPC application benchmarks (HPCG [4], HPL [27], and
miniFE [1]), all of which request two nodes. We compare
two cases to account for the effects of OS heterogeneity:
1) Slurm. The cluster is scheduled by the default policy in
Slurm, which ignores OS heterogeneity. 2) Best placement.
We search for the best job placement and manually assign
nodes accordingly.

Figure 2 illustrates the performance of applications as the
number of mOS nodes increases, highlighting performance
issues and management challenges in existing scheduling
strategies. 1) Slurm is unaware of the specified OS. The sched-
uling policy of Slurm prioritizes the first available node re-
gardless of whether it is a heterogeneous OS. For instance,
Slurm selects Linux nodes when the cluster has less than
2 mOS nodes. Neglecting the mOS nodes leads to obvious
performance penalty, and the performance of HPCG (HPL)
is decreased by 10% (3%) compared to the best placement.
This performance difference stems from the optimization of
commonly used system calls in compute-intensive tasks by
LWK, the dedicated scheduler, and the resource isolation fea-
tures of mOS that reduce OS noise. 2) Slurm fails to leverage
optimized features provided by customized OS. Even when
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Figure 2: Application performance with the increasing number of mOS nodes. All data are normalized to the Slurm result
with 4 Linux nodes.
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Figure 3: Application performance with different mOS configurations. All data are normalized to the result under Linux.

Slurm allocates mOS nodes (e.g., there are more than 3 mOS
nodes), it fails to use the customized features in mOS, and dis-
patch jobs as in normal Linux instead, thereby negating most
performance improvements realized through mOS. This is
indicated by the fact that Slurm results are almost identical
in the figure no matter how many mOS nodes the cluster has.
3) The best placement depends on the matching between
OSes and applications. While the best strategy for HPCG and
HPL is to allocate mOS node, miniFE requires Linux nodes
to achieve best performance (Figure 2 (c)). One possible rea-
son for this phenomenon is that miniFE has a higher com-
munication intensity compared to others. LWK adopts an
offloading or unmodified design for communication-related
system calls. Consequently, miniFE frequently experiences
inter-core interruptions during runtime, resulting in per-
formance degradation. This demonstrates scheduling jobs
among heterogeneous OSes needs to deeply understand the
characteristics of both applications and OSes.

3.2 Trade-offs in Heterogeneous OS
Optimizations and features in customized OSes are typically
designed specifically for certain application scenarios. While
they can perform well in some specific cases, they may have
limitations or even performance degradation in others. Ad-
ditionally, heterogeneous OSes introduce much more param-
eters and configurations that need to be adjusted to obtain
the best performance under different workloads. Thus, the
cluster manager and scheduler have to comprehensively an-
alyze heterogeneous performance properties and accurately
configure the system, leading to a substantial increase in
management complexity.

This section conducts a few experiments to study the per-
formance sensitivity of heterogeneous OS configurations

and performance trade-offs among different types of appli-
cations. The experiment utilized a single node with identical
hardware configurations and HPC application benchmarks
as discussed in §3.1. For HPCG and HPL, we measure the
performance with parallelism degrees of 16 and 12.We adjust
the ‘lwkcpus’ kernel parameter of mOS, which represents
the number of isolated cores. Figure 3 reports the applica-
tion performance that is normalized to the result of running
benchmarks under Linux on the same node. The ’np’ mark
in the figure means parallelism. From the results, we can ob-
serve great performance variance caused by heterogeneous
OS configurations and investigate the difficulties of schedul-
ing heterogeneous OSes.
Properly configuring OS is challenging since different con-

figurations have large impacts on application performance. As
shown in Figure 3, the performance of all benchmarks varies
when the number of isolated cores changes. mOS employs a
non-preemptive execution model on isolated cores to maxi-
mize application throughput. Consequently, an application
performs best when its parallelism is close to the number
of isolated cores, otherwise, it may suffer substantial perfor-
mance degradation. For example, HPCG for parallelism-12
achieves the best performance at 12 isolated cores and has
2.32 times higher performance than the worst configuration
(8 isolated cores). When HPL has parallelism-16, its perfor-
mance will decrease by 9.8% if using incorrect parameters.
Accurately matching application with OS is challenging

since different applications require different configurations and
even OS implementation. There are many factors determining
if a task is suitable to execute on a specific OS. For example,
task parallelism significantly impacts HPCG performance.
With 12 isolated cores, there is a 43.6% performance improve-
ment when changing the parallelism from 16 to 12. However,
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the parallelism has little performance impact on HPL, which
has at most 6% performance change. Another factor is the
frequency of inter-process communication. Communication
in mOS involves slow operations offloaded on the Linux core
and incurs lots of system overhead to slow down the appli-
cation. This is evident in the experimental results of miniFE
(figure 3 (c)), where mOS always has worse performance
than Linux, because miniFE has too many communication
between processes.

In summary, deploying a diverse range of heterogeneous
OSes and matching applications with appropriate OSes are
essential for HPC clusters to guarantee optimal performance
under different scenarios. Thus it is necessary to design new
cluster schedulers that integrate OS heterogeneity effectively.

3.3 OS Heterogeneity Aware Cluster
Scheduling

To deal with the OS heterogeneity of HPC, we propose a
new idea for cluster management and scheduling. Based
on the above analysis, we advocate that OS heterogeneity
awareness should be incorporated into all key components
along the whole workflow in cluster scheduling. Figure 1 (b)
highlights enhancements and optimizations we propose.
Cluster configuration with OS information. The first
step for achieving OS heterogeneity awareness in cluster
scheduling involves extending the cluster configuration by
having administrators input more information about het-
erogeneous OSes setup into a configuration file. In addition
to basic node information such as naming, network, and
hardware properties, the configuration file should also cap-
ture OS-related information deployed on each node, such as
the OS type, features, and additional functional commands.
These pieces of information are input into the scheduling
system through a configuration file or other user interfaces,
which are managed by the management node for subsequent
node allocation processes.
Daemon process. The daemon process on each computing
node monitors resource status, receives management instruc-
tions, and controls task execution. In our design, the daemon
process collects roughly two categories of information: OS-
related and runtime information about heterogeneous OS.
OS-related information about heterogeneity refers to special-
ized functionalities and features provided by the OS, such
as OS kernel parameters, resource quota, and system call
specifications. The daemon process obtains this informa-
tion from the configuration file and OS-exposed interfaces
like procfs and sysfs, then sends it to the control center
on the management node. The second category, runtime
information, focuses on the node’s heterogeneous character-
istics during task execution (e.g., performance monitoring,
metrics accounting, and usage of specific operations). The

daemon process periodically obtains this data and sends it to
the management node. Profiling on heterogeneous OSes is
more challenging, as discussed in §4, requiring a new tracing
framework and collection method.
Node allocation algorithm. Traditional policies focus on
load balancing and matching resources with job require-
ments. We want to incorporate OS heterogeneity awareness
into the traditional algorithm for improved job placement
while ensuring compatibility with load balancing and exe-
cution correctness. The design principle is to treat OS het-
erogeneity as a resource characteristic and use the same
matching algorithm to match it with the features of the job.
The management node quantifies the received node infor-
mation into a numerical value, builds a vector for each OS of
the cluster’s size, and places the value in the corresponding
dimension to construct the node feature vector. Similarly, a
feature dependence vector can be constructed based on the
collected runtime data for each task using the same method.
Based on these two vectors, it is possible to leverage the
existing matching algorithm or use other heuristic vector
operations to complete job distribution. A simple design
of matching would be to use normalization and Euclidean
distance matching. By normalization and calculating the Eu-
clidean distance, the match between tasks and nodes can
be quantified. This allows us to select the set of nodes with
the smallest distance and highest match for task distribu-
tion. Certainly, this design is just a preliminary idea. More
heuristic algorithms can be applied to improve the process.
Summary and discussion. The main difference between
our proposal and existing methods, such as Slurm, is the
collection and usage of more OS heterogeneity information.
The types of target information to be collected are obtained
through cluster configuration, while the information collec-
tion is performed by daemon processes deployed on com-
puting nodes. Although the information collection process
brings additional performance overhead, the collection of OS-
related information for each node only needs to be done once
during initialization, and the runtime information is only
collected and statistically summarized once for each task.
Therefore, it does not increase the time complexity. With the
matching algorithm using the additional information, it is
feasible to improve overall performance by leveraging the
performance advantages to cover the associated costs. The
possible open challenges will be discussed in §4.
Prototype implementation. Based on the proposed design,
we implement a prototype by modifying Slurm. The current
implementation uses mOS as an example of a heterogeneous
OS. In the current prototype, we expand the configuration
file to include the input of heterogeneous OSes and their
additional functional instructions on different nodes. Cluster
administrators can set the name, additional kernel parame-
ters and acquisitionmethod, extra functions, and instructions
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of the heterogeneous OS on each node through the configu-
ration file. When a job is dispatched to a node, the daemon
is able to use the additional functions and special commands
of the corresponding OS to launch the job. Additionally, we
also instrument the daemon to collect more metrics about
heterogeneous information in the OS. For instance, in mOS,
we monitor the OS noise, the frequency of system call exe-
cuted on isolated cores, and the utilization of Linux cores. On
the management node, we implement a simple static match-
ing strategy to place jobs on appropriate nodes. Preliminary
results show that static matching can achieve similar per-
formance to the best placement we studied in §3.1. Fully
implementing the entire cluster scheduler with better user
interaction, more efficient runtime heterogeneity analysis,
and adaptive jobmatching is ongoing work. Supportingmore
heterogeneous OSes is left as future work.

4 OPEN CHALLENGES
We discuss some technical issues encountered during the de-
sign process of our prototype. These open challenges require
more research effort in the future.
Efficient OS heterogeneity profiling. Profiling and ana-
lyzing OS heterogeneity is the foundation of HPC cluster
management. However, there are a few difficulties in efficient
heterogeneous perception. 1) There are no unified tracing
frameworks across heterogeneous OSes. In Linux, there are
many mature tools (e.g., perf and ftrace) to collect system
statistics, but heterogeneous OSes have limited support for
these tools. 2) Profiling on heterogeneous OSes incurs more
performance overhead. Due to the heterogeneity, we have
to monitor more events to understand all features and differ-
ences among heterogeneous OSes. 3) Analysis methods in the
general system are no longer applicable. On heterogeneous
systems, even similar metrics may reflect different proper-
ties of applications; thus it is necessary to design specific
algorithms for different systems.
Dynamic heterogeneity tuning. Online adjusting system
configurations [13, 36] is widely used to optimize the clus-
ter performance under dynamic environments and chang-
ing workloads. For example, ACIC [20, 21] automatically
searches for optimized I/O system configurations to accel-
erate HPC applications. OS heterogeneity brings more op-
portunities to achieve effective and flexible online tuning:
1) Heterogeneous OSes provide more factors to tune. In ad-
dition to system parameters, it is possible to tune policies
of OS services (e.g., scheduling and page cache), subsystem
implementation, or even OS architecture. With the expanded
adjustment range, we havemore feasible combinations of het-
erogeneous features to better respond to workload dynamics.
2) We can integrate more tuning tools under heterogeneity
tuning. Existing tuning systems almost adjust parameters

via sysctl, but in order to change other aspects of an OS, we
need to integrate more approaches, such as hot patch, kernel
hot upgrade with CRIU, and re-imaging system images.
Support for more complicated scenarios. Existing HPC
clusters are always used in a partitioned and exclusive way,
and assume HPC workload are long-running rigid applica-
tions. When we deploy multiple heterogeneous OSes in a sin-
gle cluster, cluster-wide scheduling provides more chances
to combine different capabilities of various OSes to support
more diverse HPC application scenarios. 1) Task co-location.
Consolidating multiple tasks onto the same node can sig-
nificantly improve resource utilization [25, 30]. However,
Linux incurs much interference among co-located tasks and
decreases their performance [5]. With heterogeneity-aware
scheduling, we are possible to achieve a better balance be-
tween QoS and resource utilization. 2) Rack-scale resource
disaggregation. Rack-scale machines [6] promise efficient
resource disaggregation but pose scalability and cache co-
herence challenges to existing OSes. Several systems have
been proposed to manage disaggregated clusters to achieve
great resource elasticity and sharing [12, 28, 31].

5 CONCLUSIONS
Specialized OSes become increasingly popular in HPC to
achieve extremely high performance. Due to insufficient gen-
erality, single HPC cluster will deploy multiple different OSes
to optimize different application scenarios. Hence, HPC clus-
ters will be composed of more heterogeneous OSes. OS het-
erogeneity breaks a basic assumption in cluster management
that all computing nodes have the same OS. Existing schedul-
ing frameworks are not aware of various characteristics and
limitations of heterogeneous OSes, leading to suboptimal
resource allocation or misconfigured OS usage.

This paper quantitatively investigates performance degra-
dation caused by OS heterogeneity unawareness. Evaluation
using mOS and typical HPC benchmarks show about 10%
performance penalties in a popular cluster scheduler, Slurm,
and illustrate more than 230% performance variance in case
of inappropriate OS configurations. These results confirm
the necessity of introducing heterogeneity awareness into
the whole cluster scheduling workflow.We propose potential
enhancements to the existing cluster scheduler to realize the
optimal resource allocation under heterogeneous OSes. We
believe our proposal reveals more research challenges and
opportunities for future heterogeneous HPC clusters.
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