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ABSTRACT

COMPILER-ASSISTED
HARDWARE-BASED DATA PREFETCHING
FOR NEXT GENERATION PROCESSORS

MAY 2007

YAO GUO

B.S., PEKING UNIVERSITY

M.S., PEKING UNIVERSITY

M.S., OREGON HEALTH & SCIENCES UNIVERSITY

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Csaba Andras Moritz

Prefetching has emerged as one of the most successful techniques to bridge the gap

between modern processors and memory systems. On the other hand, as we move to

the deep sub-micron era, power consumption has become one of the most important

design constraints besides performance. Intensive research efforts have been done on

data prefetching focusing on performance improvement, however, as far as we know,

the energy aspects of prefetching have not been fully investigated.

This dissertation investigates data prefetching techniques for next-generation

processors targeting both energy-efficiency and performance speedup. We first

evaluate a number of state-of-the-art data prefetching techniques from an energy

perspective and identify the main energy-consuming components due to prefetching.
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We then propose a set of compiler-assisted energy-aware techniques to make hardware-

based data prefetching more energy-efficient.

From our evaluation on a number of data prefetching techniques, we have found

that if leakage is optimized with recently proposed circuit-level techniques, most of the

energy overhead of hardware data prefetching comes from prefetch hardware related

costs and unnecessary L1 data cache lookups related to prefetches that hit in the L1

cache. This energy overhead on the memory system can be as much as 30%.

We propose a set of power-aware prefetch filtering techniques to reduce the energy

overhead of hardware data prefetching techniques. Our proposed techniques include

three compiler-based filtering approaches that make the prefetch predictor more

energy efficient. We also propose a hardware-based filtering technique to further

reduce the energy overhead due to unnecessary prefetching in the L1 data cache.

The energy-aware filtering techniques combined could reduce up to 40% of the

energy overhead introduced due to aggressive prefetching with almost no performance

degradation.

We also develop a location-set driven data prefetching technique to further reduce

the energy consumption of prefetching hardware. In this scheme, we use a power-

aware prefetch engine with a novel design of an indexed hardware history table.

With the help of compiler-based location-set analysis, we show that the proposed

prefetching scheme reduces the energy consumed by the prefetch history table by

7-11X with very small impact on performance.

Our experiments show that the proposed techniques could overcome the prefetching-

related energy overhead in most applications, improving the energy-delay product by

33% on average. For many applications studied, our work has transformed data

prefetching into not only a performance improvement mechanism, but an energy

saving technique as well.
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CHAPTER 1

INTRODUCTION

Prefetching has emerged as one of the most successful techniques to bridge the

gap between modern processors and memory systems. On the other hand, as we

move to the deep sub-micron era, power and energy consumption has become one of

the most important design constraints besides performance. Intensive research efforts

have been done on data prefetching focusing on performance improvement [8, 12, 20,

22–25, 27, 29, 37, 44, 46, 51, 54, 59, 59, 60, 63, 69, 76, 81, 84, 87, 88, 97, 98, 104, 106, 107],

however, the energy aspects of prefetching have not been fully investigated. This

dissertation investigates data prefetching techniques for next-generation processors

targeting both energy-efficiency and performance.

1.1 Data Prefetching

The expanding gap between microprocessor and DRAM performance (Figure 1.1)

has been encouraging researchers to explore increasingly aggressive techniques to

reduce or hide the large latency of main memory accesses. The use of cache memory

hierarchies [89] has been the key technique to hide the memory latency. With the

introduction of multi-level caches in contemporary microprocessors, the performance

degradation due to long memory latency has been greatly reduced.

However, the use of cache memory hierarchy is not the “silver bullet” to solve all

the problems caused by the “memory wall”. As the memory gap keeps increasing, the

importance of improving the performance at each level of the memory hierarchy will

continue to grow. Researchers have proposed many effective mechanisms beyond the

1
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Figure 1.1. The processor and DRAM speed gap keeps increasing.

use of caches to either hide or tolerate the memory latency, including pipelining [77],

out-of-order execution [32], multithreading [5] and prefetching. Among all the

techniques proposed, prefetching has been one of the most widely studied.

Prefetching, in some form, has existed since the mid-sixties. Early studies [6] of

cache design recognized the benefits of fetching multiple words from main memory

into the cache. Hardware prefetching of separate cache blocks was later implemented

in the IBM 370/168 and Amdahl 470V [88]. Software techniques are more recent.

Smith first alluded to this idea in his survey of cache memories [89] but at that time

doubted its usefulness. Later, Porterfield [75] proposed the idea of a “cache load

instruction” with several RISC implementations following shortly thereafter.

Many prefetching solutions have been proposed in the last 20 years and some of

the prefetching mechanisms proposed by researchers have already been implemented

in several commercial processors [15,42,85].

Prefetching is applicable for both instructions [3,41,62,70,72,78,90,105,109,112,

114, 115] and data [12, 24, 29, 45, 59, 61, 68, 69, 80, 81, 88, 107] and can be controlled

by either hardware [12, 24, 29, 74, 80, 81, 84, 88] or software-based [54, 59, 61, 68, 69]

2



mechanisms. Compared to data prefetching, instruction prefetching is less challenging

due to the good locality of instructions during execution. While a number of schemes

have been published dealing with instruction prefetching, most of the efforts have

been spent on improving the performance of the data cache memory hierarchy.

Both hardware [12, 28, 29, 31, 35, 47, 80, 81, 88] and software [4, 54, 59, 61, 68, 69]

techniques have been proposed for data prefetching in recent years. Hardware-

based prefetching techniques do not have any instruction overhead but typically

require extra hardware such as history tables to record recent memory accesses,

and prefetching control logic to predict memory addresses to be prefetched. In

contrast, software prefetching requires minimum hardware support but needs explicit

prefetching instructions. Software prefetching techniques normally need the help

of compiler analyses, inserting explicit prefetch instructions into the executables.

Prefetch instructions are supported by most contemporary microprocessors [15, 16,

30,42,50,85,108].

Data prefetching can be applicable on array-intensive scientific codes and non-

scientific general-purpose codes containing many pointer structures. The earlier

efforts focused on improving the performance of scientific codes [12,14,19,68,69] since

they normally have highly predictable memory access pattern due to the heavy use

of array structures. Data prefetching for pointers [24,27–29,44,61,80,81] are focused

on establishing the relationship between pointers and the data they point to, which is

further complicated by the fact that effective and widely applicable pointer analysis

tools are not available. In our work, we will evaluate data prefetching schemes for

both array and pointer structures, focusing on making prefetching work effectively

for general-purpose programs.

Many recent compiler-assisted data prefetching techniques use profiling as an

effective tool to recognize data access patterns for making prefetch decisions. Luk

et al. [63] uses profiling to analyze executable codes to generate post-link relations

3
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Figure 1.2. Power densities of different Intel Processors.

which can be used to trigger prefetches. Wu [104] proposes a technique which discovers

regular strides for irregular codes based on profiling information. Chilimbi et al. [25]

use profiling to discover dynamic hot data streams which are used for predicting

prefetches. Inagaki et al. [46] implemented a stride prefetching technique for Java

objects. We do not compare to these techniques in this dissertation because our

techniques do not need the help of profiling.

1.2 Power/Energy Issues

In the last decade, power consumption has become one of the most important

design constraints in microprocessor design. The ever increasing power density (shown

in Figure 1.2) on microprocessors introduces many severe problems such as heat

dissipation and also impacts the reliability of the chips.

Power consumption can be classified into dynamic power and leakage power

dissipation. Dynamic power is consumed during the switching of transistors, while
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leakage power is dissipated when the transistors are off. With the scaling of CMOS

technology, leakage power has become the dominant factor in power consumption [55].

Many power and energy reduction techniques [48, 64, 71, 73, 110] have been proposed

by researchers in the last decade, at both circuit and system levels. Power-aware

techniques such as frequency/voltage scaling have already been incorporated into

many commercial processors such as the Intel®Pentium®M.

The memory system, including caches, consumes a significant fraction of the

total system power. For example, the caches and translation look-aside buffers

(TLB) combined consume 23% of the total power in the Alpha 21264 [38], and the

caches alone use 42% of the power in the StrongARM 110 [67]. Developing energy-

efficient and high-performance memory systems is a key challenge for next-generation

processor designs.

Techniques have been proposed to save memory system power/energy at all

levels [34, 43,49, 52,53, 57,58,65, 66,112,113]. For example, at the circuit-level, novel

power-aware circuits such as CAM-tag design [111] have already been widely adopted

in low-power processors. At the higher level, the introducing of techniques such as

subbanking [36] can greatly reduce the power dissipation for caches. Compiler-enabled

energy-aware solutions have also been developed recently, such as the compiler-

enabled cache and memory system designs [9, 10, 95, 96, 101] that can improve cache

performance as well as energy consumption.

With the introduction of extra hardware and possibly additional cache/memory

accesses, we expect that data prefetching techniques might have a significant impact

on the total memory system energy consumption. While most of the prefetching

techniques have been focusing on improving the performance, we believe the energy

aspects of data prefetching will also become a very important issue in next-generation

processor designs as energy and power consumption becomes an equally, if not more,

important design constraint as performance.
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Most of the current prefetching research work focuses on how to improve

performance. Related to our works, a static filter [92] was proposed to reduce memory

traffic. Profiling was used to select which load instructions generate data references

that are useful prefetch triggers. In our approach, by contrast, we use static compiler

analysis and a hardware-based filtering buffer (PFB), instead of profiling-based filters.

Wang et al. [98] propose a compiler-based prefetching filtering technique to reduce

traffic resulting from unnecessary prefetches. Although the above two techniques have

the potential to reduce prefetching energy overhead, there are no specific discussion

or quantitative evaluation of the prefetching related energy consumption.

1.3 Research Goals

The goal of this dissertation is to develop data prefetching techniques targeting

both performance and energy efficiency. Although numerous data prefetching

techniques have been developed to improve the performance of memory systems,

as far as we know, the energy aspect of prefetching is almost an untouched area. In

this dissertation, we will focus on exploring the energy/performance tradeoffs for data

prefetching techniques targeting general-purpose programs containing both array and

pointer structures. A very important objective is to develop new energy-aware data

prefetching techniques without giving up their performance benefits.

The first issue we want to investigate is to characterize the energy aspects of data

prefetching techniques. In order to develop energy-aware data prefetching solutions,

we must first understand the data prefetching mechanisms and their implications

on energy consumption. We will identify the power-consuming components due to

prefetching and evaluate each of them in detail. Both dynamic power and leakage

power will be evaluated as leakage will become more and more important in deep

sub-micron designs. The evaluation work is the starting point for our attempts to

develop new techniques to make data prefetching energy-aware.
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The results from our energy evaluation show that most of the energy degradation is

due to prefetch-hardware related costs and unnecessary L1 data cache lookups related

to prefetches that hit in the L1 cache. Our efforts focus on investigating whether all

these extra accesses are necessary and which part of them can be ignored or filtered

without affecting performance. As a result, three compiler-based prefetching filtering

techniques and one hardware filtering technique are developed to reduce the number

of accesses to the energy-consuming components. The filtering techniques combined

can reduce a significant part of the extra accesses due to prefetching.

Another direction to make prefetching energy-aware is to develop new prefetching

techniques using less power-demanding hardware. We introduce a new Power-Aware

pRefetching Engine (PARE) with a novel design of an indexed hardware history table.

Compared to the conventional single table design, the new prefetching table consumes

7-11X less power per access. With the help of compiler-based location-set analysis, we

show that the proposed PARE design could improve energy consumption significantly.

Surprisingly, the energy consumption is actually reduced with prefetching for some

benchmarks based on our evaluation. The reason for this is because the reduction of

execution time reduces the leakage energy proportionally. With new energy-aware

data prefetching, we can even expect, in some cases, data prefetching could be

beneficial for both performance and energy consumption. We will show that this

goal is achievable for at least some of the applications.

1.4 Contributions of Dissertation

This dissertation makes the following primary contributions:

� We implement a number of data prefetching techniques and provide detailed

simulation results on both performance and energy consumption.

7



– We modify the SimpleScalar [18] simulation tool to implement the different

hardware prefetching techniques and collect statistics on performance as

well as switching activity in memory systems. To model the power

consumption in the memory system and prefetching hardware, we use

state-of-the-art low-power cache circuits and simulate them using HSPICE.

– The simulation results show that although aggressive prefetching techniques

help to improve performance, in most of the applications they increase

energy consumption by up to 30%. In many systems [38, 67], this is more

than 15% increase in chip-wide energy consumption.

– In designs implemented in deep-submicron 70-nm BPTM process technology,

cache leakage dominates the energy consumption. We have found that, if

cache leakage is optimized with recently-proposed circuit-level techniques,

most of the energy overhead is due to prefetch hardware related cost and

unnecessary L1 data cache lookups related to prefetches that hit in the L1

cache.

– In addition to the evaluation of hardware-based techniques, we also

implement two software data prefetching techniques using SUIF and

SimpleScalar. Detailed simulation results are provided to compare the

performance and energy consumption between hardware and software

prefetching.

� We propose several energy-aware filtering techniques for hardware data prefetching

to reduce the energy overheads. The techniques include:

– A compiler-based selective filtering (CBSF) approach which reduces the

number of accesses to the prefetch hardware by only searching the prefetch

hardware tables for selected memory accesses that are identified by the

compiler;
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– A compiler-assisted adaptive prefetching(CAAP) mechanism, which utilizes

compiler information to selectively apply different prefetching schemes

depending on predicted memory access patterns;

– A compiler-driven filtering technique using a runtime stride counter(SC)

designed to reduce prefetching energy consumption on memory access

patterns with very small strides; and

– A hardware-based filtering technique using a prefetch filter buffer (PFB)

applied to further reduce the L1 cache related energy overhead due to

prefetching.

These techniques are applied on one of the hardware prefetching techniques,

which achieves the best performance speedup but also suffers the worst energy

degradation. Our experiments show that the proposed techniques successfully

reduce the prefetching-related energy overheads, by 40% on average, without

reducing the performance benefits of data prefetching.

� To further reduce the energy overheads, we develop a new data prefetching

technique called location-set driven data prefetching. A power-aware prefetch

engine called PARE with a novel design of an indexed hardware history table is

proposed at the circuit level. Compared to the conventional single-table design,

the new prefetching table consumes 7-11X less power per access. With the help

of compiler-based location-set analysis, the proposed prefetching scheme can

improve energy consumption by as much as 40% in the data memory system.

1.5 Organization of Dissertation

This dissertation comprises the following chapters in addition to this introductory

chapter:
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Chapter 2 studies a number of data prefetching techniques from an energy

perspective. We first evaluate the performance speedup and energy consumption

for five hardware-based prefetching techniques. We also evaluate a couple of software

prefetching techniques and compare their performance and energy to related hardware

techniques.

Chapter 3 explores several filtering techniques that can make the data prefetching

techniques more energy-efficient. The techniques proposed include three compiler-

assisted prefetch filtering techniques focused on reducing the accesses to the hardware

history table and a hardware filtering mechanism trying to reduce the unnecessary

extra L1-cache tag checks.

Chapter 4 presents the location-set driven data prefetching techniques using

PARE, a novel indexed power-aware prefetch engine. We show that with the help of

compile-time location-set analysis, we can divide the memory accesses into different

relationship groups, with each group consisting of memory accesses visiting only

closely related location-sets. The compiler generated group numbers allow us to

use the indexed history table in PARE.

Chapter 5 presents the experimental results on energy-aware data prefetching.

We present detailed results on prefetch filtering and PARE power consumption; we

also show the energy consumption numbers after applying the proposed techniques.

Sensitivity analyses for at 45-nm and 32-nm technologies are also presented.

Finally, Chapter 6 includes a summary of the primary results in this dissertation

and a number of directions for future work in this area.
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CHAPTER 2

ENERGY CHARACTERIZATION OF DATA
PREFETCHING

This chapter evaluates several hardware-based data prefetching techniques from

an energy perspective, and explores their energy/performance tradeoffs. We present

detailed simulation results and make performance and energy comparisons between

different configurations. Power characterization is provided based on HSPICE circuit-

level simulation of state-of-the-art low-power cache designs implemented in deep-

submicron process technology. This is combined with architecture-level simulation of

switching activities in the memory system. The results show that while aggressive

prefetching techniques often help to improve performance, they increase energy

consumption for most applications. In designs implemented in deep-submicron 70-

nm BPTM process technology, cache leakage becomes one of the dominant factors of

the energy consumption. We have, however, found that if leakage is optimized with

recently-proposed circuit-level techniques, most of the energy degradation is due to

prefetch-hardware related costs and unnecessary L1 data cache lookups related to

prefetches that hit in the L1 cache. This overhead on the memory system can be as

much as 30%.

2.1 Introduction

In recent years, energy and power efficiency has become one of the key design

objectives in microprocessors, in both embedded and general-purpose domains. This

trend is expected to continue due to the increased power densities of next-generation
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deep-submicron designs. In this chapter we consider 70-nm technologies: this is

representative of such next generation process technologies. Although a lot of research

has been focused on improving the performance of prefetching mechanisms, the

impact of such prefetching techniques on processor energy efficiency remains unclear.

Prefetching has been proposed as a technique to hide memory latencies. The idea

is to fetch the data to a higher level (for instance, from L2 Cache to L1 Cache) of

the memory hierarchy before the data is accessed. Both hardware [12, 29, 80, 81, 88]

and software [59, 61, 68] techniques have been proposed for prefetching in recent

years. Software prefetching is implemented by inserting explicit prefetch instructions

into the executable code. Although there are no hardware requirements for

software prefetching (prefetching instructions are supported by most contemporary

microprocessors), the compiler process of inserting and scheduling prefetches is

complicated. Hardware-based approaches are simpler since they do not require

modification to executables. Although hardware prefetching requires extra prefetch

hardware in a processor, such additional hardware requirements are typically small.

This chapter evaluates several state-of-the-art hardware-based data prefetching

techniques from an energy perspective, and explores their energy/performance

tradeoffs. The prefetching techniques studied include:

� Two sequential prefetching approaches [88]: simple sequential prefetching

(prefetch-on-miss) and tagged sequential prefetching ;

� Stride prefetching [12]: focusing on array-like structures, this technique catches

constant strides in memory accesses and prefetching using stride information;

� Dependence-based prefetching [80]: designed to prefetch on pointer-intensive

programs containing linked data structures where no constant strides can be

found; and
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� A combined stride and dependence-based approach which are focused on both

array-intensive and pointer-intensive programs [39].

We present detailed simulation results on each prefetching technique and show

performance and energy comparisons. We modify the SimpleScalar [18] simulation

tool to implement the different prefetching techniques and collect statistics on

performance as well as switching activity in memory systems. To estimate power

consumption in the memory systems, we use state-of-the-art low-power cache circuits

and simulate them using HSPICE.

As expected, the results show that while aggressive prefetching techniques often

help to improve performance, in most of the applications, they increase total memory

system energy consumption 1 by as much as 30%. In many systems [38,67], this can be

transformed to more than 15% increase in chip-wide energy consumption. In designs

implemented in deep-submicron 70-nm BPTM process technology, cache leakage

dominates the energy consumption. We have, however, found that if cache leakage is

optimized with recently-proposed circuit-level techniques, most of the still remaining

energy degradation is due to prefetch hardware related cost and unnecessary L1 data

cache lookups related to prefetches that hit in the L1 cache. When the energy cost

of off-chip accesses is increased to more pessimistic levels (e.g., due to very large load

capacitances driven during off-chip accesses), the other energy effects are becoming

less visible.

In addition to the evaluation of hardware-based data prefetching techniques,

we also include in this chapter the energy evaluation of two software prefetching

techniques and compare their performance and energy consumption with hardware

prefetching techniques.

1We consider energy-consumption of L1 and L2 caches and prefetching related hardware. Main
memory is not included because there does not exist an accurate energy model for it. Nevertheless,
we have also included a section describing how main memory energy consumption would affect the
total energy memory overhead in this chapter.
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The rest of this chapter is structured as follows. Section 2.2 presents a brief

introduction of the prefetching techniques we study in this chapter. The power

estimation of memory system aspects and experimental framework are presented

in Section 2.3. Section 2.4 gives a detailed analysis of the experimental results on

hardware data prefetching technique. We compare software and hardware prefetching

in Section 2.5. We summarize this chapter with Section 2.6.

2.2 Data Prefetching Mechanisms

This section gives a brief introduction to the data prefetching schemes studied.

The information provided here is mainly for the purpose of analyzing their energy

overhead. Detailed information on these techniques should be referred to the

respective papers. The prefetching techniques studied include five hardware-based

data prefetching and two software prefetching techniques.

2.2.1 Hardware-based Data Prefetching

2.2.1.1 Sequential Prefetching

Prefetching schemes are designed to fetch data from a lower level in the memory

hierarchy to a higher level (i.e., from main memory to cache, from L2-cache to L1-

cache). It should be noted that multiple-word cache blocks are themselves a form of

data prefetching. However, the size of the cache blocks is limited by cache pollution

effects as the cache block size increases.

Sequential prefetching can take advantage of spatial locality without introducing

some of the problems associated with large cache blocks. The simplest sequential

prefetching schemes are based on the One Block Lookahead (OBL) approach; a

prefetch for block b + 1 is initiated when block b is accessed. OBL implementations

differ based on what type of access to block b initiates the prefetch of b + 1. In this
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dissertation, we evaluate two of the sequential approaches discussed by Smith [88] -

prefetch-on-miss and tagged prefetching.

The prefetch-on-miss algorithm simply initiates a prefetch for block b + 1

whenever an access for block b results in a cache miss. If b + 1 is already cached,

no memory access is initiated. The tagged prefetching algorithm associates a tag bit

with every memory block. This bit is used to detect when a block is demand fetched

or a prefetched block is referenced for the first time. In either of these cases, the next

sequential block is prefetched.

Smith found that tagged prefetching reduces cache misses in a unified (both

instruction and data) cache by between 50% and 90% for a set of trace-driven

simulations. The prefetch-on-miss technique is no more than half as effective as

tagged prefetching in reducing miss rates. We will use it as our prefetching baseline

since there is virtually no hardware cost, and thus no power overhead in prefetching

hardware. Tagged prefetching does require one extra bit for each cache line to indicate

whether the cache line is prefetched or not.

OBL prefetching schemes are not as efficient as more recent schemes but they

require only very simple hardware. An OBL scheme was implemented in the HP

PA7200 [21]; it uses a modified version of tagged prefetching scheme and shows

significant performance improvement for some benchmarks.

In general, sequential hardware prefetching techniques perform poorly when non-

sequential memory access patterns are encountered. Scalar references or array

accesses with large strides can result in unnecessary prefetches because these types of

access patterns do not exhibit the spatial locality upon which sequential prefetching

is based. To enable prefetching of strided and irregular data access patterns, several

more elaborate hardware prefetching techniques have been proposed, as we discuss

next.
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instr. PC         prev. addr.       stride  state

Figure 2.1. Structure of Reference Prediction Table(RPT) used for stride prefetching

2.2.1.2 Stride Prefetching

Stride prefetching [12] monitors memory access patterns in the processor to detect

constant-stride array references originating from loop structures. This is normally

accomplished by comparing successive addresses used by memory instructions.

Since stride prefetching requires the previous address used by a memory instruction

to be stored along with the last detected stride, a hardware table called the Reference

Prediction Table, or RPT, is added to hold the information for the most recently used

memory instructions. A representation of RPT is shown is Figure 2.1. Each RPT

entry contains the address of the memory instruction, the address of the instruction as

accessed previously, a stride value for those entries that have established a stride, and

a state field used to control the actual prefetching. The LRU replacement algorithm

is be used to select a victim entry when the table is full.

Stride prefetching is more selective than sequential prefetching since prefetch

commands are issued only when a matching stride is detected. It is also more effective

when array structures are accessed through loops. However, stride prefetching uses

an associative hardware table which normally contains 64 entries; each entry contains

around 64 bits. This hardware table is accessed whenever a load instruction is

detected.

2.2.1.3 Pointer Prefetching

Stride prefetching has been shown to be effective for array- intensive scientific

programs. However, for general-purpose programs, which are pointer-intensive or
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Figure 2.2. Structure of Potential Producer Window (PPW) and Correlation Table
(CT) used for dependence-based prefetching

contain a large number of dynamic data structures, no constant strides can be easily

found. Thus stride prefetching is not as effective for these applications.

One scheme for hardware-based prefetching on pointer structures, called dependence-

based prefetching, is proposed by Roth et al. [80]. Like stride prefetching, this scheme

uses hardware tables to record the most recently executed load instructions. The

difference is that this table is used to detect dependencies between load instructions

rather than establishing reference patterns for single instructions.

The hardware tables used by dependence-based prefetching are shown in Figure 2.2.

The Correlation Table (CT) is the component responsible for storing dependence

information. Each correlation represents a dependence between a load instruction

that produces an address (producer) and a subsequent load that uses that address

(consumer). In addition to producer and consumer identities (PCs), each correlation

also contains an operator and offset field to represent the address generation template

which is used to calculate future prefetching addresses. The Potential Producer

Window (PPW) records the most recent loaded values and the corresponding

instructions. When a load commits, its base address value is checked against the

entries in the PPW, with a correlation created on a match. This correlation is added

to the CT as an entry containing dependence information.
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Figure 2.3. Dependence-based prefetching on linked data structures

Such address dependencies are common in linked list processing, i.e., where

the next pointer of one list element is used as the base address for the fields of

the subsequent list element, as shown in Figure 2.3. Once CT establishes these

dependencies, prefetches are triggered by the execution of those load instructions

that produce base addresses. For example, once the address of p → next is known, p

→ next → data1 and p → next → data2 can be prefetched. A prefetch of p → next

→ next can also be used to initiate further prefetching.

PPW and CT are typically 64-128 entries containing addresses and program

counters; each entry may contain 64 or more bits. The hardware cost is around

twice that for stride prefetching. This scheme improves performance on many of the

Olden [79] pointer-intensive benchmarks.

2.2.1.4 Combined Stride and Pointer Prefetching

One contribution of our work is a combined stride and pointer prefetching

technique [39]. Our objective is to evaluate a technique that is beneficial for

applications containing both array and pointer based accesses.

We will show that the combined technique performs consistently better than

the individual techniques on two benchmark suites with different characteristics.

However, the hardware cost of this approach is higher since we need to use the

hardware tables from both stride and dependence-based prefetching.

18



2.2.2 Software Prefetching

Software prefetching techniques rely on compiler analysis to predict prefetching

addresses and generate explicit prefetching instructions. We implemented two

software prefetching techniques on both array-based structures and pointer-intensive

programs [61,69].

2.2.2.1 Software Prefetching for Arrays

The first technique we implemented is a Compiler-based prefetching technique

similar to Todd Mowry’s work [69].

A compiler analysis is implemented to analyze the array access pattern within

loops and determine the possible cache misses and therefore prefetch addresses. The

main steps are as follows:

� For each reference, determine the accesses that are likely to be cache misses and

therefore need to be prefetched.

� Isolate the predicted cache miss instances through loop splitting. This avoids

the overhead of adding conditional statements to the loop bodies.

� Performance stride and reuse analysis on the predicted cache miss instances to

determine the stride between two accesses.

� Calculate prefetch addresses for the cache misses instances based on the stride

information.

Prefetch addresses will be calculated and explicit prefetch instructions are inserted

in the binaries afterwards.

2.2.2.2 Software Prefetching for Pointers

Compiler-based prefetching on Linked Data Structures is proposed by Luk and

Mowry [61] to prefetch pointer structures.
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The greedy approach in [61] analyzed recursive data structure types and insert

prefetching instructions to fetch the next data element in the linked structures. The

greedy approach issues prefetches for all the elements within a linked data structure

once a link to the data structure is accessed. This scheme has the following main

steps:

� Identify large linked data structures during static compiler analysis.

� Determine data type information for each memory access via type analysis.

� Based on the type information obtained, calculate prefetch addresses if the

accessed data is one of the linked data structures identified during the first

step.

� Issue explicit prefetch instructions into the binaries.

For software prefetching, prefetch instructions in the binaries will be identified in

the hardware and prefetching requests will be issued in the same way as we do for

hardware prefetching. The only difference is that prefetching addresses are provided

by the instructions, instead of calculated by the hardware.

2.3 Experimental Assumptions

Before we discuss the evaluation of performance/energy aspects of the described

data prefetching techniques, we first present in this section the experimental

framework, the energy modeling of data prefetching, and our methods for energy

calculation. The experimental framework and energy modeling methods will also be

used in all the following sections as well.
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Table 2.1. Baseline parameters

Processor speed 1GHz
Issue 4-way, out-of-order
L1 D-cache 32KB, CAM-tag, 32-way, 32bytes cache

line
L1 I-cache 32KB, 2-way, 32bytes cache line
L1 cache latency 1 cycle
L2 cache unified, 256KB, 4-way, 64bytes cache line
L2 cache latency 12 cycle
Memory latency 100 cycles latency + 10 cycles/word

2.3.1 Experimental Framework

We implement the hardware-based data prefetching techniques by modifying the

SimpleScalar [18] simulator2. The binaries input to the SimpleScalar simulator are

created using a native Alpha assembler. The parameters we use for the simulations

are listed in Table 2.1.

The benchmarks evaluated are listed in Table 2.2. The SPEC2000 benchmarks [2]

use mostly array-based data structures, while the Olden benchmark suite [79] contains

pointer-intensive programs that make substantial use of linked data structures.

We randomly select a total of ten benchmark applications, five from SPEC2000

and five from Olden. For SPEC2000 benchmarks, we fast forward the first one

billion instructions and then simulate the next 100 million instructions. The Olden

benchmarks are simulated to completion except for perimeter, since they complete in

relatively short time.

2.3.2 Energy Modeling

To accurately estimate power and energy consumption in the L1 and L2 caches,

we perform circuit-level simulations using HSPICE. We base our design on a recently

2“sim-outorder” from SimpleScalar version 3.0vd.
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Table 2.2. SPEC2000 & Olden benchmarks

Benchmark Description

SPEC2000
181.mcf Combinatorial Optimization
197.parser Word Processing
179.art Image Recognition / Neural Nets
256.bzip2 Compression
175.vpr Versatile Place and Route

Olden
bh Barnes & Hut N-body Algorithm
em3d Electromagnetic Wave Propagation
health Colombian Health-Care Simulation
mst Minimum Spanning Tree
perimeter Perimeters of Regions in Images

proposed low-power circuit [13] that we simulated in 70-nm BPTM technology. Our

L1 cache includes the following low-power features: low-swing bitlines, local word-

line, CAM-based tags, separate search lines, and a banked architecture. The L2 cache

we evaluate is based on a banked RAM-tag design.

As we expect that implementations in 70-nm technology would have significant

leakage, we apply a recently proposed circuit-level leakage reduction technique called

asymmetric SRAM cells [11]. This is necessary because otherwise our conclusions

would be skewed due to very high leakage power. The speed enhanced cell in [11] has

been shown to reduce L1 data cache leakage by 3.8X for SPEC2000 benchmarks with

no impact on performance. For L2 caches, we use the leakage enhanced cell which

increases the read time by 5%, but can reduce leakage power by at least 6X. In our

evaluation, we assume speed-enhanced cells for L1 and leakage enhanced cells for L2

data caches, by applying the different asymmetric cell techniques respectively.

The power consumption numbers of our L1 and L2 caches are shown in Table 2.3.

We show the configurations of L1 and L2 and their dynamic and leakage power

numbers respectively. If an L1 miss occurs, energy is consumed not only in L1 tag-
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Table 2.3. Cache configuration and power consumption

Parameter L1 L2

size 32KB 256KB
tag array CAM-based RAM-based
associativity 32-way 4-way
bank size 2KB 4KB
# of banks 16 64
cache line 32B 64B

Power (mW)

tag 6.5 6.3
read 9.5 100.5
write 10.3 118.6
leakage 3.1 23.0
reduced leakage 0.8 1.5

Table 2.4. Prefetch hardware table and power consumption

Table implementation 64×64 CAM-array

P update (including lookup) 11.5mW
P lookup 11.3mW

lookups, but also when writing the requested data back to L1. L2 accesses are similar,

except that an L2 miss goes to off-chip main memory. Leakage energy is consumed

for all processor cycles no matter an L1 or L2 cache access occurs or not.

An off-chip memory access consumes a significant amount of processor power.

Rather than picking a single design-point, we choose a range of energy costs ranging

from optimistic to pessimistic. We express the L2 miss energy as a function of L1

hit energy. We assume that an L2 cache miss consumes 32X to 512X single-word

read energy of our L1 cache. A similar assumption has been made in [111]. The

actual power consumed depends on how many bits are in transition and on the actual

implementation/packaging choices.
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Each prefetching history table is implemented as a 64×64 fully-associated CAM-

array. The power consumption for each lookup is 7.3mW and each update to the

table costs 7.4mW based on HSPICE simulation. The power numbers are shown in

Table 2.4. The leakage energy of these hardware tables are very small compared to

L1 and L2 caches due to their small area.

For software prefetching, the cost of the execution of a prefetch instruction includes

an access to the L1 instruction cache by the prefetch instruction, and the pipeline

cost of instruction fetching, decoding, and the calculation of prefetching addresses.

These extra costs will increase the total energy consumption. Each L1 instruction

cache access consumes about the same energy as an L1 data cache access, and the

rest of the execution costs is generally comparable to an L1 data cache access [17].

Thus we assume that each prefetch instruction executed would consume an extra cost

of roughly two times the L1 cache read energy cost.

2.4 Analysis of Hardware Data Prefetching

2.4.1 Performance Speedup

Performance speedup is the original and still the primary goal of prefetching.

Fig. 2.4 shows the performance results of different prefetching schemes. The first five

benchmarks are array-intensive SPEC2000 benchmarks, and the last five are pointer-

intensive Olden benchmarks. Fig. 2.4(a) shows the reduction of DL1 miss-rate, and

Fig. 2.4(b) shows actual speedup based on simulated execution time.

As expected, the dependence-based approach does not work well on the five

SPEC2000 benchmarks since pointers and linked data structures are not used

frequently. But it still gets marginal speedup on three benchmarks (parser is the

best with almost 5%).

Tagged prefetching (10% speedup on average) does slightly better on SPEC2000

benchmarks than the simplest sequential approach, which achieves an average speedup
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Figure 2.4. Performance speedup for different prefetching schemes: (a) L1 miss rate
reduction; (b) IPC speedup.
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of 5%. Stride prefetching yields up to 124% speedup (for art), averaging just over 25%.

Combined prefetching is the best, but gives on the average only about 1.5% speedup

compared to the stride approach. The comparison between miss rate reduction in

Fig. 2.4(a) and speedup in Fig. 2.4(b) matches our intuition that fewer cache misses

means greater speedup.

As for the five Olden pointer-intensive benchmarks in Fig. 2.4, the dependence-

based approach eliminates about half of all the L1 cache misses and achieves an

average speedup of 27%. Stride prefetching (14% on average) does surprisingly well

on this set of benchmarks and implies that even pointer-intensive programs contain

significant constant-stride memory access sequences. The combined approach achieves

an average of 40% performance speedup on the five Olden benchmarks.

In summary, for array-intensive programs, stride prefetching does reasonably well

and dependence-based pointer prefetching is not very effective. However, for pointer-

intensive programs, both stride and dependence-based approaches do well. On the 10

benchmarks simulated, the combined approach achieves the best performance speedup

due to prefetching. In general, the combined technique is useful for general purpose

programs which contain both array and pointer structures.

2.4.2 Memory Traffic Increase

Memory traffic is increased because not all the data we prefetch from the next

level are useful (i.e., the data are not always actually used by a later access before

they are replaced from the cache). In most cases, some useless data is prefetched into

the higher levels of the memory hierarchy; these are a major source of power/energy

consumption added by the prefetching schemes. Apart from memory traffic increases,

power is also consumed when we attempt to prefetch the data that already exists in

the higher level cache. In this case, the attempt to locate the data (e.g., cache-tag

lookup) consumes power.
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Figure 2.5. Memory traffic increase for different prefetching schemes. (a) Number
of accesses to L1 data cache, including extra cache-tag lookups to L1; (b) Number of
accesses to L2 data cache; (c) Number of accesses to main memory.

27



Fig. 2.5 shows the number of accesses going to different levels in the memory

hierarchy. The numbers are normalized to the baseline with no prefetching. On

average, the number of accesses to L1 D-cache increases almost 40% with the most

aggressive prefetching scheme. However, the accesses to L2 only increase by 8% for

the same scheme, showing that most of the L1 cache accesses are only cache-tag

lookups trying to prefetch data already present in L1.

Sequential prefetching techniques (both prefetch-on-miss and tagged schemes)

show completely different behavior as they increase the L1 access for only about

7% while resulting in a more than 30% average increase on L2→L1 traffic. The

explanation for this is that sequential prefetching always tries to prefetch the next

cache line which has a much greater chance to miss in L1. Main memory accesses

are largely unaffected in the last three techniques, and only increased by 5-7% for

sequential prefetching.

As L1 accesses increase significantly for the three most effective techniques, we

break down the number of L1 accesses into three parts: regular L1 accesses, L1

prefetch misses and L1 prefetch hits, shown in Fig. 2.6. The L1 prefetch misses are

those prefetching requests that go to L2 and actually bring cache lines from L2 to L1,

while the L1 prefetch hits stand for those prefetching requests that hit in L1 and no

real prefetching occurs.

From Fig. 2.6, we can see that L1 prefetching hits account for most of the increases

in L1 accesses. On average, 70-80% of all the increases come from extra L1 prefetching

hits, which may result in significant energy overhead, while being almost useless for

performance speedup. The extra L1 accesses will obviously translate into unnecessary

energy consumption.
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Figure 2.6. Breakdown of L1 Accesses, all numbers normalized to L1 cache accesses
of baseline with no prefetching.
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Figure 2.7. Total cache energy consumption without considering leakage energy.

2.4.3 Energy Consumption Overhead

We use the power numbers shown in Section 2.3 to calculate the energy

consumption.

2.4.3.1 Cache energy consumption

Fig. 2.7 shows the dynamic energy consumption for L1 and L2 caches and

prefetching tables. For most of the benchmarks, the L1 dynamic energy (excluding

prefetching overhead) is not affected significantly. The L2 dynamic energy is increased

in proportion to the L2 memory traffic increase shown in Fig. 2.5(b). Prefetching

related energy overhead on L1 cache is quite small for sequential prefetching, but

more significant for the other three prefetching approaches. This part of the energy

overhead is proportional to the prefetch-related L1 access increase shown in Fig. 2.6.
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Energy consumption for the hardware tables is very significant for all the three

prefetching techniques using hardware tables. On average, the hardware tables

consume almost the same amount of energy as regular L1 caches accesses for the

combined prefetching. Typically this portion of energy accounts for 60-70% of all the

dynamic energy overhead that results from combined prefetching. The reason is that

prefetch tables are frequently looked up and are also highly associative. Their power

consumption is similar to a tag lookup in a banked low power cache.

For the most aggressive combined prefetching approach, the prefetching energy

overhead almost doubles the total dynamic energy (baseline with no prefetching) for

some applications (such as mcf and em3d), and is 76% on the average. For the other

prefetching techniques, there is a 25% increase for sequential prefetching, and about

38% for both stride and dependence schemes. This shows that while complicated

prefetching algorithms can achieve greater speedups, they can significantly increase

the overall energy consumption.

Fig. 2.8 shows the total cache energy consumption with leakage energy also

accounted. Leakage energy is proportional to program runtime and thus decreases

linearly with speedup: higher speedup will reduce the leakage energy consumption.

In this figure, the total energy consumption for caches is dominated by L2 leakage

because of the large size (256KB) of the L2 cache. As we can see, for most of the

applications, the relative prefetching overhead shown in Fig. 2.7 has been significantly

reduced after the leakage energy is taken into account.

With no leakage optimization, sequential prefetching saves on average about 10%

of the total energy, stride prefetching about 17% and the combined approach results

in almost 24% energy savings. The results show that prefetching schemes which have

a better performance speedup also save energy when leakage energy increases to a

certain level in deep sub-micron technologies.
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Figure 2.8. Total cache energy consumption with unoptimized leakage energy
accounted.
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Figure 2.9. Total cache energy consumption with leakage reduction techniques
applied.
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However, leakage energy could be reduced significantly by techniques such as

asymmetric SRAM cells [11]. Fig. 2.9 shows the total cache energy after applying

the above leakage reduction techniques. The dynamic hit energy dominates some of

the benchmarks with higher IPC; however, the leakage energy still dominates in some

programs, such as art, which have a higher L1 miss rate and thus a longer running

time. Although both L1 and L2 cache access energy are significantly increased due

to prefetching, the static (leakage) energy reduction due to performance speedup can

compensate for at least some portion of the increase in dynamic energy consumption.

The results in Fig. 2.9 show that on average, the prefetching schemes still cause

relatively significant energy consumption overhead when leakage consumption is

reduced to a reasonable level. The average increase of the combined approach is

more than 26%, and about 11% increase for stride prefetching.

2.4.3.2 Energy cost for off-chip accesses

To estimate the energy consumption within the processor for driving off-chip

memory accesses, we use similar assumptions as in [111]. We assume that an L2

cache miss consumes 32-512X single-word read energy of the L1 D-cache. Our results,

including energy consumption for both caches and off-chip memory access related

power, are shown in Fig. 2.10.

Fig. 2.10(a) shows the situation where L2 miss energy cost is 32X of L1 hit energy.

The prefetching energy overhead is quite significant for many applications, averaging

7% for sequential prefetching, 8% for stride prefetching and more than 20% for the

combined approach.

When the off-chip memory costs goes up to 128X, as shown in Fig. 2.10(b) the

prefetching overhead stays at 7% for sequential techniques, but drops to almost half

for the last three schemes, averaging about 11% for combined prefetching. If the
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Figure 2.11. Energy-delay product for different prefetching techniques. (1) Energy-
delay product; (2) Energy-delay2 product. In both figures, we assume that the leakage
reduction techniques are applied and the off-chip memory energy cost is 32X of the
L1 hit energy.

off-chip memory costs were to increase to a pessimistic 512X as shown in Fig. 2.10(c),

the energy overhead of prefetching drops to less than 5%.

2.4.3.3 Energy-delay product

Finally, we show in Fig. 2.11 the energy-delay and energy-delay2 product

normalized to the baseline (no prefetching) using the assumption that L2 miss energy

is 32X L1 hit energy.

In most cases, we note that both energy-delay and energy-delay2 products

improve with effective prefetching techniques that achieve a large enough performance

speedup. The energy-delay product improves by more than 20% for the combined
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prefetching, while the energy-delay2 improves by almost 35%. This is important since

by choosing a design point with lower voltage, this could be converted into energy

efficiency. Nevertheless, we believe that more energy-focused prefetching algorithms

and architectures should be developed to achieve energy efficiency even at unchanged

voltage levels.

According to this figure, extra energy cost by complicated prefetching techniques

are worthwhile for some applications such as the combined prefetching approach on

mcf and em3d.

2.5 Comparison on Hardware/Software Prefetching

The comparison between hardware and software prefetching techniques will be

presented in this section. We provide experimental results for the following five

prefetching techniques:

� Stride prefetching [12] - Focuses on array-like structures, it catches constant

strides in memory accesses and prefetches using the stride information;

� Dependence-based prefetching [80] - Designed to prefetch on pointer-intensive

programs containing linked data structures where no constant strides can be

found;

� A combined stride and dependence-based approach - Focuses on general-purpose

programs, which often use both array and pointer structures, to achieve benefits

from both stride and pointer prefetching.

� Compiler-based prefetching similar to [69] - Use the compiler to insert prefetch

instructions for strided array accesses.

� Compiler-based prefetching on Linked Data Structures - Uses the greedy

approach in [61] to prefetch pointer structures.
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Figure 2.12. Performance speedup for different prefetching schemes.

The first three techniques are hardware-based and they require the help of one or

more hardware history tables to trigger prefetches. The last two are software-based

techniques which use compiler analysis to decide what addresses should be prefetched

and where in the program to insert the prefetch instructions.

The performance improvement of the five prefetching techniques is shown in

Figure 2.12. The first five benchmarks are from SPEC2000 benchmarks; the last

five are Olden benchmarks which contains many pointers and linked data structures.

Stride prefetching does very well on performance for SPEC2000 benchmarks,

averaging just over 25% speedup across the five applications studied. In contrast,

the dependence-based approach achieves an average speedup of 27% on the five

Olden benchmarks. The combined approach achieves the best performance speedup

among the three hardware techniques, averaging about 40%. In general, the combined

technique is the most effective approach for general-purpose programs (which typically

contain both array and pointer structures).
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Figure 2.13. Total cache energy consumption.

For the two software techniques, the compiler-based technique for strided accesses

achieves almost 60% speedup on art and about 40% on em3d, with an average of 16%

in performance speedup. The scheme for linked data structures yields an average of

55%, but it does extremely well on perim(a speedup of 5.6x). Without perim, the

average speedup goes down to just 10%.

We calculated the total energy consumption in the memory system for each

prefetching technique based on HSPICE. The results are shown in Figure 2.13. In

the figure, we show the energy breakdown for (from bottom to top for each bar) L1

dynamic energy, L1 leakage, L2 dynamic energy, L2 leakage, L1 tag lookups due to

prefetching, and prefetch hardware table accesses for hardware prefetching or prefetch

instruction overhead for software prefetching.

The results in Figure 2.13 show that the three hardware-based prefetching schemes

result in a significant energy consumption overhead, especially in the combined

prefetching approach. The average increase for the combined approach is more than

28%, which is mainly due to the prefetch table accesses and the extra L1 tag lookups
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due to prefetching. Software prefetching also increases energy consumption for most

of the benchmarks, especially in mcf and em3d. However, compared to the combined

hardware prefetching, software prefetching techniques are more energy-efficient for

most of the benchmarks.

Considering both performance and energy-efficiency, it seems that there is no

single prefetching solution which would yield the best performance and at the

same time consume the least energy consumption. Based on our observation, the

combined hardware-based technique outperforms others in terms of speedup for most

benchmarks although it consumes considerably more energy than the other four

techniques. The question is: can we make the combined hardware prefetching more

energy-efficient without sacrificing its performance benefits? We will address the issue

in the next chapter.

2.6 Chapter Summary

This chapter studies the energy consumption issues related to data prefetching.

In deep-submicron process technologies, memory system energy is dominated by the

leakage component unless effective leakage reduction techniques are used. As feature

sizes continue to decrease, leakage power will constitute an increasing fraction of the

total energy consumption, favoring aggressive prefetching techniques. However, with

successful leakage control, the problem shifts back to tuning the level of prefetch

aggressiveness; otherwise the energy cost of prefetching will be dominated by the

overhead from the prefetching hardware energy consumption and from extra L1

lookups when prefetching requests resolve at L1 Cache.

Clearly, for low-power processors, designing the appropriate prefetching technique

with good speedup and less energy overhead will be very important. New power-aware

prefetching techniques are needed to reduce the energy overhead without decreasing
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the performance benefits of data prefetching. We will focus on how to achieve this

goal in the rest of this dissertation.
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CHAPTER 3

ENERGY-AWARE PREFETCH FILTERING

This chapter proposes several filtering techniques to make hardware-based data

prefetching more energy-efficient. Our proposed techniques include three compiler-

based approaches which make the prefetch predictor more power efficient. The

compiler identifies the pattern of memory accesses in order to selectively apply

different prefetching schemes depending on predicted access patterns and to filter

out unnecessary prefetches. We also propose a hardware-based filtering technique

to further reduce the energy overhead due to prefetching in the L1 cache. Our

experiments show that the proposed techniques reduce the prefetching-related energy

overhead by close to 40% without reducing its performance benefits.

3.1 Introduction

Our experiments in the last chapter on five hardware-based data prefetching

techniques show that while aggressive prefetching techniques often help to improve

performance, in most of the applications, they increase memory system energy

consumption by as much as 30%. In many systems [38, 67], this is equivalent to

more than 15% increase in chip-wide energy consumption.

Aggressive hardware prefetching is beneficial in many applications as it helps to

hide memory-system related performance costs. By doing that, however, it often

significantly increases energy consumption in the memory system. The memory

system consumes a large fraction of the total chip-energy and it is therefore a key area

targeted for energy optimizations. Our experimental results in the previous chapter
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show that most of the energy degradation is due to the prefetch-hardware related

energy costs and unnecessary L1 data-cache lookups related to prefetches that hit in

the L1 cache.

This chapter proposes several power-aware prefetch filtering techniques for

hardware data prefetching to reduce the energy overheads stated above. The

techniques include:

� A compiler-based selective filtering (CBSF) approach which reduces the number

of accesses to the prefetch hardware by only searching the prefetch hardware

tables for selected memory accesses that are identified by the compiler;

� A compiler-assisted adaptive prefetching(CAAP) mechanism, which utilizes

compiler information to selectively apply different prefetching schemes depending

on predicted memory access patterns;

� A compiler-driven filtering technique using a runtime stride counter(SC)

designed to reduce prefetching energy consumption on memory access patterns

with very small strides; and

� A hardware-based filtering technique using a prefetch filter buffer (PFB) applied

to further reduce the L1 cache related energy overhead due to prefetching.

Compiler-based prefetch filtering requires static compiler analysis to provide

program information in order to apply respective filtering technique. The compiler

passes are implemented by extending the SUIF infrastructure [99]. To apply the

filtering techniques on pointer-intensive applications, a pointer analysis pass called

runtime-biased pointer analysis [40] is first applied to generate the location-set

information of all the pointers. The necessary information for filtering is then acquired

based on array structure information collected through regular SUIF functions and

the location-set information for pointers.
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The SimpleScalar [18] simulation tool has been modified to implement the different

prefetching techniques and collect statistics on performance as well as switching

activity in the memory system. To estimate power consumption in the memory

system, we use state-of-the-art low-power cache circuits and simulate them using

HSPICE. Our experiments show that the proposed techniques successfully reduce

the prefetching-related energy overheads by 40% on average, without reducing the

performance benefits of prefetching.

The rest of this chapter is organized as follows. An overview of the energy-aware

prefetching solutions are presented in Section 3.2. Section 3.2 provides an introduction

to the key compiler analysis passes used in our application. Detailed descriptions

on compiler-based filtering are presented in Section 3.4 and hardware filtering is

presented in Section 3.5. We summarize this chapter with Section 3.6.

3.2 Filtering Overview

Our experimental results show that most of the energy overhead due to prefetching

comes from two areas. The major part is from the prefetching prediction phase:

when we search/update the prefetch history table to find potential prefetching

opportunities; Another significant part of the energy overhead comes from the extra

L1 tag-lookups. This is because many unnecessary prefetches are issued by the

prefetch engine.

Fig. 3.1 shows the modified combined prefetching architecture including four

energy-saving components. The first three techniques are compiler-based approaches

used to reduce prefetch-table related costs and some extra L1 tag lookups due to

prefetching. The last one is a hardware-based approach designed to reduce the extra

L1 tag lookups. The techniques proposed, as numbered in Fig. 3.1, are:
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Figure 3.1. Power-aware prefetching architecture for general-purpose programs
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1. A compiler-based selective filtering (CBSF) approach which reduces the number

of accesses to the prefetch hardware by only searching the prefetch hardware

tables for selected memory accesses that are identified by the compiler;

2. A compiler-assisted adaptive prefetching(CAAP) mechanism, which utilizes

compiler information to selectively apply different prefetching schemes depending

on predicted memory access patterns;

3. A compiler-driven filtering technique using a runtime stride counter(SC)

designed to reduce prefetching energy consumption on memory access patterns

with very small strides; and

4. A hardware-based filtering technique using a prefetch filter buffer (PFB) applied

to further reduce the L1 cache related energy overhead due to prefetching.

The compiler-based approaches help make the prefetch predictor more selective

based on program information extracted. With the help of the compiler hints, the

energy-aware prefetch engine performs much fewer searches in the prefetch hardware

tables and issues fewer prefetches, which results in less energy overhead being

consumed in L1 cache tag-lookups.

Fig. 3.2 shows the compiler passes in our approach. Prefetch analysis is the

process where we generate the prefetching hints, including whether or not we will do

prefetching, which prefetcher to choose, and the stride information. A speculative

pointer and stride analysis approach [40] is applied to help analyze the programs and

generate the information we need for prefetch analysis. Compiler-assisted techniques

require the modification of the instruction set architecture to encode the prefetch

hints generated by the compiler analysis. These hints could be accommodated by

reducing the number of offset bits. We will discuss how to perform the analysis for

each of the techniques in detail later.
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Figure 3.2. Compiler analysis used for power-aware prefetching

In addition, our hardware-based filtering technique utilizes the temporal and

spatial locality of prefetching requests to filter out the requests trying to prefetch the

same cache line as prefetched recently. The technique is based on a small hardware

buffer called the Prefetch Filtering Buffer (PFB).

Next, we will first present the key compiler analysis steps used in the compiler-

based filtering before we present the detailed filtering techniques.

3.3 Runtime-Biased Pointer Reuse Analysis

Many researchers have focused on program locality/reuse analysis for array-based

memory accesses [68, 102, 103]. In general, array accesses are more regular than

pointer-based memory accesses because arrays are normally accessed sequentially

while pointers typically have more complicated behavior. As a result, array based

accesses are also relatively easy to deal with as type information is available to guide

the analysis.
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Table 3.1. Pointer analysis results using a context- and flow-sensitive state-of-the-art
pointer analysis tool.

Benchmark Analysis result

em3d, allroots, backprop, eks, bintr succeeded
mcf, mst, vor failed, because of pointer cast

conversion from integer
art, equake, parser, vpr, bh, bisort,
perimeter, power, treeadd, tsp,
vor, health, bisect, ks, main, trie,
qbsort, football

failed, because of undefined global
pointers from libraries

Intensive use of pointers makes however program analysis difficult since a pointer

may point to different locations during execution time; the set of all locations a pointer

can access at runtime is typically referred to as the location set. This difficulty

is further accentuated in the context of large and/or complex programs. Precise

dataflow-based implementations of pointer analysis often cannot complete the analysis

when used for large programs or when special constructs such as pointer based calls,

recursion, or library calls are found in the program. Our experiments with a recently

developed flow- and context-sensitive state-of-the-art analysis [83] show that it would

not complete for several of our tested programs(see Table 3.1). This, however, is not

a limitation of a particular implementation: it is, rather, a fundamental limitation

of any conservative program analysis technique. Clearly, the explanation is that

conservative analysis could not be completed when provable correctness could not be

guaranteed at compile time.

Our objective is to develop new techniques to capture pointer behavior in

complex applications with no restrictions, applicable in optimizations where absolute

correctness of the information extracted is not necessary for guaranteeing correctness

of execution. The idea is to determine pointer behavior by capturing the frequent

locations for each pointer rather than all the locations as conservative analysis

would do. Predicted pointer reuse information is therefore runtime biased and
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speculative in the sense that the possible targets for each pointer access are statically

predicted/speculated based on the likelihood of their occurrence at runtime.

A key difference between traditional pointer analysis and our RB pointer analysis

is that the targets captured are not guaranteed at compile time. While the analysis

can give incorrect targets or omit targets, it has the advantage that it always

completes and often omits targets that are anyway seldom used at runtime. These

targets would have little effect anyway when used to control energy consumption

in energy-aware techniques. Besides memory accesses with good reuse/locality,

the technique also identifies irregular accesses that typically result in energy and

performance penalties no matter how they are managed in an energy-aware context.

The approach presented here is applicable in all architecture optimizations that use

some kind of compiler-exposed speculation hardware and when absolute correctness of

static information leveraged is not necessary. Beside compiler managed prefetching,

the potential techniques include for example compiler managed energy-aware memory

systems, and speculative parallelization and synchronization - these applications by

their design benefit from precise memory behavior information but could tolerate

occasional incorrect static control information.

We will first give a brief overview of traditional pointer analysis mechanisms in the

next section, then present the key steps in the runtime-biased pointer reuse analysis.

More detailed information on the runtime-biased pointer analysis can be found in our

previous work [40].

3.3.1 Traditional Pointer Analysis

Pointer analysis attempts to statically determine the possible values a pointer will

take at runtime. This is a relatively mature field [26, 33, 56, 82, 83, 86, 93, 100], and

the existing techniques can be classified by two major properties: flow-sensitivity and

context-sensitivity.
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char *p, *q, *r, x;

p = &x;

*p = ‘A’;

q = p;

*p = ‘B’;

r = q;

*r = ‘C’;  

}

p x

p x

p x q x

r x

p x q x

p x q x

r xp x q x

Figure 3.3. A simple points-to graph.

Flow-sensitive analysis makes use of a procedure’s control-flow information,

producing a solution for each program point [26, 33, 56, 82, 100]. Flow-insensitive

analysis, on the other hand, produces one solution for either the whole program

or for each individual procedure [7, 86, 93]. Because of this, flow-insensitive analysis

techniques are typically more efficient than flow-sensitive analysis techniques, however

they are also less precise [94].

In context-sensitive analysis, the calling context is considered when analyzing a

procedure. Thus, a result is generated for each different calling context of a procedure.

In context-insensitive analysis, only one result is generated for each procedure. This

result is typically found by merging information from different call sites. Like flow-

sensitive analysis, context-sensitive analysis is generally less efficient than context-

insensitive analysis but is considered to be more accurate even though, in this case,

it is not clear whether this belief is true or not [82,100].

During pointer analysis, the location sets, or the sets of locations each pointer may

point to, are represented as a points-to graph (PTG). Nodes in a PTG correspond to

program variables and edges are used to represent each possible points-to relation.

Figure 3.3 shows a simple program segment and a points-to graph that describes it.
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Without points-to analysis, we would not be able to draw the conclusion that pointers

p, q, and r are pointing to the same location at compile-time. By using the points-to

information generated through pointer analysis, it is clear that these pointers will all

point to the same location in memory and thus potentially the same cache line.

3.3.2 Overview - RB Compiler Analyses

The runtime biased (RB) compiler analyses can be separated into a series of three

steps: RB pointer analysis, RB distance analysis, and RB reuse analysis. Instead of

basing our presentation on a formal description such as dataflow equations, we focus

on some of the key insights and steps that make our analysis unique.

RB Pointer Analysis is first applied in order to gather basic pointer information

needed to predict pointer access patterns. A flow-sensitive dataflow scheme is used

in our implementation. Flow-sensitive analysis maintains high precision (i.e., the

location set of each pointer access is determined in a flow-sensitive manner even if

based on the same variable). Our analysis is guided by re-evaluating, at each pointer

dereference point, the (likely) runtime frequency of each location a pointer can point

to. For example, possible locations that are from definitions in outer loop-nests are

marked or not included when the pointer is dereferenced in inner loops and if at least

one new location has been defined in the inner loop. Conventional analysis would not

distinguish between these locations.

RB Distance Analysis gathers stride information for pointers changing across loop

iterations. The stride information is used to predict pointer-based memory access

patterns, and speculation is performed whenever the stride is not fixed. As strides

could change in function of the paths taken in the Control-Flow Graph (CFG) of

the loop body, only the most likely strides (based on static branch prediction) are

considered.
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RB Reuse Analysis attempts to discover those pointer accesses that have cache line

reuse property, i.e., refer to the same cache line. Reuse analysis uses the information

provided by the previous analyses to decide whether two pointer accesses might refer

to the same cache line. Based on the reuse patterns, pointer accesses are partitioned

into reuse equivalence classes (RECs). Each REC can be either regular, which means

that memory accesses belonging to the REC have high cache line reuse, or irregular,

which means that memory accesses in the REC are not reusing cache lines frequently.

3.3.3 RB Pointer Analysis

There are two ways to give pointer information: (1) through program-point

information, and (2) through global information. Figure 3.4 shows a simple C

program and illustrates the difference between these representations. Program point

information for example would show that at the end of the program segment in

Figure 3.4, pointer p points to location set {y,z}, a more precise information,

compared to the global information case where p points to location set {x,y,z}.
Although global information can be extracted with much more efficient analysis

algorithms, it gives less precise results. Our analysis is based on program point

information that combined with the program CFG forms the point-to graph (PTG)

of a program.

Nodes in a PTG correspond to program variables and edges represent points-

to relations. A points-to relation connects two variables and means that a pointer

variable can take the value of another variable (or location) during execution.

Precise conventional pointer analysis usually requires that the program includes

all its source codes, for all the procedures, including static libraries. Otherwise, the

analysis cannot be performed. The analysis is often used in program optimizations

where conservative assumption must be made - any speculation could result in

incorrect execution.
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Figure 3.4. Pointer information representations: (a) program-point representation,
(b) through global information.

In contrast, our approach does not require the same type of strict correctness. If

the behavior of a specific pointer cannot be inferred precisely, we can speculate or just

ignore its effect. For example, if a points-to relation (or location) cannot be inferred

statically, we speculatively consider only the other locations gathered in the pointer’s

location set. We mark the location as undefined. When assigning location sets for

the same pointer at a later point in the CFG, one could safely ignore/remove the

undefined location in the set, if the probability of the pointer accessing that location,

at the new program point, is low.

For the example in Figure 3.5, after pointer analysis, the pointer p at the position

*p += 5 may point to either a or b. With only this information, we cannot decide

exactly where p points during runtime. However, if we consider how frequently each

location will be accessed during execution, e.g., with static branch prediction, we can

predict that the probability for p to point to a during runtime is only 0.1%. Since

p points to b for most of the time, we will conclude that p always points to b by

speculation. The idea is that although we may make some incorrect predictions, the
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int a,b;

int *p;

p = &a;

for (int i=0;i<1000;i++){

*p += 5;

p = &b;  

}

p a

p a

p bp b

p {a,b}

Figure 3.5. Location set optimization example based on static branch prediction.
After the first iteration we will conclude that p always points to b by speculation.

penalties caused by these mispredictions are small compared to the energy benefits

we can often achieve.

The main steps of our RB pointer analysis algorithm are as follows: (1) build a

control-flow graph (CFG) of the computation, (2) analyze each basic block in the CFG

gradually building a PTG, (3) at the beginning of each basic block merge location set

information from previous basic blocks, (4) mark locations in the location sets that

are unlikely to occur at runtime, at the current program point, as less frequent, (5)

mark undefined locations or point-to relations; (6) repeat steps 2-5 until the PTG

graph does not change (i.e., full convergence is reached) or until the allowed number

of iterations are reached.

Library calls that may modify pointer values and for which source codes are not

available are currently speculatively ignored in our implementation. If a pointer is

passed in as an argument, its location set after the call-point in the caller procedure

will be marked as speculative, signaling that the location set of the pointer might be

incomplete after the call. In none of the programs we have analyzed we have found

library-modified pointer behavior to be a considerable factor.
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……
int *p;
int arr[100];

p = &arr;
for(… i …){

*p = i;
p += 1;

}

……
int *p;
int arr[10];

p = &arr;
for(… i …){

*p = i;
p += foo(i);

}

(a) (b)

Figure 3.6. Distance analysis examples: (a) static stride (b) variable stride

3.3.4 RB Distance Analysis

Focusing on loop-based pointers, we introduce distance analysis which helps us

to capture the changing pattern if a pointer variable in the loop is modified for each

loop iteration. In the example shown in Figure 3.6(a), the value of pointer p changes

after each iteration. In general, there are two ways to deal with this situation if

implemented as part of pointer analysis. Each element in the array structure could

be treated as a different location, or, another approach would be to treat the whole

array arr as a single location. The former is too complicated for compiler analysis

while the latter is not precise enough.

In our approach, as shown in Figure 3.6(a), we first find the initial location for

p. Then, when we find out that p is changing for each iteration, we calculate the

distance (stride) between the current location and the location after modification.

If the distance is a constant, we will use both the initial location and distance to

describe the behavior of the pointer.

Extracting stride information is not always easy. In Figure 3.6(a), we could

easily calculate that the stride for pointer p is 4 bytes. However, for the example

in Figure 3.6(b), the stride for pointer p is variable since we do not know what
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value procedure foo() will return. In this case, we can use speculation based on

static information related to the location set to estimate the stride. For example, the

information we do know is (1) p points to array arr and (2) the size of array arr

is small. Based on this information, we can speculate that the stride of p is small

although we do not know the exact number.

Another example of stride prediction, as also mentioned earlier, is ignoring strides

that are less likely to occur at runtime based on static branch prediction. Clearly,

depending on which path is executed at runtime, the stride of a pointer might change

across loop iterations, as not all the possible paths leading to that pointer access are

equally likely to occur.

3.3.5 RB Reuse Analysis

Reuse analysis is used to decide which memory accesses are likely to access the

same cache line, which is the information needed for our compiler-managed data

prefetching. Reuse analysis for array-based accesses has been studied and used

in [68,102,103] for data prefetching. For pointer-intensive programs, we use a similar

classification scheme, but we redefine it specifically in the context of pointer-based

accesses. Four types of reuse patterns are identified in our analysis:

1. Temporal Reuse: This is the case when a pointer is not changing during loop

iterations. This is the simplest case for loop-based accesses, as shown in

Figure 3.7(a). In this example, the pointer access p->result is never changed

during different loop iterations, so the cache line it refers to will be reused during

each loop iteration.

2. Self-Spatial Reuse: If a pointer is changing using a constant stride and the stride

is small enough, two or more consecutive accesses will refer to the same cache

line. As shown in Figure 3.7(b), the pointer p is changing after each iteration,
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for(i=0;i<100;i++){

......

a[i] = init->value;

......

}

(a) Temporal Reuse

p = a[0];

for(i=0;i<100;i++){

*p = i;

......

p++;

}

(b) Self-Spatial Reuse

for(;;p=p->next){

p->height = 1;

p->width = 1;

}

(c) Group-Spatial Reuse

p->left = ...;

p->right = ...;

p->value = ...;

p->weight = ...;

(d) Simple-Spatial Reuse

Figure 3.7. Reuse Classification

however it is changing regularly. Although p is pointing to a different address

each time, there is still great possibility for it to access the same cache line.

3. Group-Spatial Reuse: A group of pointers can share the same cache line during

each loop iteration even when they do not exhibit self-spatial reuse. In the

example of Figure 3.7(c), p->height and p->width are always pointing to the

same cache line for each loop iteration, although the cache line may be different

for different iterations.

4. Simple-Spatial Reuse: This exists between two pointers that refer to the same

cache line but do not belong to any loop. In Figure 3.7(d), we can see that

all pointer accesses will probably access the same cache line, so there is a reuse

relationship among them. Simple-spatial reuse is added as a new reuse category

because we found that this situation is important for pointer-based programs

although it is not as important for array-based programs. The reason is that

array structures are typically accessed using loops, while pointer-based data
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structures are often accessed using recursive functions. When a small recursive

function is called frequently, the simple-spatial reuse cases within the function

will become significant.

Based on the reuse classification above and strides information gathered by

distance analysis, pointer-based memory accesses are partitioned into different reuse

equivalence classes (RECs). Each REC contains a group of memory accesses with

reuse equivalence relations among them. A reuse equivalence relation between two

memory accesses exists when they have a good chance to access the same cache line

during runtime.

Pointers with different properties will be treated differently during the reuse

equivalence classification process. First, loop-based accesses are scanned to identify

temporal and self-spatial reuses using the following criteria:

1. Static loop-based accesses which do not change will be regarded as temporal

reuse;

2. Loop-based accesses with static stride will be categorized as self-spatial reuse if

the stride is small enough (for example, less than half of the cache line size);

3. Loop-based accesses with unknown (dynamic) strides will also be treated as self-

spatial reuse if their stride can be speculated as small from distance analysis.

Each of these temporal reuse or self-spatial reuse accesses will be assigned to an REC

containing only the memory access itself.

Next, non-loop accesses and loop-based accesses that do not have temporal or

self-spatial reuse properties will be scanned by a compiler pass for group-spatial and

simple-spatial reuses. The algorithm used here is an intra-procedural analysis using a

recursive function which is shown in Figure 3.8. Before we analyze each procedure, all

RECs are initialized to empty. A reuse address list is also maintained for each REC
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that contains the most recent memory access assigned to the REC. The analysis is

performed recursively for each basic block in the Control-Flow Graph (CFG). During

the analysis, the address of every memory access is compared to the addresses in

the address list in order to find the closest REC. If its distance to the closest REC is

smaller than half of the cache line size, it will be assigned to the same REC; otherwise

the memory access will be assigned to the next available REC. The process continues

recursively with the following basic blocks until all the basic blocks in the procedure

are analyzed.

Among all the RECs identified during this process, an REC containing loop-based

memory accesses will be identified as group-spatial, while an REC containing memory

accesses in recursive functions will be identified as simple-spatial. All the memory

accesses in the remaining RECs will be regarded as irregular accesses.

In group-spatial and simple-spatial reuse cases, the number of accesses contained

in an REC reflects the reuse possibility (accessing the same cache line) of this

particular class. In our applications, the size of an REC should be at least three

or four to allow frequent cache line reuse and compensate the penalties that might

occur because of the cold-start miss for each REC. If the size of the REC is too small

to allow frequent cache line use to occur, all the memory accesses belonging to this

REC will also be considered as irregular accesses.

After the reuse analysis pass, each memory access has been assigned to an REC.

All the RECs with temporal and self-spatial reuses will be regarded as regular

accesses, as well as RECs with group-spatial and simple-spatial reuses if their sizes

are large enough. The remaining RECs will be treated as irregular as we mentioned

above.

Each REC can be either regular, which means that memory accesses belonging to

the REC have high cache line reuse, or irregular, which means that memory accesses

in the REC are not reusing cache lines frequently. The regular memory accesses
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/* For each procedure, start with the first basic block */

FOR each procedure DO

B = first basic block;

FOR REC index i: 1 to MAX DO

REC[i] = {}; /* initialize each REC */

access[i] = NULL; /* most recent access for REC[i] */

END FOR

call Analyze_Block B;

END FOR

/* recursive function to analyze a block X */

PROCEDURE Analyze_Block X

FOR each access A in X DO

distance = INFINITE;

/* find the closest REC for access A */

FOR all non-empty REC index: i from 1 to n DO

IF (distance_between(A, access[i]) < distance) THEN

closest = i and update distance;

END IF

END FOR

/* if the smallest distance is close enough, assign A to the REC */

IF distance <= CacheLineSize/2 THEN

add A to REC[closest];

access[closest] = A;

ELSE

/* otherwise assign A to the next available REC */

assign A to the next available REC;

access[next] = A;

END IF

END FOR

workList = successors of X in CFG;

WHILE !empty(workList) DO

B = next basic block in workList;

IF B.analyzed THEN

continue;

END IF

/* Traverse through the CFG by making recursive calls */

call Analyze_Block B;

B.analyzed = true;

END WHILE

END PROCEDURE

Figure 3.8. Compiler analysis for group-spatial and simple-spatial reuses
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have good cache line reuse possibility, while the remaining irregular accesses are not

reusing cache lines frequently. These information will be very important while making

prefetching decisions (as used in [68]) as well as energy-performance tradeoffs (as used

in this dissertation).

3.4 Compiler-Assisted Filtering

3.4.1 Compiler-Based Selective Filtering (CBSF)

One of our observations is that not all load instructions are useful for prefetching.

Some instructions, such as scalar memory accesses, have no access patterns and cannot

anyway trigger useful prefetches when fed into the prefetcher.

We use the compiler to distinguish memory accesses useful for prefetching from

those which my have no benefit. Only those useful load instructions, selected by

the compiler, are fed into the prefetcher. Instructions identified with “no prefetching

potential” will not be added to the prefetch history table. Thus, these instructions

will not contribute to the energy consumption overhead.

The compiler identifies the following memory accesses as having “no prefetching

potential”:

� Non-critical accesses : Memory accesses within a loop or a recursive function are

regarded as critical accesses. Because prefetching schemes are anyway designed

to capture the memory access patterns in critical program phases, we can safely

filter out the non-critical accesses before they reach the prefetcher.

� Scalar accesses : Scalar accesses do not have any pattern and will not contribute

to the prefetcher if fed into the prefetcher. Only memory accesses to array

structures and linked data structures will be sent to the prefetcher to make

prefetching decisions.

61



The instructions selected by the compiler are annotated with “no prefetching

potential” and are filtered out before they are fed into the prefetcher. This

optimization could eliminate on average as much as 8% of all the prefetch table

accesses, as we will show later.

3.4.2 Compiler-Assisted Adaptive Prefetching (CAAP)

Another compiler approach focuses on how to help the prefetch predictor choose

one of the prefetching schemes in the combined prefetching approach.

One important aspect of the combined approach is that it uses two techniques

independently and prefetches based on the memory access patterns for all memory

accesses. As we know, stride prefetching works better on array-based accesses and

dependence-based prefetching is more appropriate for pointer-based structures. One

obvious approach is therefore to distinguish these two types of accesses.

Distinguishing between pointers and non-pointer accesses is difficult during

execution time. However, we can distinguish them easily during compilation. Array

accesses and pointer accesses are annotated using hints written into the instructions.

During runtime, the prefetch engine can identify the hints and apply different

prefetching mechanisms.

We have found that simply splitting the array and pointer structures is not very

effective and affects the performance speedup (which is the primary goal of prefetching

techniques). Instead, we use the following heuristic to decide whether we should use

stride prefetching or pointer prefetching:

� Memory accesses to an array which does not belong to any larger structure (e.g.,

fields in a C struct) are only fed into the stride prefetcher;

� Memory accesses to an array which belongs to a larger structure are fed into

both stride and pointer prefetchers;
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� Memory accesses to a linked data structure with no arrays are only fed into the

pointer prefetcher;

� Memory accesses to a linked data structure that contains arrays are fed into

both prefetchers.

The above heuristic is able to preserve the performance speedup benefits of the

aggressive prefetching scheme. We can filter out up to 20% of all the prefetch-table

accesses and up to 10% of the extra L1 tag lookups due to prefetching, by applying

this technique.

3.4.3 Compiler-Hinted Filtering Using a Runtime Stride Counter (SC)

Another part of prefetching energy overhead comes from memory accesses with

small strides. Accesses with very small strides (compared to the cache line size of 32

bytes we use) could result in frequent accesses to the prefetch table and issuing more

prefetch requests than needed. For example, if we have an iteration on an array with

a stride of 4 bytes, we will access the hardware table at least 8 times before we reach

the point where we can issue a useful prefetch to get a new cache line. The overhead

not only comes from the extra prefetch table accesses; 8 different prefetch requests

are also issued to prefetch the same cache line during the 8 iterations.

Software prefetching would be able to avoid the penalty by doing loop unrolling.

In our approach, we use hardware to accomplish loop unrolling with assistance from

the compiler. The compiler predicts as many strides as possible based on static

information. Stride analysis is applied not only for array-based memory accesses,

but we also predict strides for pointer accesses with the help of pointer analysis.

Detailed information on how to do the pointer and stride analysis could be found in

our previous work [40].

Strides predicted as larger than half of the cache line size (16 bytes) will be

considered as large enough since they will be able to reach a different cache line after
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each iteration. Strides smaller than the half of the cache line size will be recorded

and passed to the hardware. This is a very small 8-entry buffer used to record the

most recently used instructions with small strides. Each entry contains the program

counter (PC) of the particular instruction and a stride counter. The counter is used to

count how many times the instruction occurs after it was last fed into the prefetcher.

The counter is initially set to a maximum value (decided by cache line size/stride)

and is then decremented each time the instruction is executed. The instruction is

only fed into the prefetcher when its counter is decreased to zero; then, the counter

will be reset to the maximum value.

For example, if we have an array access (in a loop) with a stride of 4 bytes,

the counter will be set to 8 initially. Thus, during eight occurrences of this load

instruction, only once it is sent to the prefetcher.

This technique reduces 5% of all the prefetch table accesses as well as 10% of the

extra L1 cache tag lookups, while resulting in less than 0.3% performance degradation.

3.5 Hardware Prefetch Filtering Using PFB

To further reduce the L1 tag-lookup related energy consumption, we add a

hardware-based prefetch filtering technique. Our approach is based on a very small

hardware buffer called the Prefetch Filtering Buffer(PFB).

When a prefetch engine predicts a prefetching address, it does not prefetch the

data from that address immediately from the lower-level memory system (e.g., L2

Cache). Typically, tag lookups on L1 tag-arrays are performed. If the data to be

prefetched already exists in the L1 Cache, the prefetch request from the prefetch

engine is dropped. A cache tag-lookup costs much less energy compared to a full

read/write access to the low-level memory system (e.g., the L2 cache). However,

associative tag-lookups are still energy expensive.
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To reduce the number of L1 tag-checks due to prefetching, we add a PFB to

remember the most recently prefetched cache tags. We check the prefetching address

against the PFB when a prefetching request is issued by the prefetch engine. If the

address is found in the PFB, the prefetching request is dropped and we assume that

the data is already in the L1 cache. When the data is not found in the PFB, we

perform normal tag lookup and proceed according to the lookup results. The LRU

replacement algorithm is used when the PFB is full. The prefetch filtering scheme

using the PFB is shown in Fig. 3.1.

A smaller PFB costs less energy per access, but can only filter out a smaller

number of useless prefetches. A larger PFB can filter out more useless prefetches,

but each access to the PFB costs more energy. To find out the optimal size of the

PFB, we simulated a set of benchmarks with PFB sizes of 1 to 16. We will show in

Chapter 5 that an 8-entry PFB is large enough to accomplish the prefetch filtering

task with very small performance overhead.

PFBs are not always correct in predicting whether the data is still in L1 since

the data might have been replaced although its address is still present in the PFB.

We call this case a PFB misprediction. High PFB mispredictions would result in

performance loss because useful prefetches are dropped. Fortunately, as we will show

later, the PFB misprediction rate is very low (close to 0).

3.6 Chapter Summary

This chapter explores the energy-efficiency aspects of data-prefetching techniques

and proposes several filtering techniques to make prefetching energy-aware. Our

proposed techniques include three compiler-based approaches which help to make the

prefetch predictor more selective and filter out unnecessary prefetches based on static

program information. We also propose a hardware based filtering technique to further

reduce the energy overheads due to prefetching in the L1 cache.
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A new compiler analysis called runtime-biased pointer reuse analysis is applied to

support the compiler-based filtering mechanisms. A key difference between traditional

pointer analysis and our runtime-biased pointer analysis is that the targets captured

are not guaranteed at compile time. While the analysis can give incorrect targets or

omit targets, it has the advantage that it always completes and often omits targets

that are anyway seldom used at runtime. These targets would have little effect

anyway when used to control energy consumption in energy-aware techniques. Besides

memory accesses with good reuse/locality, the technique also identifies irregular

accesses that typically result in energy and performance penalties no matter how

they are managed in an energy-aware context.

The approach presented here is applicable in all architecture optimizations that use

some kind of compiler-exposed speculation hardware and when absolute correctness of

static information leveraged is not necessary. Beside compiler managed prefetching,

the potential techniques include for example compiler managed energy-aware memory

systems, and speculative parallelization and synchronization - these applications by

their design benefit from precise memory behavior information but could tolerate

occasional incorrect static control information.

We will first give a brief overview of traditional pointer analysis mechanisms in the

next section, then present the key steps in the runtime-biased pointer reuse analysis.

More detailed information on the runtime-biased pointer analysis can be found in our

previous work [40].
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CHAPTER 4

LOCATION-SET DRIVEN DATA PREFETCHING

In this chapter, we present location-set driven prefetching using PARE, a Power-

Aware pRefetching Engine that uses a newly designed indexed hardware history table.

Compared to the conventional single table design, the new prefetching table consumes

7-11X less power per access. With the help of compiler-based location-set analysis,

we show that the proposed PARE design improves energy consumption by as much

as 40% in the data memory systems in 70-nm processor designs.

4.1 Introduction

The filtering techniques presented in the previous section are capable of eliminating

a significant portion of unnecessary or useless prefetching attempts. However, we have

found that the energy overhead of prefetching is still pretty high, mainly because that

it consumes significant power accessing the hardware table used for combined data

prefetching.

As presented in previous chapters, hardware prefetching requires the help of a

history table to record recent memory access instructions and set up relationships

between them in order to make prefetching decisions and calculate prefetching

addresses. The history tables are usually pretty large (normally 64-128 entries) [12,

80]. When implemented as a fully-associative CAM table, the energy cost of each

table lookup or update operation could cost the amount of energy which is comparable

to a read operation of a low-power cache. To make accurate prefetching decisions,

the history table is accessed very frequently to update the recent information on
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all relevant load instructions, which makes this part of the energy overhead very

significant.

In this chapter, we introduce a new data prefetching scheme: location-set driven

data prefetching, which uses PARE - a new Power-Aware pRefetching Engine with a

novel design of an indexed hardware history table. Instead of reducing the number of

accesses to the prefetch hardware as proposed in the previous chapter, the proposed

scheme is focused on improving the power-efficiency of the prefetch hardware itself.

We present the detailed design of PARE and compare its power dissipation with the

conventional fully-associative table design. We show that with the help of compile-

time location-set analysis [83], we can divide the memory accesses into different

relationship groups, with each group consisting of memory accesses visiting only

closely related location-sets. The compiler generated group numbers allow us to

use the indexed history table in PARE.

In the proposed prefetch history table, we divide the total entries into multiple

(e.g., 16 or more) smaller tables. Each memory access will be directed to one of the

tables upon entering the prefetching engine according to their group numbers provided

by the compiler. The prefetching engine will update the information within the

group and will make prefetching decisions solely based on the information within this

group. The compile-time location-set analysis is utilized to ensure that no information

will be lost due to the partitioning of memory accesses. We can reduce the power

consumption of each access to the prefetching tables by 7-11X with the proposed

technique based on our HSPICE simulation.

To estimate power consumption in the memory system, we use state-of-the-art

low-power cache circuits and simulate them using HSPICE. The SimpleScalar [18]

simulation tool has been modified to implement the hardware prefetching technique

and collect statistics on performance as well as switching activity in the memory

system. The compiler passes are implemented using the SUIF infrastructure [99].
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Our experiments show that the proposed technique improves the energy consumption

by as much as 40% in the data memory system for a set of general-purpose programs.

Our evaluation is based on 70-nm BPTM technology node and accounts for both

active and leakage power.

The rest of this chapter is organized as follows. The PARE power-aware

prefetching engine is presented in Section 4.2. Section 4.3 gives an overview of the

location set based group analysis. We conclude with Section 4.4.

4.2 PARE: a Power-Aware Prefetching Engine

As we mentioned earlier, the combined stride and pointer prefetching technique [39]

integrates the mechanisms from both stride prefetching [12] and dependence-based

prefetching [80].

Stride prefetching captures the static strides between memory accesses (mainly

array accesses), and requires a history table to record the address of the instruction

(PC), previously accessed address, and the predicted stride. In comparison, the

dependence-based prefetching requires two history tables to record the potential

candidates of instructions and the correlations which include PC, previously generated

addresses, and predicted offset values.

As we will show later, the tables for both techniques could be combined together

into a single table, each entry attached with one bit to indicate the prefetching type.

We will also use two bits to indicate the prefetching status, which will help us track

whether the relationship is steady (status>1) or not. Prefetching requests will be

issued only after the relationship is established, i.e., it is steady.

Next, we will show the design of our baseline prefetching history table, which

is a 64-entry fully-associative table that already uses many circuit-level low-power

features. Following that we present the design of the proposed indexed history table

69



Figure 4.1. The baseline design of hardware prefetch table.

for PARE, and compare the power dissipation, including both dynamic and leakage

power, of the two designs.

4.2.1 Baseline History Table Design

The baseline prefetching table design is a 64-entry fully-associative table shown

in Figure 4.1. In each table entry, we store a 32-bit program counter (the address

of the instruction), the lower 16 bits of the previously used memory address (we do

not need to store the whole 32 bits because of the locality property in prefetching).

We also use one bit to indicate the prefetching type and two bits for status, as

mentioned previously. Finally, each entry also contains the lower 12 bits of the

predicted stride/offset value.

In our design, we use Content Addressable Memory (CAM) for the PCs in the

table, because CAM provides a fast and power-efficient data search function, accessing

data by its content rather than its memory location.
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The memory array of CAM cells logically consists of 64 by 32 bits. The rest of

the history table is implemented using SRAM arrays. During a search operation, the

reference data are driven to and compared in parallel with all locations in the CAM

array. Depending on the matching tag, one of the wordlines in the SRAM array is

selected and read out.

The prefetching engine will update the table for each load instruction and check

whether steady prefetching relationships have been established. If there exists a

steady relation, the prefetching address will be calculated according to the relation

and data stored in the history table. A prefetching request will be issued in the

following cycle.

4.2.2 PARE History Table Design

Each access to the table in Figure 4.1 still consumes significant power because all

64 CAM entries are activated during a search operation. We could reduce the power

dissipation in two ways: reducing the size of each entry and partitioning the large

table into multiple smaller tables.

First, because of the program locality property, we do not need the whole 32 bits

PC to distinguish between different memory access instructions. If we use only the

lower 16 bits of the PC, we could reduce roughly half of the power consumed by each

CAM access.

Next, we break up the whole history table into 16 smaller tables, each containing

only 4 entries, as shown in Figure 4.2. Each memory access will be directed to one of

the smaller tables according to their group numbers provided by the compiler when

they enter the prefetching engine . The prefetching engine will update the information

within the group and will make prefetching decisions solely based on the information

within this group. The compile-time location-set analysis is utilized to ensure that

no information will be lost due to the partitioning of memory accesses. The group
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Figure 4.2. The overall organization of our hardware prefetch table.

number can be accommodated in future ISAs that target energy efficiency and can be

added easily in VLIW/EPIC type of designs. We also expect that many optimizations

that would use compiler hints could be combined to reduce the impact on the ISA.

The approach can reduce power significantly even with fewer tables (requiring fewer

bits in the ISA) and could also be implemented in current ISAs by using some bits

from the offset. Embedded ISAs like ARM that have 4 bits for predication in each

instruction could trade off less predication bits (or none) with perhaps more bits

used for compiler inserted hints. The compiler analysis will be presented in the next

section.

In the PARE history table shown in Figure 4.2, during a search operation, only

one of the 16 tables will be activated based on the group number provided by the

compiler. We only perform the CAM search within the activated table, which is a

fully-associative 4-entry CAM array.
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Figure 4.3. The schematic for each small history table.

The schematic of each small table is shown in Figure 4.3. Each small table consists

of a 4x16 bits CAM array containing the program counter, a sense amplifier and a

valid bit for each CAM row, and the SRAM array on the right which contains the

data.

We use one of the most power-efficient CAM cell designs proposed in [111]. The

cell uses ten transistors that contain an SRAM cell and a dynamic XOR gate used

for comparison. It separates search bitlines from the write bitlines in order to reduce

the capacitance switched during a search operation.

For the row sense amplifier, we are using a single-ended alpha latch to sense the

match line during the search in the CAM array. The activation timing of the sense

amplifier was determined with the case where only one bit in the word has a mismatch

state.

Each word has the valid bit which indicates whether the data stored in the word

will be used in search operations. A match line and a single ended sense amplifier

are associated with each word. A hit/miss signal is also generated: its high state

indicating a hit or multiple hits and the low state indicating no hits or miss.
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Finally, the SRAM array is the memory block that holds the data. Low-power

memory designs typically use a six-transistor (6T) SRAM cell. Writes are performed

differentially with full rail voltage swings.

The power dissipation for each successful search is the power consumed in the

decoder, CAM search and SRAM read. The power consumed in a CAM search

includes the power in the match lines and search lines, the sense amplifiers and the

valid bits.

The new hardware prefetch table has the following benefits compared to the

baseline design:

� The dynamic power consumption is dramatically reduced because of the

partitioning into 16 smaller tables;

� The CAM cell power is also reduced because we use only the lower 16 bits of

the PC instead of the whole 32 bits;

� Another benefit of the new table is that since the table is very small (4-entry),

we do not need a column sense amplifier. This also helps to reduce the total

power consumed.

However, some overhead is also introduced by the new design. First, we need an

address decoder to select one of the 16 tables. The total leakage power is increased (in

a relative sense only) because while one of the smaller tables is active, the remaining 15

tables will be leaking. Fortunately, as we will show next, the PARE design overcomes

all these disadvantages.

4.3 Location-set Based Group Analysis

As we mentioned above, compiler analysis help is required in order to partition

the memory accesses into different groups such that we can use the new proposed

PARE history table design.
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Figure 4.4. The flow diagram for the compiler passes.

Figure 4.4 shows the flow diagram of our compiler procedures. SUIF compiler

infrastructure [99] is used to perform the analysis on intermediate files. Our location-

set analysis pass is performed after the high-level SUIF passes.

Location-set analysis is a compiler analysis similar to pointer alias analysis [83].

By specifying locations for each memory object allocated by the program, a location

set is calculated for each memory instruction. A key difference in our work is that we

use an approximative runtime-biased analysis [40] that has no restrictions in terms

of complexity or type of applications. Each location set contains the set of possible

memory locations which could be accessed by the instruction. Detailed information

of the runtime-biased compiler analysis has been presented in Section 3.3.

The location-sets for all the memory accesses are grouped based on their

relationships and their potential effects on the prefetching decision-making process.

The reason why we can group the memory accesses while not losing the accuracy of

prefetching is because of the regular properties of the prefetching techniques: stride

prefetching is based on the relationship within an array structure, while dependence-

based pointer prefetching is based on the relationship between linked data structures.
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The results of the location-set analysis, along with type information captured

during SUIF analysis, give us the ability to group the memory accesses which relate

during the prefetching decision-making process into the same group. For example,

memory instructions which access the same location-set will be put in the same group,

while the instructions accessing the same pointer structure will also be put in the same

group.

In our analysis, group numbers are assigned within each procedure, and will be

reused on a round-robin basis if necessary. The group numbers then will be written

as annotations to the instructions and transferred to the SimpleScalar simulator via

the binaries.

The essential steps of the location-set based group analysis are performed in the

following order:

1. Runtime-biased pointer analysis is applied first to generate location set

information for each pointer (including array accesses).

2. Type information for each memory access is identified through SUIF intermediate

files. Then we identify the data type for each memory access. When a pointer

is accessed, the type information of its target is also captured.

3. For array accesses, stride information is calculated based on array types (size

of each element) and the pattern of array accesses (stride between elements).

4. For pointer structures, we identify all linked data structures connected to each

other. The pattern will be the same pattern captured through hardware-based

dependence-based data prefetching for linked data structures.

5. Group numbers are then assigned for each procedure based on the following

criteria:
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� Related array accesses are assigned to the same group, while non-related

array accesses are each assigned into a single group.

� Accesses to each linked data structures (based on actual data objects,

instead of based on types) are assigned to the same group.

� Memory accesses do not belong to any types identified are assigned into

one single group by themselves.

� Group numbers are reused in a round-robin format if more than 16 groups

are identified.

6. All group numbers are then transferred to the assembly code after applying the

Machine SUIF [91] pass. Perl scripts are used to help insert the group number

into the binaries for each memory access instruction.

After the location-set based compiler analysis, each memory access is assigned a

group number. During the execution phasee, the architectural-level simulator will use

the group number to direct the memory access to the corresponding entry in the new

PARE table.

4.4 Chapter Summary

This chapter proposes a new prefetching scheme using a power-aware prefetching

engine called PARE to improve the power-efficiency of hardware-based data prefetching

mechanisms.

We show that with the help of compile-time location-set analysis, we can divide

the memory accesses into different relationship groups, with each group consisting of

memory accesses visiting only closely related location-sets. The compiler generated

group numbers allow us to use the indexed history table in PARE.

Although we have implemented PARE on one specific data prefetching technique,

we believe that PARE could be applied on other hardware prefetching techniques as
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well. For example, stride prefetching will be a perfect candidate for PARE when we

are dealing with scientific applications only.
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CHAPTER 5

RESULTS AND ANALYSIS

We simulated the proposed energy-saving techniques and evaluated their impact

on energy consumption as well as performance speedup. All the techniques are applied

to the combined stride and dependence-based pointer prefetching. We first show the

results by applying each of the techniques individually; next, we apply them together.

5.1 Compiler-Based Filtering

Fig. 5.1 shows the results for the three compiler-based techniques, first individually

and then combined. The results shown are normalized to the baseline, which is the

combined stride and pointer prefetching scheme without any of the new techniques.

Fig. 5.1(a) shows the number of prefetch table accesses. The compiler-based

selective filtering (CBSF) works best for parser : more than 33% of all the prefetch

table accesses are eliminated. On average, CBSF achieves about 7% reduction in

prefetch table accesses. The compiler-assisted adaptive prefetching (CAAP) achieves

the best reduction for health, about 20%, and on average saves 6%. The stride counter

filtering (SC) technique removes 12% of prefetch table accesses for bh, with an average

of over 5%. The three techniques combined filter out more than 20% of the prefetch

table accesses for five out of ten benchmarks, with an average1 of 18% across all

applications.

Fig. 5.1(b) shows the extra L1 tag lookups due to prefetching. CBSF reduces the

tag lookups by more than 8% on average; SC removes about 9%. CAAP does not

1All average numbers in this dissertation are calculated as arithmetic means.
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Figure 5.1. Simulation results for the three compiler-based techniques: (a)
normalized number of the prefetch table accesses; (b) normalized number of the L1
tag lookups due to prefetching; and (c) impact on performance.
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Figure 5.2. The number of L1 tag lookups due to prefetching after applying the
hardware-based prefetch filtering technique with different sizes of PFB.

show a lot of savings, averaging just over 4%. The three techniques combined achieve

tag-lookup savings of up to 35% for bzip2, averaging 21% compared to the combined

prefetching baseline.

The performance penalty introduced by the three techniques is shown in Fig. 5.1(c).

As shown, the performance impact is negligible. The only exception is em3d, which

has less than 3% of performance degradation, due to filtering using SC.

5.2 Hardware Filtering Using PFB

Prefetch filtering using PFB will filter out those prefetch requests which would

result in L1 cache hits if issued. We simulated different sizes of PFB to find out

the best PFB size, considering both performance and energy consumption aspects.

Fig. 5.2 shows the number of L1 tag lookups due to prefetching after applying the

PFB prefetch filtering technique with PFB sizes ranging from 1 to 16.

As we can see from the figure, even a 1-entry PFB can filter out about 40%

of all the prefetch tag accesses (on average). An 8-entry PFB can filter out over

70% of tag-checks with almost 100% accuracy. Increasing the PFB size to 16 does
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Table 5.1. The number of PFB mispredictions during the whole run with different
sizes of PFBs

Bench PFB-1 PFB-2 PFB-4 PFB-8 PFB-16

mcf 0 0 0 1 9
parser 0 0 0 0 0
art 0 0 0 0 0
bzip2 0 0 0 0 0
vpr 0 0 0 0 0
bh 0 0 0 0 0
em3d 0 0 0 0 0
health 0 0 0 0 1
mst 0 0 11 11 11
perimeter 0 0 0 0 0

not increase the filtering percentage significantly. The increase is about 2% on the

average compared to an 8-entry PFB, while the energy cost per access doubles.

We also show the ideal situation (OPT in the figure), where all the prefetch hits

are filtered out. For some of the applications, such as art and perim, the 8-entry PFB

is already very close to the optimal case. This shows that an 8-entry PFB is a good

enough choice for this type of prefetch filtering.

As we stated before, PFB predictions are not always correct: it is possible that a

prefetched address still resides in the PFB but it does not exist in the L1 cache (it has

been replaced). The number of PFB mispredictions during the complete run of each

application is shown in Table 5.1. Although the number of mispredictions increases

with the size of the PFB, an 8-entry PFB makes almost perfect predictions and does

not affect performance.

5.3 PARE Results

The prefetch hardware history table proposed was designed using the 70-nm

BPTM technology and simulated using HSPICE with a supply voltage of 1V. Both

leakage and dynamic power are measured. Figure 5.3 summarizes our results showing
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Figure 5.3. Power consumption for each history table access for PARE and baseline
designs at different temperatures(�).

the breakdown of dynamic and leakage power at different temperatures for both

baseline and PARE history table designs.

From the figure, we can see that leakage power is very sensitive to temperature.

The leakage power, which is initially 10% of the total power for the PARE design at

room temperature (25�), increases up to 50% as the temperature goes up to 100�.

This is because scaling and higher temperature cause subthreshold leakage currents

to become a large component of the total power dissipation.

The new PARE table design proves to be much more power efficient than the

baseline design. Although the leakage power consumption of PARE has more than

doubled compared to the baseline design (this is because a smaller fraction of

transistors are switching and a larger fraction are idle), the dynamic power of PARE

is reduced dramatically, from 13mW to 1.05mW. The total power consumption is

reduced by 7-11X. For our simulation, we used the power consumption result at 75�,

which is the typical temperature of a chip.
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Figure 5.4. Energy consumption in the memory system after applying different
energy-aware prefetching schemes.

5.4 Energy Savings

We apply the techniques in the following order CBSF, CAAP, SC, PFB, and

PARE. We show the energy savings after each technique is added in Fig. 5.4.

Compared to the combined stride and pointer prefetching, the compiler-based

selective filtering (CBSF) shows good improvement for mcf and parser, with an

average reduction of total memory system energy of about 3%.

The second scheme, compiler-assisted adaptive prefetching (CAAP), reduces the

energy consumed by about 2%, and shows good improvement for health and em3d

(about 5%).

The stride counter approach is then applied. It reduces the energy consumption

for both prefetch hardware tables and L1 prefetch tag accesses. It improves the

energy consumption consistently for almost all benchmarks, achieving an average of

just under 4% savings on the total energy consumption.

The hardware filtering technique is applied with an 8-entry PFB. The PFB

reduces more than half of the L1 prefetch tag lookups and improves the total energy

consumption by about 3%.
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Figure 5.5. Performance speedup after applying different energy-aware prefetching
schemes.

Overall, the four filtering techniques together reduce by almost 40% the energy

overhead of the combined prefetching approach: the energy overhead due to

prefetching is reduced from 28% to 17%. This is about 11% of the total memory

system energy (including L1, L2 caches and prefetch tables).

Finally, we replace the prefetching hardware with the new PARE design and

achieve energy savings of up to 8X for the prefetching table related energy (the

topmost bar). After the application of PARE, we can see that the prefetching energy

overhead becomes very small, and combined with the effect of leakage reduction due

to performance improvement, half of the applications studied even show a total energy

decrease after energy-aware data prefetching techniques applied.

5.5 Performance Degradation

Fig. 5.5 shows the performance statistics after applying each of the five techniques

proposed, one after another. We can see that there is little performance impact for

the four prefetch filtering techniques. On average, the three compiler-based filtering

and PFB only affect the performance by less than 0.4%.
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Figure 5.6. Energy-delay product with different energy-aware prefetching schemes.

The new prefetch engine PARE causes obvious performance degradation on most

benchmarks, with perim suffers the largest degradation of 19% while still maintaining

close to 70% speedup compared to no prefetching. On average, PARE causes a

5% performance impact, which is not negligible. However, the energy savings we

achieve from PARE are clearly much more significant compared to the performance

degradation, as demonstrated by the energy-delay product numbers presented next,

and much of the prefetching-related speedup is still preserved.

5.6 Energy-Delay Product

Energy-delay product (EDP) is normally used as one of the important metrics

to evaluate the effectiveness of an energy saving technique. A lower EDP indicates

that the energy saving technique evaluated can be considered worthwhile because the

energy saving is larger than the performance degradation (if any).

The EDP numbers of the proposed energy-aware techniques are shown in Fig. 5.6.

All numbers are normalized to the case where no prefetching techniques are used.

Compared to the combined stride and pointer prefetching, the EDP improves by

almost 48% for parser. On average, the four power-aware prefetching techniques

combined improve the EDP by about 33%.
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Compared to the case where no prefetching is used, only four out of ten

applications have a normalized EDP higher than 1 after all energy saving techniques

are applied, with the average EDP being 21% lower than no prefetching. The EDP

results show that data prefetching, if implemented with energy-aware schemes and

hardware, could be very beneficial for both energy and performance.

5.7 Sensitivity Analysis

As the CMOS technology progresses rapidly, smaller and smaller transistors will

be manufactured in the near future. With the technology scaling down, both dynamic

and leakage power will be affected; as a result, energy consumption will also change

significantly.

To demonstrate how our proposed techniques would be affected by future

technologies, we run our simulation with new parameters based on the Predictive

Technology Model (PTM) [1] at both 45-nm and 32-nm. A new set of results on the

proposed energy-aware techniques are recalculated and presented next.

5.7.1 Power Modeling for Future Technologies

In order to estimate the energy consumption for next-generation technology,

we first run simulations to capture the power numbers for all energy consuming

components, including caches and hardware history tables, using HSPICE based

on the PTM provided parameters. The power numbers at 45-nm and 32-nm PTM

technologies are shown in Table 5.2.

With the technology scaling down, dynamic power goes down while leakage power

goes up. We can clearly see this trend from the table. Leakage power, especial for L2

cache, goes up significantly, thus it will increase the total power consumption in our

experiments. The power consumption for the prefetch hardware table is reduced at
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Table 5.2. Power consumption at different technology nodes.

Hardware Operation 70-nm 45-nm 32-nm
L1 Cache Tag 6.5 5.7 5.2

Read 9.5 10.2 11.9
Write 10.3 11.1 12.7
Leakage 3.1 4.5 6.7
Reduced Leakage 0.8 1.2 1.8

L2 Cache Tag 6.3 4.9 3.8
Read 100.5 107.0 103.4
Write 118.6 125.5 120.5
Leakage 23.0 32.1 41.3
Reduced Leakage 1.5 2.1 2.7

Baseline Table Search 11.3 10.4 9.7
Update 11.5 10.6 9.8

PARE Table Search 1.41 1.30 1.21
Update 1.44 1.33 1.23

smaller technology because the leakage for the small table is not significant enough

compared to the decrease of its dynamic power.

5.7.2 45-nm Technology

We recalculated the energy consumption based on the power numbers presented

above. Figure 5.7 shows the energy consumption at 45-nm PTM technology in the

memory systems for cases both before and after applying the proposed energy-aware

prefetching schemes. Compared to the power numbers in Figure 5.4 at 70-nm, the

energy consumption typically goes up for all applications, mainly because of the

increase of L1 and L2 leakage energy. However, the percentage of energy savings

remains almost the same when we apply the energy savings techniques. On average,

we can achieve about 24% total energy savings after applying all energy saving

techniques compared to the prefetching baseline with no energy-aware optimizations.

When we consider the energy-delay product (EDP) numbers (shown in Figure 5.8),

it shows that the relative (normalized to the baseline with no prefetching) EDP

numbers obtained are even lower than what we achieved at 70-nm. The reason is that
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Figure 5.7. Energy consumption at 45-nm PTM technology in the memory system
after applying different energy-aware prefetching schemes.

even without energy-aware optimizations, the reduction on leakage energy becomes

larger at 45-nm compared to 70-nm due to the execution time reduction. On average,

EDP numbers are improved by 30% compared to the prefetching baseline and 24%

compared to no prefetching.

5.7.3 32-nm Technology

Figure 5.9 shows the energy consumption at 32-nm PTM technology in the

memory systems for the applications studied. The total energy consumption goes up

even further for all applications compared to 45-nm, mainly because of the increase

of L1 and L2 leakage energy. The energy savings after applying all energy-aware

techniques are about 20% on average compared to the prefetching baseline with no

energy-aware optimizations.

Figure 5.10 shows the energy-delay product (EDP) numbers. It is worthwhile to

point out that even with no energy-aware techniques applied, the average EDP with

data prefetching is 4% better compared to no prefetching because leakage is even

higher at 32-nm compared to 45-nm. On average, EDP numbers are improved by
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Figure 5.8. Energy-delay product at 45-nm PTM technology with different energy-
aware prefetching schemes.
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Figure 5.9. Energy consumption at 32-nm PTM technology in the memory system
after applying different energy-aware prefetching schemes.
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Figure 5.10. Energy-delay product at 32-nm PTM technology with different energy-
aware prefetching schemes.

23% after all energy-aware optimizations compared to the prefetching baseline and

26% lower compared to no prefetching.

5.8 Chapter Summary

This chapter presents detailed experimental results for the proposed energy-

aware data prefetching techniques. The energy-aware prefetch filtering techniques

can reduce about 40% of the prefetch-related energy overhead. The location-set

driven data prefetching works even better, reducing the prefetch hardware power

cost by 7-11X. The techniques combined could overcome the energy overhead due

to prefetching, improving the energy-delay product by 33% on average at the 70-nm

PTM technology. Sensitivity analyses at smaller technologies of 45-nm and 32-nm

show that our techniques will also work well for future-generation technologies.
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CHAPTER 6

CONCLUSION

This dissertation explores the energy-efficiency aspects of data-prefetching techniques

and proposes several new techniques to make prefetching energy-aware. Our proposed

techniques include three compiler-based approaches which help to make the prefetch

predictor more selective and filter out unnecessary prefetches based on static program

information. We also propose a hardware based filtering technique to further reduce

the energy overheads due to prefetching in the L1 cache. Our experiments show that

the proposed techniques combined reduce the prefetching-related energy overheads

by 40%, with almost no impact on performance.

We have achieved the following results:

� We implement a number of data prefetching techniques and provide detailed

simulation results on both performance and energy consumption. The simulation

results show that although aggressive prefetching techniques help to improve

performance, in most of the applications they increase energy consumption

by up to 30%. In designs implemented in deep-submicron 70-nm BPTM

process technology, cache leakage dominates the energy consumption. We have

found that if cache leakage is optimized with recently-proposed circuit-level

techniques, most of the energy overhead is due to prefetch hardware related

cost and unnecessary L1 data cache lookups related to prefetches that hit in

the L1 cache.

� We propose several energy-aware filtering techniques for hardware data prefetching

to reduce the energy overheads. The techniques include three compiler-based
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filtering techniques and a hardware filter. These techniques are applied on one

of the hardware prefetching techniques, which achieves the best performance

speedup but also suffers the worst energy degradation. Our experiments show

that the proposed techniques successfully reduce the prefetching-related energy

overheads, by 40% on average, without reducing the performance benefits of

data prefetching.

� To further reduce the energy overheads, we develop a new data prefetching

technique called location-set driven data prefetching. A power-aware prefetch

engine called PARE with a novel design of an indexed hardware history table is

proposed at the circuit level. Compared to the conventional single-table design,

the new prefetching table consumes 7-11X less power per access. With the help

of compiler-based location-set analysis, we show that the proposed prefetching

scheme improves energy consumption by as much as 40% in the data memory

system.

Our experiments show that the proposed techniques if combined can eliminate the

prefetching-related energy overheads, even turning data prefetching into an energy

saving technique in many cases, with very small impact on performance compared to

a baseline with prefetching but no energy-efficient techniques.

This dissertation demonstrates that, with proper energy-aware techniques, data

prefetching has the potential to become an energy reduction technique in addition to

(as traditionally regarded) a performance speedup technique. We believe our work

has shown promising results in this direction and will help encourage more interests

towards commercial implementation of hardware-based data prefetching.
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6.1 Future Work

We identify the following potential future work closely related to the topics of this

dissertation.

� Hardware-software cooperative data prefetching. This dissertation investigates

how to make hardware-based data prefetching more energy-efficient with the

help of compiler provided information. On the other hand, it will also be an

interesting direction to investigate how to make software-based data prefetching

more accurate and more energy-efficient with hardware support. In that

case, software prefetching will insert explicit prefetching instructions to the

binaries, however, the hardware could make decision on whether to do the actual

prefetching based on hardware provided history information. This will have the

potential to improve software prefetching in terms of both energy consumption

and performance.

� Data prefetching for embedded systems. Current data prefetching techniques,

especially hardware-based prefetching, are focused on general-purpose applications.

For embedded systems, data prefetching will be quite different because it will be

impossible to invest huge prefetching hardware in embedded processors because

of the high hardware cost and power/energy restriction. However, simpler

and lower-cost data prefetching techniques could be developed for embedded

systems as the potential energy cost could be controlled based on what we have

demonstrated in this dissertation.

� Energy-aware instruction prefetching. Although most of prefetching efforts have

been focused on data prefetching, instruction prefetching is also an important

component in contemporary processors. It would be interesting to see how

different instruction prefetching techniques affect energy consumption and

whether any technique could be applied to make it more energy-aware.
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� Implementation and experiments with commercial microprocessors. Further

efforts could be spent on investigating the effect of energy-efficient data

prefetching techniques on a real commercial microprocessor as a case study.

The study will provide more insights on the problem and the feedbacks would

help make the techniques more practical.
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