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Abstract

The quest to improve performance forces designers to explore finer-grained multiprocessor machines. Ever increasing chip densities based
on CMOS improvements fuel research in highly parallel chip multiprocessors with 100s of processing elements. With such increasing levels
of parallelism, synchronization is set to become a major performance bottleneck and efficient support for synchronization an important
design criterion. Previous research has shown that integrating support for fine-grained synchronization can have significant performance
benefits compared to traditional coarse-grained synchronization. Not much progress has been made in supporting fine-grained synchronization
transparently to processor nodes: a key reason perhaps why wide adoption has not followed.

In this paper, we propose a novel approach called synchronization coherence that can provide transparent fine-grained synchronization and
caching in a multiprocessor machine and single-chip multiprocessor. Our approach merges fine-grained synchronization mechanisms with
traditional cache coherence protocols. It reduces network utilization as well as synchronization related processing overheads while adding
minimal hardware complexity as compared to cache coherence mechanisms or previously reported fine-grained synchronization techniques. In
addition to its benefit of making synchronization transparent to processor nodes, for the applications studied, it provides up to 23% improvement
in performance and up to 24% improvement in energy efficiency with no L2 caches compared to previous fine-grained synchronization
techniques. The performance improvement increases up to 38% when simulating with an ideal L2 cache system.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Increasing the available parallelism is perhaps the primary
way to improve performance in computer systems. Computer
architects and compiler writers are therefore continuously
motivated to develop new techniques to capture more pro-
gram parallelism at various granularity levels such as instruc-
tions, threads and processes. To maximize parallelism often
speculation-based techniques [9,10,12,16,23,24,27,31,33] are

∗ Corresponding author.
E-mail address: andras@ecs.umass.edu (C.A. Moritz).

1 Yao Guo and Raksit Ashok were at University of Massachusetts while
completing most of this work.

0743-7315/$ - see front matter © 2007 Elsevier Inc. All rights reserved.
doi:10.1016/j.jpdc.2007.08.003

applied. At the same time, improvements in technology enable
designers to even increase the grain size of computer architec-
tures.

With increasing levels of parallelism due to both finer-
grained systems and more efficient techniques to expose and
exploit parallelism, synchronization is set to become a major
performance bottleneck and efficient support for synchro-
nization an important design goal. We believe that there are
two main directions for efficient synchronization support.
One popular approach is based on improving the efficiency
of traditional coarse-grained synchronization with speculative
execution beyond synchronization points. Another suggested
alternative is fine-grained synchronization (FGS), such as
synchronization at a word level.
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There are several synchronization mechanisms proposed
that use speculation at runtime. Recently proposed speculative
synchronization techniques include speculative synchroniza-
tion [21], speculative lock elision (SLE) [25] and transactional
lock removal [26]. Speculation often improves performance
by reducing the overhead of false dependencies. While the
applicability of speculative synchronization is unquestionable,
these approaches have their own share of disadvantages. First,
they will likely face scalability limitations when used in finer
grained machines. Secondly, power consumption in next gen-
eration deep sub-micron technology nodes would likely limit
their usefulness further. Simply, speculative execution requires
rather complex hardware and could cause significant waste of
energy due to unnecessary computations on misspeculations.
Nevertheless, it is very clear that speculative synchronization
is a great approach as it requires lower programming effort,
even if it might trade performance and energy efficiency for it.

Another way to reduce the performance impact of synchro-
nization is by making it more fine grained. Previous research
has shown that integrating support for fine-grained (e.g., word
level) synchronization can have significant performance bene-
fits compared to traditional coarse-grained techniques [38]. Not
much progress has been made, however, in supporting such syn-
chronization mechanism transparently to processor nodes. This
is perhaps a key reason why wide adoption has not followed.

This paper explores the idea of synchronization coherence
(SyC 2), a transparent fine-grained mechanism using full/empty
synchronization [2,17,30], that combines synchronization and
caching into one efficient hardware solution. In particular, we
propose to handle a full/empty synchronization miss, which
occurs when a required full/empty state is not met, in a simi-
lar way to a cache miss: the synchronization miss stays in the
memory until it is resolved. A cache miss occurs when a target
location cannot be read or written in the cache; a synchroniza-
tion miss occurs when the target location cannot be read or
written in the memory. The major difference between a cache
and a synchronization miss in SyC is that the former will be
eventually resolved whereas the latter can stay in the memory
for an arbitrary amount of time. To avoid possible saturation
of the memory with synchronization misses, the amount of al-
lowed outstanding synchronization misses can be limited.

SyC has the following key advantages:

(i) It can improve the performance of previous approaches
based on full/empty bits for synchronization, due to fewer
network messages (or bus transactions) in the SyC proto-
col and no need to have software trap when synchroniza-
tion fails.

(ii) It requires minimal changes to cache coherence, because
the hardware required by the lockup-free cache organiza-
tion, which enables outstanding cache misses, can be used
for synchronization misses as well.

(iii) It is transparent to processor nodes, because synchroniza-
tion misses are treated as cache misses and are resolved
transparently. An out-of-order processor and a lockup-free

2 We call it SyC to avoid confusion with SC: sequential consistency.

miss-under-miss cache organization can hide part of the
synchronization miss latency. If a processor cannot con-
tinue execution due to a synchronization miss, it stalls or
makes a context switch by analogy to a context switch on
a cache miss in a distributed shared memory multiproces-
sor [13].

(iv) It requires likely less hardware overhead compared to
speculative synchronization approaches. There is no need
for speculation if FGS is properly used.

(v) It is more power efficient than trap-based fine-grained ap-
proaches [17,19]. In the case of trap-based approaches to
FGS, an interrupt handler either polls the location until
synchronization is satisfied, or makes a context switch to
another ready thread (if any) after a certain waiting pe-
riod. Polling wastes CPU time and energy. SyC does not
require polling for synchronization because a synchro-
nization miss is treated as a cache miss and it is resolved
transparently. In addition, SyC requires fewer network
messages that can save considerable energy. Overall, the
approach might prove to be also more energy efficient
than a speculative execution approach. We do not have an
exact comparison due the difficulty of implementing the
corresponding speculative schemes.

In order to evaluate SyC, we have developed a complete sim-
ulation and compilation flow. We have modified and extended
extensively the SimpleScalar simulator [7] to model a directory-
based cc-NUMA architecture with full/empty tagged shared
memory, cache coherency, and SyC. The simulator implements
k-ary n-cube networks and wormhole routing protocols. It is
our plan to make this tool available to facilitate additional re-
search on SyC and FGS techniques. In our experiments, we
have adapted two applications MICCG3D [38] and LU from
the SPLASH-2 suite [35,36] and have developed a new applica-
tion resembling the communication in DNA chain comparison
(also called as Diamond DAG [22]). We also evaluated MST
from the Olden benchmark suite [8]. Overall, SyC achieves
up to 21% performance improvement and up to 24% power-
efficiency benefits compared to state-of-the-art techniques with
no L2 caches. With an ideal L2 cache system, we estimate that
the performance speedup of SyC over trap-based fine-grained
scheme goes up to 38%.

The rest of this paper is organized as follows: Section 2
gives a primer on synchronization including the fine-grained
full/empty synchronization semantics as well as architectural
support for FGS. Section 3 introduces the proposed SyC ap-
proach, including semantics of full/empty memory operations,
the proposed architecture and protocol for SyC. Section 4 shows
the experimental setup and introduces the applications that we
evaluated. Section 5 presents the experimental results. We con-
clude the paper in Section 6.

2. Overview of synchronization

There are two main types of synchronization: mutual exclu-
sion and condition synchronization. Mutual exclusion guaran-
tees that critical sections of code are not executed by more than
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one thread at a time, whereas condition synchronization delays
a thread until a certain condition is true. Locks or semaphores
are typically used to control mutual exclusion. Flags, barriers,
semaphores, or condition variables with locks or monitors can
implement conditional synchronization.

Synchronization can be either coarse grained or fine grained.
The granularity of synchronization is measured by the amount
of data that is communicated with the synchronization [17]. For
example, barriers are typically coarse grained because multiple
shared variables are passed across barriers. Locks, flags and
semaphores can be both fine grained and coarse grained.

Coarse-grained synchronization such as a global barrier or
a coarse-grained lock obviously can expose false dependen-
cies leading to performance degradation even though the use
of coarse-grained synchronization simplifies parallel program-
ming. It is therefore likely less efficient on highly parallel sys-
tems. Nevertheless, many approaches, such as improving the
performance of coarse-grained locks and barriers [14,37] have
been proposed to increase the efficiency of coarse-grained syn-
chronization. We also use an efficient tree-based barrier [37] in
our implementation of coarse-grained synchronization.

One approach to reduce false dependencies caused by
coarse-grained synchronization, or/and to hide synchronization
latency, is to speculatively execute threads beyond synchro-
nization points such as barriers or locks. The recent proposal,
speculative synchronization [21], utilizes speculative threads
that execute past active barriers. The hardware checks for
conflicting accesses and rolls back the offending threads. SLE
[25] also reduces the false sharing introduced by sub-optimally
placed locks and barriers. Transactional lock removal [26] re-
moves locks to construct an optimistic transaction. In addition,
it uses a timestamp-based conflict resolution scheme to resolve
data conflicts efficiently.

A finer granularity of synchronization (e.g., at the level of
words) is another feasible way to reduce or to avoid false de-
pendencies due to unnecessary synchronization [17,28]. This
means, for example, that a thread can wait only for the data
item it requires rather than for all shared data passed with a
coarse-grained synchronization. FGS allows a dataflow style of
computation that suits thread-level parallelism; therefore, FGS
could become more important in order to support thread-level
parallelism more efficiently in future highly parallel machines
and single-chip designs. Traditional synchronization mech-
anisms such as locks, condition variables, semaphores and
barriers can in fact be used for FGS. However, there is a trade-
off between granularity of synchronization and the amount of
memory used for synchronization: the finer granularity of syn-
chronization, the more memory is required to control it with
traditional techniques.

2.1. Full/empty FGS

Another approach to achieve FGS is to implement self-
synchronized shared data structures with full/empty state such
as write-once I-structures [3], M-structures [4], J-structures
and L-structures [1,17]. An instance of a self-synchronized

structure can hold a value and can be either full or empty.
A structure is accessed with special synchronized reads and
writes that can atomically test and change its full/empty state
in addition to reading and writing its value.

Architectural support for FGS based on full/empty state in-
cludes a full/empty-tagged memory, where each location (e.g.,
word) can be tagged as full or empty with a full/empty bit as-
sociated with it; if the bit is set the location is full, otherwise it
is empty. One full/empty bit per a 32-bit word implies an over-
head of only 3%, or 1.5% per a 64-bit word. Special loads and
stores that can test and/or change the full/empty bit, in addition
to reading or writing, are used to access the full/empty-tagged
memory. The MIT’s Alewife [1] machine, HEP [30], and Tera
[2], are examples of multiprocessors with hardware support for
FGS using full/empty tags in memory (HEP and Tera use also
registers with full/empty bits for synchronization).

For example, MIT’s Alewife is a directory-based cc-NUMA
multiprocessor with a full/empty tagged shared memory.
Hardware support for fine-grained word-level synchronization
includes full/empty bits, special memory operations and a
special full/empty trap. Software support includes trap handler
routines for context switching and waiting for synchroniza-
tion [19]. While the Alewife architecture supports FGS and
shows demonstrable benefits over a coarse-grained approach,
it still implements synchronization in a software layer above
the cache coherence protocol layer. Keeping the two layers
separate entails additional communication overhead.

A few other approaches to FGS exist in other multipro-
cessors, such as the M-machine with full/empty tagged regis-
ters [15] and a simultaneous multithreaded (SMT) processor
with hardware-based blocking locks described in [32]. Both
mechanisms are proposed for efficient FGS of threads within a
processor. However, these designs do not provide FGS across
multiple processors.

2.2. FGS structures

In order to define the semantics of full/empty memory op-
erations, let us consider first the J-structures and L-structures,
also used to express FGS in the programming environment of
the MIT Alewife machine [17].

A J-structure is an abstract data type that can be used for
consumer–producer type of process interaction. A J-structure
has the semantics of a write-once variable: it can be written
only once, and a read from an empty J-structure suspends un-
til the structure is filled. An instance of the J-structure is ini-
tially empty. A read (J-read) from the full J-structure returns
its value, whereas the read from the empty J-structure suspends
on the structure until it is filled. A write (J-write) to the empty
J-structure makes it full and resumes all pending J-reads (if
any), whereas an attempt to write the full J-structure is reported
as an error. To be reused, a J-structure can be reset to empty.
The semantics of the J-structure are depicted in Fig. 1(a).

A lockable L-structure is an abstract data type that has
three operations: a non-locking peek (L-peek), a locking read
(L-read), and an unlocking write (L-write). An L-peek is
similar to a J-read: it waits until the structure is full, and then
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Fig. 1. Semantics of the self-synchronized structures.

returns its value without changing the state. An L-write is simi-
lar to a J-write: it stores the value to an empty structure, changes
its state to full and releases all pending J-reads, if any. As for
J-structures, an error is signaled on a write to the full
L-structure. An L-read waits until the structure becomes full
then it changes the state to empty (locks the structure), and
returns the value read. The semantics of the L-structure are
depicted in Fig. 1(b).

3. SyC approach

This section presents SyC, a transparent fine-grained mecha-
nism using full/empty synchronization, that combines synchro-
nization and caching into one efficient hardware solution. We
will describe the semantics, architecture and protocol of SyC
and compare it with the trap-based fine-grained approaches.

3.1. Semantics of full/empty memory operations in SyC

Assume a multiprocessor with full/empty tagged shared
memory (FE-memory) where each location (e.g., word) can
be tagged as full or empty (i.e., it has a full/empty bit (FE-bit)
associated with it): if the bit is set the location is full, other-
wise the location is empty. In order to provide FGS such as
J-structures and L-structures described above, the multiproces-
sor should support special synchronized FE-memory operations
(reads and writes) that can depend on the FE-bit and can alter
the FE-bit in addition to reading or writing the target location.
The processor architecture should include corresponding FE-
memory instructions as well as full/empty conditional branch
instructions.

We distinguish unconditional and conditional FE-memory
operations. An unconditional operation does not depend on
the value of an FE-bit. We assume that a conditional read is
executed if the location is full, whereas a conditional write is
executed if the location is empty. A synchronization miss occurs
when the required state of the location is not met. We propose
that each conditional operation has two versions: a trapping
(or faulting) version that traps on a synchronization miss, and
a waiting version that is postponed on a state miss until the
location reaches the required state.

We distinguish non-altering and altering FE-memory oper-
ations. Non-altering operations do not change the FE-state. An

altering operation (read or write) sets a new FE-state to the
location beyond reading or writing data. We assume that the
altering read sets the location to empty, and the altering write
sets the location to full.

Finally, we assume that each of the FE-operations returns, as
a side effect, an original value of the full/empty bit associated
with the location. This is to be used as a full/empty condition
code in the processor.

The semantics of the synchronized conditional (waiting and
trapping) FE-memory instructions and their altering versions
are shown in Table 1. We use angle brackets 〈and〉 to denote
an atomic action; functions wait and notifyAll are similar to
the wait and notifyAll methods in Java monitors: wait suspends
a thread on the location until the thread is notified, whereas
notifyAll resumes all threads pending on the location (if any).

Semantics of synchronized waiting FE-memory operations
can be implemented using synchronized trapping FE-memory
instructions like in the MIT Alewife multiprocessor [17]. On a
synchronization miss, a trapping FE-memory instruction fires
a trap, and an interrupt handler can either poll the location
until the required full/empty state is met, or suspend the thread,
place it on a queue of waiters and switch the context to another
ready thread (if any). With trapping FE-memory instructions,
the queue of waiters, i.e., threads suspended on synchronization
misses, is maintained in software. When an FE-bit is altered,
the corresponding queue is checked and if it is not empty, all
(or selected) waiters can be resumed, i.e., moved to the queue
of ready threads.

3.2. Architectural support for SyC

In order to support SyC, some changes are required to the
architecture of a typical cc-NUMA multiprocessor. This section
describes the architectural enhancements that need to be made.

Each word in the shared memory is tagged with a full/empty
bit (FE-bit) and a pending bit (P-bit). An FE-bit indicates
whether a corresponding word is full or empty. A P-bit indicates
whether there are operations (reads or writes) pending on a cor-
responding word: if the P-Bit is set, it means there are pending
synchronized reads (if the word is empty) or pending writes (if
the word is full) for the corresponding word. This information
is required so that a successfully executed altering operation
can immediately satisfy one or more pending operations.



Y. Guo et al. / J. Parallel Distrib. Comput. 68 (2008) 165–181 169

Table 1
Conditional full/empty tagged memory instructions

FE-memory instruction Notation Semantics

Waiting Read WRd 〈while (FE-bit == empty) wait(); read;〉
Trapping Read TRd 〈if (FE-bit == empty) trap else read;〉
Waiting Write WWr 〈while (FE-bit == full) wait(); write;〉
Trapping Write TWr 〈if (FE-bit == full) trap else write;〉
Waiting Altering Read WARd 〈while (FE-bit == empty) wait(); read; set FE-bit to empty; notifyAll();〉
Trapping Altering Read TARd 〈if (FE-bit == empty) trap else {read; set FE-bit to empty; notifyAll();}〉
Waiting Altering Write WAWr 〈while (FE-bit == full) wait(); write; set FE-bit to full; notifyAll();〉
Trapping Altering Write TAWr 〈if (FE-bit == full) trap else {write; set FE-bit to full; notifyAll();}〉
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Fig. 2. Organization of the full/empty tagged cache and directory.

A vector of FE-bits and a vector of P-bits associated with
words in a memory block are stored in the coherence directory
and as an extra field in the cache tag when the block is cached.
This way, a tag (directory) lookup includes tag match and in-
spection of full/empty bits. Each home node (directory) also
contains a state miss buffer (SMB) that holds information re-
garding which nodes have pending operations for a given word
and whether operations are altering or not. The synchroniza-
tion miss is treated as a cache miss, and information on the
miss is recorded at the cache, e.g., in a Miss Information/Status
Holding Register (MSHR) and a write buffer [11].

Fig. 2 illustrates the changes required to cache and directory
structures. In the figure, we assume a 4-processor system with
a 32-byte (4 words) memory block. In addition to the 256-bit
data block and the tag bits, each cache block has 8 extra bits: 4
FE-bits and 4 P-bits (that is about 3% of storage overhead per
cache block).

As already mentioned, information regarding which nodes
have pending operations for a given word is stored in the SMB,
which is indexed by the word address (see Fig. 2). An entry
in the SMB is allocated when a first operation suspends on the
word; an entry is released when there are no pending operations
(the pending queue is empty). Each entry in the SMB contains
two full bit vectors: a vector of pending nodes and a vector of
altering nodes.

A bit in the full vector of pending nodes corresponds to a node
and indicates whether the node has conditional FE-memory op-
erations (reads or writes) pending on the word. A bit in the full
vector of altering nodes indicates whether the pending opera-
tion is altering. This information is needed to resume (and to
complete) pending operations when the FE-bit of the word is
altered. If the vectors indicate that there are both types of opera-
tions, altering and non-altering, pending on the word, then sev-
eral (if not all) non-altering but only one altering operations can
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be resumed. For example, the directory controller can resume
all non-altering operations and one altering operation. When
the operations are resumed the controller sends corresponding
messages to pending nodes indicating which operations have
been resumed and alters the FE-bit if one of the resumed op-
erations is altering. The resulting FE-bits are always sent with
replies to indicate the current FE-state of a word in the mem-
ory block. Similarly to the MIT Alewife multiprocessor [1], the
FE-bits can be transmitted with the address.

How many entries should the SMB contain? For a multi-
processor with n nodes and hit-under-miss lockup-free caches,
there could be at most n − 1 pending operations (reads or
writes). Hence, for a 4-processor system, for example, 3 en-
tries would be enough in the SMB of each node. For very
large configurations or for a multiprocessor with miss-under-
miss lockup-free caches (not used here), the required number
of entries may become too large. In such cases, an overflow
mechanism can be employed: if a directory runs out of SMB
entries, the directory controller should not accept the request
that caused the overflow and send it back to the cache controller
to retry.

In SyC, synchronization misses to the same word form a list
of pending FE-memory operations that is maintained in hard-
ware by cache and directory controllers, rather than in software
by an interrupt handler as in the previous approaches [1]. Thus,
SyC allows implementing conditional waiting FE-memory op-
erations transparently to the CPU.

The SyC protocol calls for slightly more sophisticated di-
rectory and cache controllers. The cache controller not only
matches the tag but also checks the full/empty bits depend-
ing on the instruction, and makes a decision based on the state
of the cache line as well as the associated FE-bits and P-bits.
The directory controller is also modified to account for the
SMB implementing the SyC protocol in the directory. It has to
send data asynchronously to resolve synchronization misses on
writebacks, by looking up the SMB, etc. More details of the
SyC protocol are provided next.

3.3. SyC protocol

We have chosen a directory-based cache coherence proto-
col used in the SGI Origin [18] multiprocessor as the baseline
for our SyC protocol. This is the MESI protocol, which em-
ploys request-forwarding transactions involving three nodes: a
requesting node, a home node and an owner of a recent copy
of a target memory block. It allows cache blocks in the Exclu-
sive state to be replaced without requiring notification to the
directory; it fully supports upgrade requests, etc. The directory
side has five states: Un-owned (block not present in any node’s
cache), Exclusive (block may be present in only one node’s
cache), Shared (block may be present in several nodes’ caches),
Busy-Exclusive (directory is busy with exclusive-read request
forwarding), and Busy-Shared (directory is busy with shared-
read request forwarding). Further details can be found in [18].

To integrate FGS into MESI, several new messages have been
added. SyC supports the complete set of FE-memory operations

including eight conditional operations shown in Table 1 and
unconditional operations (not shown in the table): ordinary read
and write, altering read and write. We do not consider here
ordinary reads and writes because they are handled in SyC in
the same way as in the SGI Origin protocol.

The states of cache lines and directory states of memory
blocks are the same as in the MESI protocol, however, each
word in a cache or in the main memory has a synchronization
state: a word can be either full or empty that is indicated by
the FE-bit, and it may have a queue of pending FE-memory
operations that is indicated by the P-bit. A home directory con-
troller using the FE- and P-bits and SMB at the directory side
maintains a queue of pending conditional (waiting) operations.

To illustrate the inner workings of SyC, we consider several
examples of FE-memory operations. The examples are shown
in Fig. 3. Namely, we consider operations (waiting read and
altering write ones) needed to support J-structures. Suppose a
processor issues a synchronized conditional read that misses in
its cache (it could be either ordinary miss or synchronization
miss).

Fig. 3(a) shows a scenario on a synchronized waiting read.
The cache sends a RD_SYNC message (shown as #1 in the
figure) to the directory, which, assumed here, has the required
word in the full state (FE-bit is 1). The directory therefore sends
a SHD_REPLY (if its in the Shared state) or an EXCL_REPLY
(if its in the unowned state) and the synchronized read is satis-
fied once the message reaches the cache (#2).

In Fig. 3(b), the cache again sends a RD_SYNC message to
the directory (#1). This time, however, the word is empty (FE-
bit is 0) and there are no synchronized reads already pending
(P-bit is 0). If the directory state is unowned or shared, there
cannot be a node that has done a synchronized altering write
to its local cache. In this case, the directory sets the P-bit (#2)
and creates an entry in the SMB with the requesting node’s
bit set (#3). When a synchronized altering write occurs, the
SMB will be checked and replies sent, to satisfy all the pending
synchronized reads to this word, as will be seen later.

Fig. 3(c) shows a situation similar to above, except that the
memory block is in the Exclusive state at the directory. There
is a chance therefore, that the owner of the block might have
done a synchronized write to this word. The directory therefore
forwards the request by sending an INTERVENTION_SYNC
request (#4) to the owner and passes to the Busy state. The
owner cache, however, does not have the requisite word in full
state (FE-bit is 0) either, and therefore sets the P-bit (#5) so
that if a synchronized write is performed later on, the pending
reads can be immediately notified. It also sends a SYNC_NAK
message and the directory, upon receiving this message, passes
from the Busy state back to the Exclusive state (#6).

Fig. 3(d) shows the sequence for a synchronized (trapping)
altering write. The FE-bit is 0 (an exception if it was already
1) and there are pending requests (P-bit is 1). The cache sets
the FE-bit and passes to the Shared state (#2). It then sends a
synchronized writeback message (SYNC_WB) to the directory.
The directory on getting this message (#3) sets the FE-bit, resets
the P-bit and passes to the Shared state. The SMB entry is
checked (#4) to find out the pending nodes. Assume that there
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Fig. 3. Examples of SyC protocol transactions.

are no pending altering reads. SHARED_REPLY messages are
sent to each of these pending nodes (#5 and #6) to satisfy the
synchronized reads, and the SMB entry is then squashed.

The new messages added to the coherence protocol to
integrate FGS (waiting and altering FE-memory opera-
tions) are RD_SYNC, WR_SYNC, INTERVENTION_SYNC,
SYNC_NAK, and SYNC_WB and the directory has the ad-
ditional state BUSY_SYNC. Each RD_SYNC or WR_SYNC
request also indicates whether the corresponding operation
(read or write) is altering. Many of the protocol messages also
require the FE-bits and P-bits to be tagged along.

To support all FE-memory operations, the protocol distin-
guishes altering and non-altering operations: an altering oper-
ation alters the FE-bit, whereas a non-altering read does not
change the FE-bit. If an altering operation causes some pend-
ing orthogonal altering operations to be resumed (for example,
an altering write resumes a waiting altering read) then the SyC
protocol uses a “passing the baton” technique so that the FE-bit
is not changed by either of the operations.

To illustrate this, consider the following example. Suppose a
processor issues a conditional altering write to a word, which
misses in the cache. In this case, the write miss is recorded in
the MSHR and is forwarded to the home node. Assume that
the directory state of the target memory block is shared or

unowned, and the target word is empty (the FE-bit is 0). The
directory controller checks the P-bit, and if it is not set (there
are no waiters) the directory controller sets the FE-bit to full
and processes the synchronized write miss as an ordinary write
miss. If the P-bit is set, there are pending reads on the word,
and the directory controller looks up the SMB to find which
nodes have conditional reads pending for this word and whether
some of the pending reads are altering. The controller picks all
nodes with non-altering reads and one node with altering read
and resets corresponding bits in the SMB and the P-bit in the
directory. It sends the data for the block back to the requestor
with a forwarded request to resume selected pending nodes. The
requester writes the block and replies directly to the pending
nodes, sending a revision message to the home node. Note that
the directory state is shared and the word is left empty.

4. Experimental setup

In order to evaluate SyC, we have modified and extended
extensively the SimpleScalar simulator [7]. The basic struc-
ture of the simulator, including the synchronization primitives,
follows the conventions used by the multiprocessor version of
SimpleScalar developed by Manjikian [20], however, our sim-
ulator is based on the out-of-order version of SimpleScalar
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Table 2
Multiprocessor parameters

L1 D-Cache 32 kB, 4-way, 32 byte per line
L1 latency 1 cycle
DRAM latency 100 cycles
Interconnect layout 2-D mesh and Hypercube
Flit size 32 bits
Interconnect speed 4 cycles per hop
Router delay 4 cycles for the first flit message
Launch delay 4 cycles
Trap cost (for baseline) 10 cycles
Number of processor nodes 1, 4, 8, 16, 32, 64

(sim-outorder) with detailed timing simulations. We model a
directory-based cc-NUMA architecture with full/empty tagged
shared memory and support for SyC. In the simulated network,
messages are broken into flits and sent in a pipelined manner.
Table 2 shows some of the important simulation parameters.

We model two types of interconnection networks: 2-D
meshes and hypercubes. Time (hops) needed for communica-
tion between two nodes in the network are calculated based
on the interconnect types for each of them. For a 2-D mesh
network, the interconnect delay (from 1 to (X + Y − 2),
where X and Y represent the width and height of the mesh
and X ∗ Y = N is the number of nodes) is dependent on the
individual position of the two communicating nodes, while the
delay is typically smaller (� log2 N , where N is the number of
nodes) in the case of hypercubes. Network contention is also
considered during the calculation.

To express FGS, we employ L-structures and J-structures
similarly to the MIT Alewife machine [17]. To access the struc-
tures, we have developed synchronized load and store functions
using FE-memory operations. We have extended the compila-
tion flow to automate support for source level FGS. The FE-
instructions that implement FGS are inlined during compilation
as assembly macros.

4.1. Applications

During our research we have noted that there are very
few benchmarks available that have been written for evalu-
ating FGS; previous studies [38] have primarily focused on
MICCG3D. The major reason for this is the lack of machines
that support FGS in hardware as well as the lack of compiler
support. Most of the shared memory applications are writ-
ten using traditional software synchronization mechanisms
such as barriers, semaphores, locks and condition variables.
FGS often would require changing the underlying algorithms
used.

We have used three available applications, MICCG3D [38],
LU from the SPLASH-2 suite [35,36] and MST from the Olden
benchmark suite [8]. We also developed a new application re-
sembling the communication in DNA chain comparison (also
called as Diamond DAG [22]).

Other benchmarks in SPLASH-2 have also been examined,
but we found that their data access patterns do not benefit from

FGS without perhaps a complete redesign of the algorithms
and modification of the underlying data structure. Based on our
analysis, most applications in SPLASH-2 have limited number
of barriers and thus the synchronization overhead is already
pretty small. According to the original SPLASH-2 paper [36],
most of the applications have a close to perfect speedup when
a perfect memory system is applied, with the exception of only
four benchmarks: LU, cholesky, radix, and radiosity. We con-
sider therefore these benchmarks as possible targets for FGS
and studied them in detail. A summary of our analysis is shown
below.

• LU: The LU kernel factors a dense matrix into the product
of a lower triangular and an upper triangular matrix. FGS
has proved to be beneficial for LU during our experiments
and has been used in our evaluation.

• Cholesky: The blocked sparse Cholesky factorization
kernel is similar in structure and partitioning to the LU
factorization kernel but has two major differences: (i) it
operates on sparse matrices, and (ii) it is not globally syn-
chronized between steps. Without frequent global synchro-
nization (as in LU), cholesky does not benefit significantly
from FGS.

• Radix: The integer radix sort kernel implements a parallel
sorting algorithm based on counting sort. Since part of the
algorithm during the prefix computation in each phase is
not inherently parallelizable, even FGS cannot make it more
efficient algorithmically.

• Radiosity: This application computes the equilibrium distri-
bution of light in a scene using the iterative hierarchical dif-
fuse radiosity method. The lower speedup of radiosity is due
to its scalability problem caused by its small problem size.
We cannot unfortunately generate a larger input size. This is
because these inputs have a special meaning, so using ran-
dom sets would not work.

Therefore, only LU from SPLASH-2 suite is used in our eval-
uation. We have developed two versions of each application:
a version with coarse-grained barrier synchronization (hence-
forth called coarse-grained version), and a version with FGS
using J-structures (fine-grained version). Following is a brief
introduction to the applications.

4.1.1. DNA chain comparison
Fig. 4 shows the data flow pattern for the DNA chain

comparison application. Each node in a thread represents a
computation phase. The arrow shows the data dependency
between phases: computation in each thread on each phase
depends on the values previously computed by its two adja-
cent threads and itself. Such a dataflow pattern requires lots of
synchronization and can therefore likely benefit from a FGS
approach.

4.1.2. MICCG3D
MICCG3D is a Modified Incomplete Cholesky Conjugate

Gradient method for 3-D boundary value problems. It solves the
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Thread 1

Thread 2

Thread 4

Thread 3

Fig. 4. Data flow pattern for the DNA chain application.

Wave
Front

X

Y

Z

Fig. 5. MICCG3D computational wavefront [38].

matrix equation: Ax = b, where A is a sparse and symmetric
positive matrix, x is the vector that needs to be solved. The
computation of MICCG3D is illustrated in Fig. 5 [38]. Due to
the inherent dependency within x, the data being computed at
an instant of time forms a “wave front”. All the data on the same
wave front can be computed in parallel and the dependency is
perpendicular to the front.

We have implemented both fine-grained and coarse-grained
versions of this application. In the coarse-grained implementa-
tion of MICCG3D, the data are partitioned into blocks. Barri-
ers are inserted to maintain the dependency across threads. In
the fine-grained implementation, we use J-structures supported
by FE-memory operations to enforce the dependency among
threads.

A detailed description of MICCG3D can be found in [38].

4.1.3. LU
LU is an algorithm to factorize a dense matrix that can be

performed efficiently if the dense n × n matrix A is divided
into an N × N array of B × B blocks (n = NB). Fig. 6 shows
the pictorial representation of the algorithm [36]. The arrows
in the figure show the dependencies among blocks. We used
the original implementation for LU found in [36] as the coarse-
grained version of the application. We converted it to a fine-
grained one by eliminating barriers and adding FE-memory
operations in the source code. We have not changed the way

Fig. 6. LU factorization of blocked dense matrix [36].

data is partitioned. In our future work, we plan to completely
redesign these applications to better suit FGS.

4.1.4. MST
MST is a parallel algorithm calculating minimum spanning

trees based on a given non-directed weighted graph included
in the Olden benchmark suite [8]. The application implements
the parallel algorithm proposed in [5]. It is also studied in the
speculative synchronization [21]. The Olden codes are pointer-
based applications that operate on graphs and trees. They are
annotated so that the compiler or the programmer can easily
parallelize them. The only difference for MST is that we run
it on up to 32 processors (instead of 64 for other applications)
based on the suggestions in the benchmark distribution.’

4.2. Programming support for SyC

Appropriate programming support is very important in or-
der to make FGS implementation more effectively. Here we
describe the essential programming support required at both
application-level and compiler-level for FGS.

Application-level support helps programmers to write par-
allel programs with FGS more efficiently. Specifically, the re-
quired elements could include:

• First, one must understand the implications at the algorithm
level in order to exploit the inherent benefits of FGS.

• Second, a mechanism to express the variables as FGS-based
structures should be provided, such as using the L- or
J-structures. The fine-grained structures should be declared
as language provided special types (for example, new mod-
ifiers in C/C + + could be used).

• Fine-grained structures can also be used in conjunction with
higher-level synchronization constructs such as semaphores
and monitors. These structures can be based on FGS. For
example, efficient FGS-based lock and barrier implemen-
tations such as optimistic synchronization [28] primitives
using load linked/store conditional would be an attractive al-
ternative to traditional mutual exclusion locks. As reported by
Martin Rinard, the use of FGS-based synchronization prim-
itives can significantly reduce the memory consumption and
improve the overall performance [28].
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Fig. 7. (a) Execution time and (b) number of messages of application DNA chain under baseline (FG-Trap) and synchronization coherence (FG-SyC).

At the compiler-level, any memory access that goes to FGS
data structures defined above has to be translated into special
load/store operations, which will be recognized by the archi-
tecture.

We assume that the application is written explicitly in par-
allel in the above discussions. If the original application is
written in sequential format, parallelizing compilers would
be needed to: (1) identify parallel components in the appli-
cation; and (2) identify the structures where FGS could be
used and transform them to special FGS load/store operations
automatically. Apparently, this will be much more difficult
compared to the previous approach. Nevertheless, single-chip
multiprocessors (especially) would benefit to have such com-
pilers. The techniques required would be a relatively small
extension to compilers such as the one designed for Raw
processors [34].

5. Results

In order to estimate performance improvements and energy
savings due to SyC, we have conducted three series of simu-
lations: coarse-grained barrier synchronization on a traditional
directory-based cc-NUMA architecture (Coarse), FGS on a
directory-based cc-NUMA architecture with full/empty tagged
shared memory (FG-Trap) and the proposed SyC (FG-SyC).

As expected, both fine-grained versions (FG-SyC and FG-
Trap) achieve good performance speedup compared to Coarse.
FG-SyC also achieves significant speedup compared to FG-
Trap in most cases. In addition, FG-SyC achieves significant
energy savings compared to both FG-Trap and Coarse. In
cases where FG-SyC does not show clear performance benefit
compared to FG-Trap, it still saves overall energy significantly.
In contrast, FG-Trap is a little bit worse in energy compared
to Coarse in some cases. Overall, FG-SyC is consistently
better than FG-Trap when both performance and energy are
considered. Detailed results and analysis will be presented
next.

We first show the performance and energy consumption com-
parison with fixed data size and 2-D mesh interconnect net-
work. Then, we compare the speedup with different network

configurations (2-D mesh and hypercube) and different data
sizes; we also estimate the impact of L2 caches.

5.1. Performance improvement

Fig. 7(a) shows the breakdown of execution time for the
DNA chain application. “FG-Trap” corresponds to the baseline,
where FGS is implemented on top of cache coherence, like in
the MIT Alewife [1]. “FG-SyC” refers to our new approach,
SyC. From the result we can see that FG-SyC outperforms FG-
Trap significantly, ranging from 19% to 23% with an average
speedup of 21%.

The execution time is further broken down into several
categories. “Useful” is the time spent on computation. “Cache-
misses”, “FG-Sync” and “Barrier” are different sources of
overhead. “Cache-misses” cycles are CPU stalling cycles
caused by regular cache-misses, including both local cache
misses and remote cache misses in the shared memory mul-
tiprocessor system. “Cache-Misses” are determined by local
memory access latency, network configuration, traffic and the
remote memory access latency. “FG-Sync” represents synchro-
nization overhead for fine-grained synchronization: either the
cycles spent on a trap to handle FGS misses for FG-Trap, or
the waiting cycles due to synchronization misses for FG-SyC.
Note that for FG-SyC, there is no need to trap on synchroniza-
tion misses, since they are handled transparently. “Barrier” is
the number of cycles spent primarily on barriers.

From the above results we can see that the performance im-
provement primarily comes from the reduced “Cache-misses”
cycles. This is because FG-SyC generates fewer messages and
reduces the network traffic (as shown in Fig. 7(b), FG-SyC
reduces the number of messages ranging from 21% to 30%,
with an average of 26%). In addition, we can see that the “FG-
Sync” in FG-SyC is smaller than its counterpart in FG-Trap.
This is mainly due to the fact that FG-SyC handles FGS more
efficiently by replacing software traps with (synchronization)
cache misses.

Fig. 8(a) shows the execution time breakdown for MICCG3D.
We evaluated both coarse-grained and fine-grained versions.
The data size is 8 × 8 × 256. In the figure, “Coarse” represents
the coarse-grained implementation.
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Fig. 8. (a) Execution time and (b) number of messages of application MICCG3D under baseline (FG-Trap) and synchronization coherence (FG-SyC).
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Fig. 9. (a) Execution time and (b) number of messages of application LU under baseline (FG-Trap) and synchronization coherence (FG-SyC).

We can see clearly from the above graphs that FGS has sig-
nificant advantage over the coarse-grained version. FG-Trap
outperforms coarse-grained by a factor of 2.4–3.7X. The num-
bers are fairly close to those in [38]. FG-SyC shows additional
improvement over FG-Trap. The speedup over FG-Trap ranges
from 3% to 12%, with an average of 6.7%.

From the execution time breakdown, we can see that FGS
(both FG-Trap and FG-SyC) reduces the “Barrier” cycles
significantly, which is the main source of the performance
improvement. FG-SyC also improves the performance over
FG-Trap by reducing “Cache-misses” cycles (reflected by the
reduced number of network messages, as shown in Fig. 8(b),
because of the same reason as in the DNA chain application).

Besides the speedup achieved, FG-SyC also reduces the num-
ber of messages (shown in Fig. 8(b)) by 8–16%, with an aver-
age of 11%.

Fig. 9(a) shows the performance of LU, on both coarse-
grained and fine-grained versions. The input data size is 256 ×
256. In this application, we do not observe much speedup of
FG-SyC over the FG-Trap baseline. As seen in the graph, the
“Barrier” cycles in the coarse-grained version are mostly con-
verted to “FG-Sync” for both fine-grained schemes. Also, we
notice that the “FG-Sync” cycles for FG-Trap and FG-SyC are
almost equal. This means that for this application, those syn-
chronization overheads are inherent to the application and we
cannot do much about it.

However, FG-SyC can still reduce the number of network
messages (see Fig. 9(b)), which helps reducing the total power

consumption, as we will show in the next section. The speedup
of FG-SyC over Coarse ranges from 7% to 24%, with an aver-
age of 17%. In Section 5.3.3, we show that this speedup could
be further improved with L2 caches.

Fig. 10(a) shows the execution time for MST on both coarse-
grained and fine-grained versions. As mentioned previously, we
simulated the application with up to 32 processors based on
the suggestions from the benchmark developer. The speedup of
FG-SyC is ranging from 14–41% over Coarse and 7–15% over
the FG-Trap baseline. FG-SyC can also reduce the number of
network messages (see Fig. 10(b)) for up to 7% over FG-Trap
(except for the 4-processor case, where we observe a slight
increase in network messages).

5.2. Energy consumption

We modified the Wattch simulator [6] to calculate the energy
consumption in a multiprocessor. Energy cost for each proces-
sor is calculated individually and then summed up. Energy cost
for the extra hardware such as FE-bits and P-bits in caches
are accounted for in the energy simulation with the Cacti [29]
model.

To estimate the off-chip message energy cost (in CPU), we
assume that each message costs 64X or 256X of a single word
L1 cache access, and present results for both cases. Similar
assumptions on off-chip memory energy cost have been made
in [39]. The actual energy cost for off-chip messages depends
on the number of bits in transition on IO pads and specific
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Fig. 10. (a) Execution time and (b) number of messages of application MST under baseline (FG-Trap) and synchronization coherence (FG-SyC).
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Fig. 11. Energy consumption for the DNA chain application: (a) message cost as 64X of L1 cache energy cost; (b) message cost as 256X of L1 cache energy cost.
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Fig. 12. Energy consumption for MICCG3D: (a) message cost as 64X of L1 cache energy cost; (b) message cost as 256X of L1 cache energy cost.

packaging/implementation details. The 64X case is more rep-
resentative of current systems, while the 256X is a more
pessimistic projection for future generation systems.

The energy results for the DNA chain application are shown
in Fig. 11. We show breakdown numbers on energy consump-
tions for CPU, D-cache and messages, respectively. All the en-
ergy numbers are collected from Wattch and then normalized to
the FG-Trap total energy cost. The figure shows that we save a
range of 18–22% chip-wide energy across all processor nodes
for the 64X case. This is due to the elimination of busy waiting
and less network traffic generated by FG-SyC compared to FG-
Trap. The energy savings in CPU are due to the fact that FG-
SyC transformed the busy waiting during polling in FG-Trap

into synchronization (cache) misses. While polling wastes sig-
nificant energy, the synchronization misses in FG-SyC do not
execute instructions thus being more energy efficient. When the
message energy cost increases to 256X (future systems), the
savings become larger, up to 19–24%, because FG-SyC also
reduces the number of messages significantly compared to FG-
Trap.

Fig. 12 shows the energy results for the application
MICCG3D, which is normalized to the total energy cost of the
coarse-gained case. The figure shows that both fine-grained
cases are much more energy efficient than the coarse-grained
version. FG-Trap saves around 6–23% of total energy, while
FG-SyC saves even more, ranging from 11% to 28% for both
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Fig. 15. Performance of MICCG3D: (a) on a mesh network; (b) on a hypercube.

64X and 256X cases. As discussed, the savings for FG-SyC
come from elimination of busy waiting and the reduction in
the number of messages compared to the FG-Trap.

The energy results for the application LU are shown in
Fig. 13. The results show that FG-Trap does not improve en-
ergy compared to Coarse. However, FG-SyC saves 6–10% for
both the 64X and 256X cases, compared to both FG-Trap and
Coarse, due to the removal of busy waiting and reduction of
messages. This is an example where FG-SyC reduces energy
consumption significantly although it does not achieve much
performance speedup over FG-Trap.
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Fig. 17. Execution time of the applications with perfect L2 caches and speedup comparison with the case of no L2. (a) DNA chain, (b) MICCG3D, (c) LU,
(d) MST.

Fig. 14 presents the energy comparison for MST. FG-Trap
only shows slight improvement compared to Coarse (less than
5%), while FG-SyC achieves up to 15% overall energy savings
due to the same reason as LU.

5.3. Sensitivity analysis

5.3.1. Interconnect network
First, let us look at how the network configuration affects

the performance. Fig. 15 shows the performance speedup

obtained for MICCG3D with different synchronization mech-
anisms and underlying interconnect configurations. Fig. 15(a)
shows the speedup obtained on a bi-directional wrap-around
mesh network, and Fig. 15(b) shows the speedup on a hy-
percube. We can see that the hypercube version is more
scalable, resulting in a higher speedup, since it has less com-
munication cost. However, we also find that the speedup of
“FG-SyC” over “FG-Trap” are slightly less in a hypercube
network, with an average of 5%. This is expected, since a
hypercube network has lower message cost (that would dilute
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the improvement of FG-SyC due to the reduction of network
messages).

5.3.2. Input data size
Fig. 16 shows the speedup (FG-SyC vs. Coarse) of LU on

different data sizes. First, we can see that for all three data sizes,
except 128 × 128, the speedup is increased as the number of
processors grows. This is because the synchronization overhead
becomes larger as the machine size increases and therefore FG-
SyC shows more advantage. Across different data sizes on the
same number of processors, the speedup becomes smaller as
the data size increases. This is because for larger data sizes
on a given configuration, the execution time is dominated by
computation rather than synchronization and the benefits of
synchronization optimizations are diluted.

5.3.3. L2 cache
Due to the complexity of the implementation, we did not

implement a fully functional coherent L2 cache; instead in this
section we try to predict how the introduction of an L2 cache
per node might affect the above presented results for the FG-
SyC approach.

To show the impact of L2 caches, we first show the results
on SyC based on a perfect L2 cache with no cache misses;
cache coherence cost is also ignored. The performance num-
bers, when there is an L2 cache of a fixed size, should fall be-
tween the numbers presented before with no L2 and the num-
bers presented here.

Fig. 17 shows the results with an 18-cycle L2 cache with
100% cache hit rate. In the figure, for each application, we
present the breakdowns of the execution time as previously
shown, and a comparison of the speedup achieved by FG-SyC
over FG-Trap. We can see that the speedup is typically better
for all four applications, compared to the numbers presented
earlier without L2.

For example, for the DNA chain application, we achieve a
speedup of 32–38%, with an average of 35%, compared to the
average of 21% speedup achieved by FG-SyC with no L2. For
MICCG3D, the average speedup of FG-SyC over FG-Trap is
up from 6.7% to 9.4%. The speedup numbers are also slightly
better for LU and MST on average, although the difference is
less than 1% for these two benchmarks.

The reason for the difference is that, with L2 caches, the
execution time spent on cache misses is significantly lower;
however, a major part of performance improvement from FG-
SyC comes from reducing the trap related time of FG-Trap,
which basically stays the same regardless of L2 caches. Thus
the speedup numbers improve because the total execution time
is reduced with L2 caches. Although the actual numbers will
depend on the real L2 design and implementation, as well as
the characteristics of the applications, systems with L2 caches
would have speedups better than the results shown without L2
and worse than with the perfect L2 caches shown in this section.

6. Conclusion

Fine-grained synchronization is a valuable mechanism for
speeding up parallel execution by avoiding false data depen-

dencies and unnecessary waiting. This paper has presented
and evaluated Synchronization Coherence (SyC)—a novel
approach, which integrates fine-grained synchronization with
cache coherence. SyC is in fact a cache coherence mechanism
for a full/empty-tagged shared memory that treats synchro-
nization misses as cache misses and enables synchronized
memory operations to be executed transparently without traps.
We have presented architectural support and described the SyC
protocol. We have shown that SyC requires minimal hardware
extension to cache coherence, and it is transparent to processor
nodes.

We have shown that SyC has significant advantage on both
performance and energy consumption, compared with tradi-
tional and previous fine-grained synchronization mechanisms.
To evaluate our approach, we have developed a complete sim-
ulation and compilation flow, and have conducted extensive
simulation for a large spectrum of system configurations. For
the applications studied, SyC improves overall performance
by up to 23% over the previously published fine-grained syn-
chronization approach. Systems that have L2 caches would
benefit further: our experiments indicate a speedup potential
of up to 38% for the applications studied. Our simulation re-
sults also show that SyC improves chip-wide energy consump-
tion by up to 24%, by reducing busy waiting and network
traffic.
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