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Abstract It is difficult, if  not impossible, for the code analyzers to employ front end from compilers, because 
these front ends extract different program information using different strategy. This paper describes our experiences 
in building C++ front end as a part of code analysis toolset. The front end customizes the lexical analyzer 
incorporating a special preprocessing technique to accurately associate program entities with physical source code 
location. To support analysis of  different C++ languages, the front end employs YACC to generate the parser, and 
uses token lookahead technique to disambiguate C++ grammar for YACC. 
K e y w o r d  compiler, front end, C++, CASE, object orientation, program analysis 

1. Introduction 

Many CASE environments need to parse program source code. Front end usually transforms source code into an 
internal representation, such as structure parse tree, symbol table, program database, and so on. Analysis tools then use the 
internal representation to generate executable code, class dependencies graph, message passing graph, test cases, metrics 
data, etc. 

CASE tools that require parsing of source code can be broken into three classes: syntax-directed editors, compilers 
and interpreters, and code analyzers[I], which are quite different in the program information needed. Syntax-directed 
editors, for example, IPE[2] and Cornell program synthesizer[3], need relatively simple parse tree and symbol table to 
assure syntactic correctness while editing code. Most information kept in the parse tree and symbol table is about syntax and 
is not needed after the end of editing. Compilers and interpreters need a great amount of information about the source code 
to generate the executable code. It is only a short time for them to keep a complete parse tree and an elaborate symbol table, 
which are usually not needed after the compiling session. Code analyzers, say, BDCom-C++[4], CIA[5] and CIA++[6], 
need a large deal of  program information, which is kept in the parse tree or the symbol tables while parsing. After parsing, 
they usually store the information about source code permanently into files, database, and so on, for later analysis. 

These differences mean the front ends of these tools extract different program information according to different 
philosophy. In a code analyzer, it is important to represent the program accurately and precisely, therefore, the front end 
must associate program information with the physical source code location. It is a difficult task for programs using 
preprocessing mechanisms, of which the most notable are C++ programs. As a result, even the compiling technique is full- 
blown and compiling tools are ready-made, it is difficult, if not impossible, for the code analyzers to employ front end from 

other parsing tools designed to other applications. 
We built a front end for C++ as a part of JBPAS(JadeBird Program Analysis System), a toolset of code analysis for 

C++ programs. Instead of using standard compiler tool LEX[7], We customize the lexer(lexical analyzer) for the front end, 
incorporating a special preprocessing into lexical analysis. Receiving physical source code, the customized lexer can extract 
program information, say, comments and include files relationship, needed for program analysis. Moreover, it accurately 
associates C++ program entities, such as class, object, statement, macro, and so on, with their physical location in the source 
code. To easily update the front end to support analysis of different C++ languages, we implemented the parser around 
YACC[8]. Normally YACC accepts LALR grammar, but C++ grammar is inherently ambiguous and definitely not LALR. 
We employ token lookahead technique to disambiguate the parser generated by YACC. 

This paper describes our experiences in building C++ front end and is organized as follows. First, section 2 presents 
an overview of JBPAS. Section 3 details C++ preprocessing, in particular, macro substitution, in the C++ front end. Section 
4 discusses parsing C++. Finally, section 5 gives the current status and future work. 
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2. JBPAS Toolset 

The initial objectives of our C++ front end are to support our research of program understanding, and we have 
implemented the prototype version of a C++ program understanding system: BDCom-C++[4]. BDCom-C++ consists of 
three major components: an information extractor, an information manager and a user interface, as shown in figure 1 : 
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Figure 1. BDCom-C++ System Overview[4] 

The essential part of the information extractor is the C++ front end, which analyzes C++ source code by means of 
incremental parsing and extracts program information to store into the program information database. Later we saw several 
code analysis tools based on the front end and anticipate more would appear in the future. Therefore we design a tools kit, 
called JBPAS, to support research in software maintenance, software reuse, reverse engineering, software metrics, and so 
on. 

Figure 2 shows the architecture of JBPAS: 
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Figure 2. JBPAS Architecture 

• PUS: Program Understanding System. PUS loads information from the program database, then organizes and 
shows the information according to the abstract views needed, and at the same time, switches between the 
abstract views to represent the program from different perspectives. 

• RDDG: Reverse Design Document Generator. The available design documents is often either inadequate or 
incorrect for technological and management reasons. Reverse design document generator use the information 
extracted from the program to automatically recover C++ program's object-oriented design[9] documents. 

• OOTS: Object-Oriented Test Supporter. Traditional testing tools are inadequate for object-oriented programs 
because of their new features. OOTS helps to determine test cases based on the program information and 
supports C++ program testing. 

• OOMS: Object-Oriented Metrics Supporter. Object-oriented metrics are an integral part of object technology and 
of good software engineering[ 10], and the useful measures should be automatible to collect metrics data[ 11]. The 
object-oriented metrics supporter collects metrics data on code from the program information. 
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o CEX\" Component Extractor. Software reuse, of which an important part is component-based reuse, is considered 
as a practical and feasible approach to solving the software crisis[12]. Based on program understanding, the 
component extractor extracts reusable component through implementing re-engineering on the class or class 
cluster acquired from existing software. 

® CToC++: C To C++ Translator. Because C++ is the superset of C, the C++ front end and database server can 
also apply to C programs. C to C++ translator helps user restructure C programs, locates data structure and its 
relevant functions, and translates into functionally equivalent C++ program. 

• C++ToOLE: C++ To OLE Translator. OLE(Object Linking and Embedding) provides a way to integrate and 
inter-operate between applications[13]. With the help of the C++ to OLE translator, programmers can 
encapsulate C++ applications to OLE components conforming to OLE interface standard. 

The front end analyzes C++ source code, extracts program information and stores it into the program information 
database through the database server. All the above analysis tools use the program information via the database server. Only 
the front end needs to know the exact syntax of the C++ language, which means that when the target C++ language 
changes, it only affects the front end. 

3. Preprocessing in JBPAS 

In a typical C++ compiler, the source code usually passes through following processing phases: line splicing, 
tokenization, preprocessing, string concatenation, translation, and linkage[ 14]. 

3.1 Preprocessing Phase 

During the preprocessing phase, the compiler usually processes file inclusion, conditional compilation, and macro 
substitutions. 

File inclusion treats the contents of include file as if it appeared in the source program at the point where the directive 
#include appears. Typically, constant, macro definitions, and complex data types are organized into include files and then 
use the directive #include to add them to any source file. 

Conditional compilation determines which text blocks are passed on to the compiler and which text blocks are 
removed from the source file during preprocessing by testing a constant expression or identifier. This ability allows a single 
source file to generate different programs, say, to include debugging information only in debug versions. 

Macro is typically used to associate macro name, a meaningful identifiers, with macro body, which can be constants, 
keywords, and commonly used statements or expressions. When the macro name is encountered in the following program 
source text, it is replaced by a copy of the macro body. If the macro accepts arguments, the actual arguments following the 
macro name are substituted for formal parameters in the macro body. Macro definition and substitution is easily described 
with an example. Suppose that a file called MACRO.CPP has following code segment: 

[1] 
[2] 
[3] 
[4] 
[51 
[6] 

#define PI  3.14 
#define AREA( r ) PI  * ( r ) * ( r ) 
#define VOLUME(r, h) ( h ) * I 

A R E A ( r )  

.float v = VOLUME(5. O, 4)  ; 

Figure 3. Code Segment in MACRO.CPP 

A normal preprocessor will expand VOLUME( 5. O, 4 )  to ( h ) * 3.14 * ( r )  * ( r ) .  

3.2 Preprocessor of JBPAS 

Preprocessing mechanisms certainly can increase programmer productivity; but on the other hand, it unfortunately 
incurs an additional burden of program understanding. The antinomy lies in the fact that typically the compiled program is 
based on the preprocessed code, however, the program understander interacts with the physical source code. 

To response to various requirements based on program understanding, we design special preprocessing algorithm to 
avoid the penalties resulted from the use of  preprocessing facilities, and thereby reducing program understanding burden. 
Instead of  translating source code through these phases as described above, JBPAS customizes the lexer to incorporate line 
splicing, tokenization, preprocessing, and string concatenation into the lexical analysis. The lexer tokenizes the source code 
to pass on to the parser, and invokes the preprocessor only when it encounters preprocessing directives. 
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To incorporate line splicing, tokenization, preprocessing, and string concatenation into the lexer has, at least, 
following advantages: 

• Increase  speed and  save space: As source code passes through only one phase, the parsing speed is obviously 
improved. Moreover, JBPAS does not need to store the intermediate result of  the phases of  line splicing, 
tokenization, preprocessing, and string concatenation; as a result, it effectively saves space, which is major 
concern in code analysis. 

• Keep comments  information: A comment is text that the typical compiler ignores and can treat as white space. 
However, as code annotation, comments are important and necessary to program understanding, especially for 
those self-documentation programs with comments. Without replacing comments with white space, the lexer 
receives source code with comments, and therefore can extract comment information accurately. 

• Extrac t  include hierarchies: When the preprocessor inserts include file into the current parsing file, the lexer can 
keep track of  processing include files, which is useful to analyze include hierarchies, i.e. the include files and 
their interdependencies. 

• Physically locate: It is important for a program analysis tool to associate program entities, such as class, object, 
statement, macro, and so on, with their physical locations in the source code. The lexer can easily locates tokens 
and macros, for it gets them from the physical source code without previous line splicing and macro expansions. 

For these above reasons, it is difficult, if not impossible, for code analyzers to use ready-made preprocessors. 
Therefore we construct our own preprocessor. Algorithm of file inclusion and conditional compilation is relatively simple, 
so will not be discussed here. In the following, we will focus on macro processing, the most difficult part of C++ 
preprocessing. 

3.3 Algorithm of macro processing 

Like GHINSU's GPP[15], JBPAS employs a dictionary to map macro name to the required replacement information: 
the file name and location where the macro is defined, and a replacement table. Replacement table contains macro body 
information, which may be divided into definition substrings by the formal parameters, if any, and records the formal 
parameter's number and position, which are important and necessary to replace formal parameters with actual arguments. 

Figure 4 shows the data structures used for macros: 

Macro Dictionary Macro Body Replacement Table 

name body ~, defined...in..file substringl parameter No 

start...line, end line substring2 parameter No 

formal parameter count 

replacement table 

Figure 4. Data Structure for Macros 

When the #define directive is encountered, the lexer regards the following identifier as macro name, and creates a 
formal parameter list, if the macro has any parameters. The macro body process is straight forward: identifiers in the 
definition, if matched with parameters in the parameter list, are extracted as formal parameter, whose number is add to the 
replacement table, and the remainder of  macro definition is divided into definition substrings and are stored in the 
replacement table. 
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For code segment as shown in figure 3, after macro definition, the macro dictionary will look like figure 5: 

, 

MACRO.CPP 
2,2 

1 

i 1 I 3 , 4  ) * AREA( 

2 ) 

Figure 5. Macro Dictionary in MACRO.CPP 

Whenever the name of macro is recognized by looking up the macro dictionary, macro expansion value must be 
calculated and substituted for the macro and its parameters, if any. Macro expansion and substitution are more complex than 
definition process, especially when met nested macro substitution as shown in MACRO.CPP. Some preprocessors, say, 
GPP[15], usually calculates macro's substitution value after complete expansion, i.e. all embedded macros are expanded 
and substituted. In this way, it needs to store result structure. The preprocessor of JBPAS uses a different method to replace 
macro name with its definition string. The definition string is just the same as the macro body expect substituting formal 
parameters with corresponding actual argument strings, and the embedded macros, if any, are expanded only when they are 
currently analyzed. This approach is more like the means by which programmers understand macro source code manually. 

The lexer of  JBPAS has a character buffer usually used for those ungeted characters in lexical analysis, and reads 
character from the buffer when it is not empty. When macro expansion, the lexer gets the macro replacement string from the 
preprocessor and puts it into the buffer. Then the lexer treats the macro replacement string in the buffer normally as source 
code text, the only difference is that the lexer dose not move the read pointer of current file, which ensures accurate physical 
location. 

The expansion of macro without argument is relative simple, the definition substfing in the replacement table is just 
the replacement value. If the macro accepts arguments, the actual arguments following the macro name are identified and 
marked in order. Using the information in the macro dictionary, the formal parameter number are replaced with 
corresponding actual argument strings, and then definition substfings in the replacement table are concatenated with those 
inserted actual argument strings and returned as a whole of replacement value. 

The steps in the expansion and substitution of VOLUME(5.0, 4) proceeds as shown in figure 6: 

Step 1: Read VOLUME(5.0, 4) from source code: 

VOLUblE(5.0, 4/ 
/ 

( 2 ~ (4)*AREA(5.0) Put To Buffer J ' "  

)* AREA( 1 

) 
l 

(4) * AREA(5.0) ... 
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Step 2: Read AREA (5_~Q). from buffer: 

ARiA (5.0) 

PI*( 

)*( i 

) l 

Expand TOI~ PI * (5.0) * ( 5.0 ) Put To Buffer 
l ... 

l 
I PI*(5.0)*(5.0) . . .  

Step 3: Read PI from buffer: 

PI 

3.14 ExDandTo~ 3.14 v 
*(5.0)*(5.0). . .  

Put To Buffer . 

,L 
3.14"(5.0)*(5.0).. .  

Figure 6. Steps of Macro Expansion and Substitution 

4. Pars ing  C + +  

We employ the standard compiler tool YACC to generate the parser of  the C++ front end. YACC enables us to easily 
update the front end as the target language changes. The YACC grammar used in JBPAS conforms to the draft proposed 
ANSI-C++ standard [16] and is enhanced to support Microsoft Visual C++ 4.0114], which, in turn, is used to implemented 
the JBPAS system. 

4.1 Ambiguity of C++ grammar 
C++ grammar, especially those for declarations, is inherently ambiguous and definitely not LALR, therefore, is not 

directly suitable for YACC. The following statement will illustrate the ambiguity of C++ declaration grammars: 
int f (...); 
In the above example, there is an ambiguity involving function prototype and constructed declarator with 

parenthesized initializers. Generally a declarator that looks like: in t f6 . . )  is presumed to be a function prototype, and YACC 
will first reduce f ( . . . )  and then reduce with int. However, with constructed declarators, say, the above statement is actually 
i n t f ( O ) ; ,  it is official to first reduce i n t f  and then reduce with the initializer, (0) . Unfortunately, by the time YACC 
realizes it is initializer, not function arguments, YACC has pushed the separate declarator tokens int andf in to  the YACC 
stack without combining them, and then YACC will report a syntax error. 

4.2 Lookahead technique to disambiguate C++ parser 
Typically there are two ways to disambiguate the parser generated by YACC. The first is to modify the ambiguous 

grammar to an equivalent unambiguous grammar[17]. Another practical approach is token lookahead technique, which 
inserts a separate lookaheader between the lexer and the parser. The lookaheader processes tokens got from the lexer before 
passing them on to the parser, thereby indicating the context to help disambiguate the parser. 

As C++ language is inherently ambiguous, it is a costly and time-consuming work to modify it to an unambiguous 
grammar suitable to YACC. Even successful, say, the work of  James A. Roskind[18], the equivalent grammar might be 
more complex and less readable, therefore, inflexible to update when the language changes. To keep YACC grammar as 
clean and simple as possible to that provided in [15], JBPAS adopts lookahead technique similar to that employed by cfront 
and CPPP[19]. 

The lookaheader is independent of the lexer and the parser, and maintains a buffer of  tokens. Instead of directly 
passing the output of lexer on to the parser, the lookaheader uses recursive descent parsing technique to scan tokens in the 
token buffer. Whenever met syntax difficult to parse, the lookaheader handles tokens according to the lexer state. It may 
substitute some tokens in the buffer with different ones, or inserts a special token into the token buffer to indicate the 
context, thereby disambiguating the parser. Enlightened by CPPP[19], JBPAS employs the lookahead states translation, as 
shown in figure 7: 
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Action (Modified or Inserted Tokens) 

I_CLASS_SPEC class_key T IDENTIFIER : 

I_CLASS_SPEC classkey T IDENTIFIER { 

class_key T IDENTIFIER : 

class_key T IDENTIFIER { 

class key T CLASSNAME : 

class key T CLASSNAME { 

F_CLASSNAME (...) 

Where T CLASSNAME is current scope name 

r_TEMPLATENAME (...) 

Where T TEMPLATENAME is current scope name 

F CLASSNAME :: T_ENUMNAME 

T CLASSNAME :: T IDENTIFIER 

T_CLASSNAME :: * 

T OPERATOR T NEW 

T_IDENTIF1ER ( initializer ) 

I CLASS. SPEC class__key T CLASSNAME : 

I_CLASS_SPEC class_key T_ CLASSNAME { 

T_CONSTRUCTOR (...) 

T_CONSTRUCTOR(...) 

State and Tokens 

I QUAL_TYPE T_CLASSNAME :: T,,,ENUMNAME 

I_QUAL_ID T CLASSNAME :: T IDENTIFIER 

I QUAL,,PTRT CLASSNAME :: * 

T OPERATOR M NEW 

T IDENTIFIER M,,,.INIT LEFTP initializer ) 
Figure '7. Lookaheafl  States Translation 

The lookaheader modifies or inserts tokens in the token buffer. All of the modified tokens begin with an " / _ "  prefix, 
and the inserted ones begin with an "M_ "prefix, both are opposed to the raw tokens received from the lexer, whose name 
begin with an"  T "prefix. Following are some examples of modified or inserted tokens and their purposes: 

• I_CLASS_SPEC: Inserted before class-key (class, struct, or union) to distinguish definition uses of the class- 
key from elaborated type names. 

• I_QUAL_TYPE: Inserted before a sequence of name qualifiers which refer to an enumeration type name, for 
example, T_CLASSNAME::T_ENUMNAME. 

• I_QUALID:  Inserted before a sequence of name qualifiers which refer to an identifier, for example, 
T CLASSNAME::T IDENTIFIER. 

• I _ Q U A L  PTR: Inserted before a sequence of name qualifiers which refer to a pointer, for example, 
T CLASSNAME::*. 

• M_NEW: Changed from the token T N E W  when the keyword new is preceded by the keyword operator. 
• M_INIT_LEFTP: Changed from the token '( which is used at the start of an initializer in a declaration. 
Lookahead technique enables the parser generated by YACC to disambiguate the target grammar and parse those 

difficult syntactic constructs. The above statement, for example, int f (0); becomes int f M INIT_LEFTP 0); after 
lookahead pass, and the parser will definitely consider it as a constructed declarator with parenthesized initializer. 

5. C u r r e n t  S t a t u s  a n d  F u t u r e  W o r k  

We have implemented the C++ front end, the program understanding system, the reverse design document generator, 
and the prototype version of the component extractor. The front end and the program understanding system are built 
through re-engineering of the BDCom-C++ system with the help of BDCom-C++ itself. These implemented analysis tools 
run on PC under Windows 95 platform, and are currently being widely used at CASE Lab, Peking University to analyzing 
C++ programs and restructure existing software. 

Our future plans includes the following: 
1. Enhance the C++ front end to support other C++ languages, such as Borland C++. 
2. Implement other analysis tools of JBPAS cited in section 2, encapsulate all JBPAS tools to OLE applications, 

and integrate them in an integrated environment. 
3. Reuse techniques and code from the C++ front end to construct front end for other object-oriented language, for 

example, Smalltalk and JAVA. 
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