
AspectC2C: a Symmetric Aspect Extension to the C Language

Danfeng Zhang, Yao Guo, Xiangqun Chen
Key laboratory of High Confidence Software Technologies, Ministry of Education

Institute of Software, School of Electronics Engineering and Computer Science, Peking University
zhdf@os.pku.edu.cn, {yaoguo, cherry}@sei.pku.edu.cn

Abstract

By separating crosscutting concerns into modules, aspect-
oriented programming (AOP) can greatly improve the
maintainability, understandability and reusability of soft-
ware. However, the asymmetric paradigm adopted by most
AOP extensions could bring crosscutting concerns into the
aspect code and thus limit the reusability of aspects.

Symmetric paradigms have been proposed to alleviate
such limitations, but few extensions on such paradigm
target at non-object-oriented languages, such as C. In this
paper, we propose a symmetric aspect extension to the C
language, called AspectC2C, and discuss implementation
issues and benefits of this new extension comparing to the
asymmetric ones.

Keywords Aspect-Oriented Programming, Symmetric
Paradigm, Aspect Extension, C Language

1. Introduction

Recent research on aspect-oriented programming (Kicza-
les et al. 1997) have shown that, separating crosscutting
concerns into modules can eliminate the scattered and
tangled code in the base code, thus greatly improving
the maintainability, understandability and reusability of
legacy software (Tarr et al. 1999; Hannemann and Kicza-
les 2002; Rajan and Sullivan 2005).

Most aspect extensions nowadays use an asymmet-
ric paradigm, in which “aspects” are composed (wo-
ven) into components that implement a “base” model.
In this paradigm, while aspects can be woven into the
base code, they can not be advised or instantiated. A sym-
metric paradigm, on the other hand, makes no distinction
between components and aspects, and does not mandate
a distinguished base model. It was shown that the sym-
metric paradigms are more suitable for independent de-
velopment, and code written in these paradigms are more
reusable than that in the asymmetric ones (Ossher and Tarr
2001; Harrison et al. 2002; Rajan and Sullivan 2005).

In this paper, we present our effort on implementing a
symmetric aspect extension to the C language and discuss
several issues while implementing it. This new extension

is called AspectC2C1, and a prototype weaver has been
implemented to demonstrate the feasibility of AspectC2C.
To the best of our knowledge, there is no current work
on implementing similar symmetric paradigms on non-
object-oriented languages such as C.

An example of refactoring a readers and writers prob-
lem into aspect-oriented program is used throughout this
paper. The experiment shows that can overcome the lim-
itations of symmetric paradigms in the context of C, and
the code written in it is more reusable, comprehensible and
suitable for independent development.

The rest of this paper is structured as follows: in the
next section, we give a brief introduction to AspectJ. A
readers and writers problem and how to refactor it in asym-
metric paradigm is shown in section 3. We discuss the
specification of AspectC2C and implementation issues in
section 4. The benefits of AspectC2C are discussed in sec-
tion 5. We conclude this paper in section 6.

2. Background

To make this paper self-contained, we will make a brief
review of the most frequently used asymmetric aspect
extension on Java, AspectJ, in this section.

In AspectJ, the crosscutting concerns are encapsulated
into a new entity called aspect. AspectJ adds five con-
structs to Java: join point, pointcut, advice, inter-type dec-
laration, and aspect. We present a simple example below
to explain the basic concepts.

1 aspect trace {

2 pointcut traced():

3 execution(* foo(..));

4 before():traced() {

5 System.out.println("tracing");

6 }

7 }

A join point (line 3) defines points in the base code that
are exposed for possible modification by aspects. Here,
execution(* foo(..)) refers to all executions of the function
named “foo” with arbitrary parameter and return type. A
pointcut (line 2) is a set of join points. An advice (line 4-

1 AspectC2C implies that our aspect extension weaves plain C code to
plain C code

ACM SIGPLAN Notices 25 Vol. 43 (2), Feb. 2008

6) serves as a before, after, or around method to provide an
extension at each join point in a pointcut. An aspect (lines
1-7) is a class-like construct that modularize a concern in
a system. Aspects also support the data abstraction and
inheritance abilities like classes. Inter-type declarations

(also known as “introduction”) are declarations that cut
across classes and their hierarchies, which are not used in
this example. The precedence of aspects can be defined
using declare precedence statement.

Using asymmetric paradigms, such as AspectJ, a pro-
gram can be divided into two parts: base code and as-
pect code (Lamping 1999). A concern is crosscutting if its
realization in pre-AOP designs leads to scattered or tan-
gled code. Scattered means not local to a module but frag-
mented across a system. Tangled means intermingled with
code for other concerns (Kiczales et al. 1997).

Most aspect extensions for OO languages are based
on the asymmetric paradigm, which is similar to the As-
pectJ model presented above. Most aspect extensions for
C follow similar asymmetric paradigms, such as AspectC
(Coady et al. 2001), AspectC++ (Spinczyk et al. 2005),
Arachne (Douence et al. 2005), ACC2 (more tools can be
found on the AOSD web site3).

Symmetric paradigms have been discussed and adopted
for OO languages (Ossher and Tarr 2001; Harrison et al.
2002; Rajan and Sullivan 2005). However, to the best of
our knowledge, there is no current work on implementing
symmetric paradigms on non-object-oriented languages
such as C.

3. Limitations of Asymmetric Paradigm for

the C Language

In this section, we implement a well-known synchroniza-
tion model, and then try to refactor it to aspect-oriented
version using an asymmetric aspect extension to C.

3.1 The Readers and Writers Problem

The problem of guaranteeing exclusive access to a shared
resource in a system of cooperating sequential process can
be modeled as the “readers and writers problem”, which is
widely used for synchronization in operating systems and
database systems.

There are two classes of processes in this problem: the
first named writers, who must have exclusive access; the
second named readers, who may share the resource with
an unlimited number of other readers. The access between
the readers and writers is exclusive.

According to different priorities of the readers and writ-
ers, this problem can be stated as two different ones: the
readers first problem and the writers first problem. The
best known solution to these problems was proposed by
Courtois et al. (Courtois et al. 1971).

2 http://research.msrg.utoronto.ca/acc/
3 http://aosd.net/

3.1.1 Problem 1: the Readers First Problem

The readers first problem demands a higher priority of the
readers: no readers should be kept waiting unless a writer
has already obtained the permission to use the resource;
i.e. no reader should wait simply because a writer is wait-
ing for other readers to finish. The solution in C is shown
in Figure 1. Mutex (mutual exclusion) lock, semaphore,
and P, V operations in this solution are commonly used
synchronizing primitives (Dijkstra 1968).

3.1.2 Problem 2: the Writers First Problem

The writers first problem demands a higher priority of the
writers: once a writer is ready to write, he performs his
“write” as soon as possible (whenever no readers or writers
are accessing the resource). The solution in C is shown in
Figure 2.

We observed the following features in the solutions:

1. The solution to Problem 2 contains duplicate code ex-
isting in the solution to Problem 1. Only the code in
grey background in Figure 2 is new in this solution
(mutex1 and w corresponds exactly to the use of mu-
tex and w in the solution to the readers first problem).

2. It is obvious that, the solutions of these two problems
in the C language is full of tangled code that handles
synchronization with the read and write operations.
These tangled code can be encapsulated into aspects.

As there are many crosscutting concerns in this solu-
tion, we will first use an asymmetric aspect extension to
refactor these solutions.

3.2 Refactoring with an Asymmetric Paradigm

A generic aspect extension to C with AspectJ like grammar
is used in this part, because there is no asymmetric aspect
extension to the C language that is as widely used and
mature as AspectJ. It has the same five new constructs as
in AspectJ, and a weaving sequence support is assumed,
such as the declare precedence in AspectJ. However, due
to the limitation of the C language, abstract and inheritance
abilities of “aspects” are not supported.

The refactored code for the readers first problem and
the writers first problem is shown in Figure 3.

In the refactored version, we use a more comprehen-
sible way to encapsulate the concerns. It is straightfor-
ward to encapsulate all the concurrent code for the readers
first problem into readerfirst.aspect, and all the concurrent
code for the writers first problem into writersfirst.aspect.
However, the refactored code in this manner may con-
tain a lot of duplicate code that already exists in reader-
first.aspect, because of the duplicate code in the solutions
we pointed out earlier.

To eliminate the duplicated code, the weaving sequence
support is used to offer a more comprehensible solution.
The solutions can then be divided into two meaningful
aspects.

ACM SIGPLAN Notices 26 Vol. 43 (2), Feb. 2008

P(mutex) ;
 readcount = readcount + 1;
 if (readcount == 1)
 P(w);
V(mutex);
read();
P(mutex)
 readcount = readcount - 1;
 if (readcount == 0)
 V(w);
V(mutex);

semaphore w=1;
P(w);
write();
V(w);

int readcount=0;
semaphore mutex=1;
extern semaphore w ;

Reader.c Writer.c

Figure 1. Readers First Problem

P(mutex2)
 writecount=writecount+1;
 if (writecount == 1)
 P(r);
V(mutex2);

 P(mutex1) ;
 readcount=readcount+1;
 if (readcount == 1)
 P(w);
 V(mutex1);

read();
P(mutex1)
 readcount=readcount-1;
 if (readcount == 0)
 V(w);
V(mutex1);

P(w);
write();
V(w);

int readcount=0;
semaphore mutex1=1,mutex3=1,
 r=1;
extern semaphore w;

Reader.c Writer.c

P(mutex3);
 P(r);

 V(r);
V(mutex3);

P(mutex2);
 writecount=writecount-1;
 if (writecount == 0)
 V(r);
V(mutex2);

int writecount=0;
semaphore mutex2=1, w=1;
extern semaphore r;

Figure 2. Writers First Problem

1. void reader(){
2. read();
3. }
4.
5. void read(){
6. // reading
7. }

14. after():Read() {
15. P(mutex);
16. readcount--;
17. if(readcount==0)
18. V(w);
19. V(mutex);
20. }
21. before():Write() {
22. P(w);
23. }
24. after():Write() {
25. V(w);
26. }
27.}

reader.c writer.c

1. void writer (){
2. write();
3. }
4.
5. void write(){
6. // writing
7. }

1. aspect readerfirst() {
2. semaphore mutex=1, w=1;
3. int readcount=0;
3. pointcut Read():
4. call(void read());
5. pointcut Write():
6. call(void write());
7. before():Read() {
8. P(mutex);
9. readcount++;
10. if (readcount==1)
11. P(w);
12. V(mutex);
13. }

readerfirst.aspect

19. before():Read() {
20. V(r);
21. V(mutex3);
22. }
23. before():Writer() {
24. P(mutex2);
25. writecount++;
26. if (writecount==1)
27. P(r);
28. V(mutex2);
29. }
30. after():Writer() {
31. P(mutex2);
32. writecount--;
33. if (writecount==0)
34. V(r);
35. V(mutex2);
36. }
37.}

1. aspect writerfirst(){
2. declare precedence:
3. readerfirst;
4. semaphore mutex2=1,
5. mutex3=1, r=1;
6. int writecount=0;
7.
8. pointcut Reader():
9. execution(void read());
10. pointcut Read():
11. call(void reader());
12. pointcut Writer():
13. execution(void write());
14.
15. before():Reader() {
16. P(mutex3);
17. P(r);
18. }

writerfirst.aspect

Figure 3. Refactor using an Asymmetric Paradigm

The first aspect readerfirst.aspect encapsulates the syn-
chronization operation needed for exclusive access be-
tween readers and writers, and guarantees the readers’ pri-
ority.

Writerfirst 1.aspect solves the writers first problem. It
grantees the priority of the writers. By declaring reader-
first.aspect as its precedence in line 2 and 3, this aspect
reuses readerfirst.aspect.

3.3 Limitations of Asymmetric Paradigm

Although the refactored version presented above removes
the crosscutting concerns in the base code, and the aspects
can be reused with a weaving sequence support, some
limitations still remains in the asymmetric paradigm.

The main problem of the refactored version is that,
crosscutting concerns still remain in the aspect code. For

example, line 8, 12, 15, 19 in readerfirst.aspect use a
mutex lock to guarantee the exclusive access of variable,
so are line 24, 28, 31, 35 in writerfirst.aspect. Lines 7-
26 in readerfirst.aspect, which make the readers prior than
writers, and lines 15-36 in writerfirst.aspect, which make
the writers prior than readers are almost the same, except
for the pointcut declarations.

Based on this observation, we identify the following
limitations of asymmetric paradigm which caused the
problem above:

1. While the aspect code can advise base code, they can
not be advised by other aspects. The advice code in
them can not be used alone, they can take effect only
when they are woven to the base code.

2. The advice code is reusable most of the time while the
pointcuts are not. Encapsulating advice and pointcuts

ACM SIGPLAN Notices 27 Vol. 43 (2), Feb. 2008

in a single aspect construct limits the reusability of the
advice code. The abstraction and inheritance abilities
in AspectJ may solve this problem to some extent, but
they are not supported in non-OO languages, such as
C.

3. The aspects are not “instantiable”. This means that the
aspects can not be instantiated similar to “classes” in
OO languages. Thus they can not be woven to the base
code more than once, which limits the reusability of
aspect code.

4. Implementation of AspectC2C

To solve the problems mentioned above, we present As-
pectC2C, a symmetric aspect extension to the C language.

4.1 AspectC2C Specification

In this part, we introduce the specification of an aspect
extension to the C language, AspectC2C in detail. This
specification includes concern encapsulation and binding
specification.

4.1.1 Concern Encapsulation

In AspectC2C, there is no distinction between the base
code and the aspect code as in asymmetric ones. The base
code and the aspect code are both written in plain C code.
They can be used as normal C code, as advices, or as the
base code to be advised.

We use a simple trace example here to explain the usage
of AspectC2C. To implement a trace aspect as the one we
shown in section 2, we should implement two concerns,
one represents the base code, and the other represents the
aspect code, both in plain C code. As shown in Figure 4,
they can be encapsulated into files Base.c and Trace.c (to
save space, we eliminated the include statements).

We notice that, there is no information about how these
concerns should crosscut each other. The binding infor-
mation is specified in separate XML format files, which
we introduce below.

4.1.2 Binding Specification

The binding files are used to specify where to add the ad-
vice code and what advice code to insert, which are usually
expressed in aspects in asymmetric aspect extensions. To
make the binding language more familiar to the develop-
ers of AspectJ like language, we used some terminologies
from AspectJ.

The binding files follow the DTD (Document Type
Definition) definition shown in Figure 5. We choose the
XML format for better readability and because it is easier
for the programmers to learn.

The binding files contain the following elements (words
in italic are elements):

• Bindings: a bindings element may contain one or more
bind elements.

<!ELEMENT bindings (bind+)>
<!ELEMENT bind (base+)>
<!ATTLIST bind advice CDATA #REQUIRED>
<!ELEMENT base (pointcut+, outfile?)>
<!ATTLIST base file CDATA #REQUIRED>
<!ELEMENT pointcut ((advice, args?)+) >
<!ATTLIST pointcut function CDATA #REQUIRED
 type CDATA #REQUIRED>
<!ELEMENT advice EMPTY>
<!ATTLIST advice function CDATA #REQUIRED
 type CDATA #REQUIRED>

<!ELEMENT args (#PCDATA)>
<!ELEMENT outfile (#PCDATA)>

Figure 5. DTD Definition

• Bind: a bind element represents one single iteration
of adding advice code to base code. A bind can have
more than one base elements, but only one advice file
is allowed to be defined as an attribute4.

• Base: a base element specifies two information: one
base file name as an attribute, and one or more point-
cut elements. Outfile is optional, used to specify the
output file name of this iteration. The default name is
“temp.c”.

• Pointcut: A pointcut element represents a pointcut and
advice pair. One pair defines one pointcut and one or
more advices that are applied on that pointcut. The
attributes of pointcut specify the point in the base
code exposed to the advices. The prototype weaver for
AsepctC2C supports function call and function execu-
tion pointcut types for now. Args is optional, only used
for passing parameters to the advice function.

• Advice: as in AspectJ, an advice specifies what code
to insert into the pointcuts. The difference in our exten-
sion is that these actions are implemented in plain C, in-
stead of being encapsulated in aspect in AspectJ. Three
advice types are supported in our prototype weaver,
“before”, “after” and “around”.

Using this format, we define the binding file Bind-
ing.xml for the trace example as shown in Figure 4. Specif-
ically we show how to specify a before execution advice as
the example shown in section 2. The “exec” ponitcut ex-
poses two points in the base code for advices, and the “be-
fore” advice choose the first place to add function “trace”
into file “Base.c”.

4.2 Implementation Issues

We discuss three issues related to the implementation of
the AspectC2C in this section. These issues are important
because they are the solutions to the three limitations of
asymmetric paradigm we introduced in section 3.3. Fur-

4 This limitation is introduced by the name substitution mechanism we
used, which we will discuss in next part

ACM SIGPLAN Notices 28 Vol. 43 (2), Feb. 2008

<!DOCTYPE bindings SYSTEM "Binding.dtd">
<bindings>
 <bind advice="Trace.c">
 <base file="Base.c">
 <pointcut function="foo" type="exec">
 <advice function="trace" type="before">
 </advice>
 </pointcut>
 </base>
 </bind>
</bindings>

1. void foo () {

2. printf("traced");

3. }

1. void trace () {
2. printf("tracing");
3. }

Binding.xml Base.c Trace.c

Figure 4. Example for CweaveC

thermore, the implementation of these three issues are dif-
ferent from that in OO languages.

4.2.1 Encapsulation of Concerns

In AspectC2C, both base code and advice code should be
encapsulate into unified entities, to avoid the first problem
in section 3.3.

For symmetric extensions targeting at OO languages,
concerns are usually encapsulated into classes (Rajan and
Sullivan 2005), or hyperslice in Hyper/J (Ossher and Tarr
2001), which still consists of normal classes. In non-OO
languages, it would be straightforward to encapsulate them
into C files. As we mentioned in section 4, a plain C file is
defined to encapsulate a single concern in AspectC2C.

There are two possible code styles for the C file encap-
sulating a crosscutting concern.

The first style is to extract the data in the implemen-
tation to the files who use them. For example, a typical
implementation of mutex lock only implement operations
needed, and define the semaphores as a parameter of them.
It does not maintain the data itself. The other files who call
mutex lock must define the semaphore themselves, whose
initial value is always 1.

Concerns written in this style can be supported in As-
pectC2C using the “introduction” mechanism most aspect
extensions support. With this mechanism, the programmer
who writes the binding files can introduce the variables
needed to the base code. However, this will obstruct in-
dependent developments, for they should now care about
which variables to introduce and what their initial value
are.

The second style is to defined the data inside the imple-
mentation files. The code written in this style is similar to
classes in OO languages, we call it the OO style concern.

The binding file programmer can ignore the implemen-
tation detail of concerns using this style. Concerns written
in this style are recommended in AsepctC2C. However, the
problem of this style is that the C files can not be instan-
tiated. So if they are used more than once, one operation
in one file may implicitly affect the others. We introduce a
mechanism to avoid this problem in section 4.2.3.

4.2.2 Extracting of Binding Information

As we pointed out in section 3.3, encapsulating advice
and pointcuts code into a single construct may limit the
reusability of aspects.

In aspect extensions for OO languages, this require-
ment may be not so significant. For example, by using an
abstract “aspect” with abstract “pointcuts”, inheriting this
abstract “aspect” and implementing the abstract “point-
cuts” will make the abstract “aspect” and the advice code
inside reusable. However, there are no abstraction and in-
heritance abilities in C.

In our extension, we use separate XML format files
to specify the binding information, as we have shown in
section 4.1. This design will make the advice code (in C
files) more reusable.

4.2.3 Implementation of “instantiable” concerns

Rajan and Sullivan (Rajan and Sullivan 2003) have pointed
out the importance of instance-level aspects for integrated
system design. It will be more reusable for the aspect when
it can be instantiated for many different base code.

As discussed earlier, the OO style concerns are more
suitable for independent development. However, as the C
files can not be instantiated, if they are used more than
once, one operation in one file may implicitly affect the
others. A name substitution mechanism is used in our
extension to solve this problem in AspectC2C weaver.

AspectC2C weaver introduces global variables in the
advice files automatically to the base files they advice with
substituted names. For example, if there is a variable x
whose initial value is 1 in the mutex lock implementation,
and this concern is required by the binding file to advise
functions in the file foo.c, then a global value named newx
will be introduced to foo.c automatically, and all the refer-
ence to this variable in the advice code instrumented will
refer to newx, not x anymore. The concerns are now “in-
stantiable” using this mechanism. In our implementation,
a random name is generated to avoid duplicate names.

For some cases, it may be necessary to share global
variables among several files. Such requirements can be
met with the well designed binding file format. As speci-

ACM SIGPLAN Notices 29 Vol. 43 (2), Feb. 2008

fied in 4.1.2, each bind must specify an advice file attribute
advice. And each base element inside it must specify an
base file attribute file. Our aspect weaver will generate a
set of different names for global variables in the advice
file, and introduce them into each base file advised (in the
first file as declaration and as shared variable in other files).
Thus, the variables are shared among all the base files in a
single bind element.

4.3 Prototype Weaver Implementation

We have implemented an aspect prototype weaver for As-
pectC2C. This prototype is a source-to-source translator
built on top of the ANTLR5 parser generator tool, formerly
known as PTTCS. The grammar for GNU C6 is used to
generate the abstract syntax tree (AST), and a code emit-
ter grammar based on this AST is used to emit the final C
code. The architecture of this weaver is shown in Figure 6.
The current version of prototype weaver just operates on
the AST and thus only static pointcuts are supported.

The code transformation is based on a sequence of
transformation actions defined in binding files acting on
the AST of the base program. However, before adding the
advice tree to the base tree, name substitution should be
applied as we mentioned above.

5. Refactoring of the Readers and Writers

Problem using AsepctC2C

In this section, we review the problem of synchronization
in the readers and writers problem introduced in section 3.
We will show how to refactor it using AspectC2C.

5.1 Separation of Concerns in the Readers and

Writers Problem

The first step to refactor the solutions for the readers and
writers problem is to identify the concerns in it. Four
concerns are identified in this problem: read, write, the
mutual exclusion operation, and synchronization between
different roles (readers and writers in this example). We
show the implementation of each concern in Figure 7. To
keep it simple, we eliminated the include statements.

In the refactored code, each concern is self-contained,
which handles its own responsibility, ignoring any poten-
tial interactions between each another (the inter role con-
cern uses P, V operation just for synchronization between
two role). Each concern can be developed by different pro-
grammers, who just need to concentrate on their own duty.

5.2 Evolution 1: Add Mutex Lock to Counters

At this step, we first make sync.c in Figure 7 usable in a
concurrent environment.

While implementing the inter role synchronization con-
cern, sync.c, the programmer ignores the exclusive access

5 http://www.antlr.org/
6 http://www.codetransform.com/gcc.html

to the variable count. However, in a concurrent environ-
ment, the variables should be locked by a mutex lock
whenever they are accessed. We can accomplish this by
adding the mutex lock operation to sync.c with the bind-
ing file shown in Figure 8.

This binding file adds a mutex lock to variable access
in sync.c and generates an output file tempsync.c, which is
specified by the out element.

This step shows that, in AspectC2C, the advice code
(sync.c) that can not be advised in asymmetric paradigm
before can now be advised. The concerns in AspectC2C
are much more reusable than in asymmetric ones.

5.3 Evolution 2: The Readers First Problem

With the identified concerns, we can evolve our program
to solve the readers first problem with a binding of imple-
mented concern. All we have to do is using the synchro-
nized sync.c, tempsync.c, generated in the last evolution
step to make readers prior to the writers. The binding file
could be implemented as in Figure 9.

We should notice that, the internal file tempsyn.c is used
here and the global variables are shared between reader.c
and writer.c, which shows the flexibility of our extension .

5.4 Evolution 3: The Writers First Problem

In this step, we need to make the writers prior than all the
readers. The binding file could be implemented as Figure
10.

The “instantiable” concern is applied in this step. As we
discussed in section 4.2.3, our name substitution mecha-
nism will generate different names in different bind ele-
ments. After the weaving of the binding file in this step,
reader.c and writer.c will share the semaphore role in
sync.c with a new name. This binding will not interfere
with the one in Figure 9, because it is in another bind ele-
ment. The same concern can be woven more than once in
AspectC2C, which improves the reusability of concerns.
Also, by encapsulating binding information in binding
files, the advice code (“tempsync.c”) can be reused by
different binding files.

5.5 Benefits of the AspectC2C

Through the three evolution steps above, we accomplished
the process from four separate concerns to a better solution
to the writers first problem. The benefits of AspectC2C
regarding the limitations of asymmetric paradigms shown
in section 3.3 are:

1. There is no distinction between base code and advice
code in AspectC2C. Both of them are written in plain
C code. They can be used as plain C code, as advice, or
as base code to be advised.

2. The pointcut information is extracted from the aspect
construct in the asymmetric model. Thus the advice
code can be better reused, because they can bind to

ACM SIGPLAN Notices 30 Vol. 43 (2), Feb. 2008

advice.c

base.c

input

binding.
xml

AST for
base.c

AST for
advice.c

pointcuts

advices

AST for
advice code

final AST

renamed
AST

AST with
introduced

variable

output.c

inner states output

global
variables

renamed
variables

Figure 6. Implementation Overview

1. void reader(){
2. read();
3. }
4.
5. void read(){
6. // reading
7. }

1. int count=0;
2. semaphore role=1;
3.
4. void first_entry(){
5. count ++;
6. if (count==1)
7. P(role);
8. }
9.
10.void last_exit(){
11. count--;

reader.c writer.c

1. void writer(){
2. write();
3. }
4.
5. void write(){
6. // writing
7. }

1. semaphore s=1;
2.
3. void mutexP(){
4. P(s);
5. }
6.
7. void mutexV(){
8. V(s);
9. }

12. if (count==0)
13. V(role);
14.}
15.
16.void lockrole(){
17. P(role);
18.}
19.
20.void unlockrole(){
21. V(role);
22.}

mutex.c sync.c

Figure 7. Four Concerns in Reader and Writer Problem

<bind advice="mutex.c">
 <base file="sync.c">
 <pointcut function="first_entry" type="exec">
 <advice function="mutexP" type="before"/>
 <advice function="mutexV" type="after"/>
 </pointcut>
 <pointcut function="last_exit" type="exec">
 <advice function="mutexP" type="before"/>
 <advice function="mutexV" type="after"/>
 </pointcut>
 <outfile>tempsync.c</outfile>
 </base>
</bind>

Figure 8. Evolution 1 Binding file

<bind advice="tempsync.c">
 <base file="reader.c">
 <pointcut function="reader" type="exec">

 <advice function="first_entry" type="before"/>
 <advice function="last_exit" type="after"/>

 </pointcut>
 <outfile>tempreader.c</outfile>

 </base>
 <base file="writer.c">
 <pointcut function="write" type="call">
 <advice function="lockrole" type="before"/>

 <advice function="unlockrole" type="after"/>
 </pointcut>
 <outfile>tempwriter.c</outfile>

 </base>
</bind>

Figure 9. Evolution 2 Binding file

ACM SIGPLAN Notices 31 Vol. 43 (2), Feb. 2008

<bind advice="tempsync.c">
 <base file="tempwriter.c">
 <pointcut function="writer" type="exec">
 <advice function="first_entry" type="before"/>
 <advice function="last_exit" type="after"/>
 </pointcut>
 <outfile>finalwriter.c</outfile>
 </base>
 <base file="tempreader.c">
 <pointcut function="reader" type="exec">
 <advice function="lockrole" type="before"/>
 </pointcut>
 <pointcut function="read" type="call">
 <advice function="unlockrole" type="before"/>
 </pointcut>

 <outfile>tempreader.c</outfile>
 </base>
</bind>
<bind advice="mutex.c">
 <base file="tempreader.c">
 <pointcut function="reader" type="exec">
 <advice function="mutexP" type="before"/>
 </pointcut>
 <pointcut function="read" type="call">
 <advice function="mutexV" type="before"/>
 </pointcut>
 <outfile>finalreader.c</outfile>
 </base>
</bind>

Figure 10. Evolution 3

different base code by different bindings, the advice
code itself in C needs not to be modified.

3. With the implementation of “instantiable” concerns in
AspectC2C weaver, concerns written in C code can be
reused more than once.

6. Conclusion

In this paper, we present a symmetric aspect extension,
AsepctC2C, to the C language. A prototype weaver has
also been implemented. The refactored example using this
weaver shows that code written in AspectC2C is more
reusable, comprehensible and suitable for independent de-
velopment than the asymmetric ones.

Although we have presented a working prototype of
AspectC2C, further studies are required before it can be
utilized in a practical environment. Particularly, we are
interested in pursing the following topics:

1. Extending the current prototype to include more advice
and pointcut types, as well as dynamic join points. A
dynamic aspect weaver for AspectC2C is also worthy
of further study.

2. Although the XML format binding files are easy to fol-
low, it may be prolonged to write. Content assist in con-
temporary IDEs will alleviate this problem, another so-
lution is to develop a description language for binding
files, which will greatly simplify the binding code.

References

Y. Coady, G. Kiczales, M. Feeley, and G. Smolyn. Using aspectc
to improve the modularity of path-specific customization in
operating system. In proc. of European Software Eng. Conf.
held jointly with Int’l Symp. Foundations of Software Eng.
(ESEC/FSE), pages 88–98, 2001.

P. J. Courtois, F. Heymans, and D. L. Parnas. Concurrent control
with “readers” and “writers”. Communications of the ACM,
14(10):667–668, October 1971.

E. W. Dijkstra. The structure of the “the” multiprogramming
system. Communications of the ACM, 11(5):341–346, May
1968.

R. Douence, T. Fritz, N. Loriant, J.-M. Menaud, M. Sgura-
Devillechaise, and M. Sdholt. An expressive aspect language
for system applications with arachne. In proc. of Interna-
tional Conference on Aspect Oriented Software Development
(AOSD), pages 27–38, March 2005.

J. Hannemann and G. Kiczales. Design pattern implementa-
tion in java and aspectj. In proc. of Annual ACM SIG-
PLAN Conferences on Object-Oriented Programming, Sys-
tems, Languages, and Applications (OOPSLA), pages 161–
173, November 2002.

W. Harrison, H. Ossher, and P. Tarr. Asymmetrically vs. symmet-
rically organized paradigms for software composition. IBM
Research Report, RC22685(W0212-147), December 2002.

G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes,
J. M. Loingtier, and J. Irwin. Aspect-oriented programming.
In proc. of European Conference on Object-Oriented Pro-
gramming(ECOOP), June 1997.

J. Lamping. The role of the base in aspect oriented program-
ming. In proc. of the Workshop on Object-Oriented Technol-
ogy, pages 289–291, 1999.

H. Ossher and P. Tarr. Using multidimensional separation of
concerns to (re)shape evolving software. Communications of
the ACM, 44(10):43–50, October 2001.

H. Rajan and K. Sullivan. Eos: Instance-level aspects for in-
tegrated system design. In proc. of European Software Eng.
Conf. held jointly with Int’l Symp. Foundations of Software
Eng. (ESEC/FSE), pages 297–306, September 2003.

H. Rajan and K. J. Sullivan. Classpects: Unifying aspect- and
object-oriented language design. In proc. of International
Conference on Software Engineering (ICSE), pages 59–68,
May 2005.

O. Spinczyk, D. Lohmann, and M. Urban. Aspectc++: an aop
extension for c++. Software Developer’s Jouranl, pages 68–
76, May 2005.

P. Tarr, H. Ossher, W. Harrison, and S. M. Sutton. n degrees of
separation: multi-dimensional separation of concerns. In proc.
of International Conference on Software Engineering (ICSE),
pages 107–119, May 1999.

ACM SIGPLAN Notices 32 Vol. 43 (2), Feb. 2008

