
A Lightweight Dynamic Performance Monitoring Framework for

Embedded Systems

Yao Guo, Ziwen Chen, Xiangqun Chen

Key Laboratory of High-Confidence Software Technologies (Ministry of Education)

Institute of Software, School of EECS, Peking University

Beijing, 100871, PR China

{yaoguo, chenzw06, cherry}@sei.pku.edu.cn

Abstract

Traditional monitoring techniques are not suitable for

embedded systems because they could incur significant

overhead. This paper proposes a lightweight dynamic

performance monitoring framework for embedded systems

focusing on reducing the dynamic monitoring overhead.

With the introduction of a target-host separation and

cooperation model, the target (embedded) system only

needs to perform minimal low-overhead tasks while most

of the high-overhead tasks were migrated to the host

machine. The overhead in the target embedded system is

further reduced through a low-cost dynamic instrumentation

mechanism with direct jump instructions.

Keywords: performance monitoring, embedded systems,

dynamic instrumentation

1. Introduction

An embedded system is a special-purpose computer sys-

tem designed to perform one or a few dedicated functions,

often with resource-constrained hardware. Because of its

characteristic of specialization in usage and limitation in

hardware resources, embedded system designs are normally

optimized from various perspectives, including reducing the

size and cost of the product, or increasing the reliability and

performance.

Therefore, a monitoring tool that attempts to collect

enough data needs to not only answer the simple ques-

tion“does the embedded system perform well?” but also to

a more complicated question “where is the bottleneck?”.

However, monitoring always introduces significant costs

with high frequency events. To facilitate optimization of

system performance and diagnosis of system faults and

anomalies, performance monitoring on embedded systems

requires special techniques to reduce its overhead.

There exist many performance monitoring tools such

as LTT [1], Kprobes [2], [3], Djprobe[4], SystemTap [5],

Gprof [6], and Oprofile [7]. The techniques used by these

tools can be divided into two main categories: instrumenta-

tion [8] and statistical sampling [9], [10].

Generally speaking, statistical sampling tools collect pro-

gram counter information and other runtime data when

specific event happens, such as timer interrupt or perfor-

mance monitor counter (PMC) overflow events. But the main

limitation of statistical sampling is that events with small and

medium-sized populations would ”fly under the radar” and

cannot be detected.

The more popularly accepted technique is instrumenta-

tion, which can be classified into two types: static instrumen-

tation and dynamic instrumentation. Static instrumentation

typically requires modification to source code or binaries

and also demands multiple rebuilds and reboots. The instru-

mented code still resides in memory after the monitoring

task accomplishes. Consequently, the main disadvantage of

static instrumentation is its lack of flexibility. Dynamic in-

strumentation allows program modification, debugging and

extension all at runtime. However, dynamic instrumentation

by trap instructions and then looking up handlers will incur

enormous overhead, which is especially unacceptable when

applied to embedded systems.

In this paper, we present a lightweight dynamic perfor-

mance monitoring framework for the embedded system. To

achieve flexibility and performance simultaneously, we pro-

pose a target/host separation and cooperation model. In this

model, most of the high-cost calculation tasks can be moved

to the host machine that does not have the constraints of

limited computing resources. We also implement a low-cost

dynamic instrumentation mechanism in the target embedded

system based on directly jump instructions, which is referred

as embedded system probe (esprobe for short).

The host machine and the target system communicate

between each other through NFS over high-speed Ethernet.

Monitoring commands are issued from the host machine and

then collected profiling data can be copied from the target

system back to the host machine. All other complicated

computing-related operations could run solely on the host

machine, relieving the target system from performing high-

overhead tasks with its limited resources.

We implement the framework and perform case studies

Original instruction

Context save

Context restore

Probe handler

Addr

Kernel

Figure 1. the execution flow in kernel after dynamic

instrumentation

to demonstrate its feasibility and performance. Experimental

results show that we achieve two key goals with the proposed

framework: (1) Reduce the cost/overhead of dynamic instru-

mentation with a low-cost probing technique esprobe; (2)

Efficiently support system monitoring (tracing and probing)

through target/host separation and cooperation.

The remainder of the paper is organized as follows.

Section 2 describes the proposed light-weight probing tech-

nique. In section 3 we discuss our dynamic performance

monitoring framework. Section 4 describes the implemen-

tation of a prototype . Section 5 shows a case study and

section 6 concludes this paper.

2. Lightweight Dynamic Probing

To perform monitoring in an embedded system, we first

present a low-cost dynamic probing mechanism in the tar-

get system to gather runtime information. Tools such as

Dtrace [11], SystemTap and Kprobes allow developers to

dynamically insert probes into the kernel. However, one of

the key problems with these tools is their cost.

For example, in Kprobes, an original instruction at a

probe point is copied to an out-of-line buffer and a break-

point instruction is inserted at the probe point. The break-

point instruction triggers a break-point exception and in-

vokes pre handler() of the kprobes from the break-point

exception handler. After that, it executes the out-of-line

buffer in single-step mode. Then, it triggers a single-step

exception and invokes post handler(). Finally, it returns

to the instruction following the probe point [4]. Thus one

execution of each probe includes at least two exceptions

and four full context switches. The performance overhead

introduced is normally unacceptable for embedded system

monitoring.

We propose esprobe, a low-cost dynamic probing tool

using direct jump instructions. It can be applied to most

embedded system that uses a RISC architecture processor,

whose instruction length is fixed. Replacement of original

instructions through jumps will not cause unanticipated

crashes because the length of each instruction is always the

same. The probe handler is invoked in a prepared code patch

after a probe is triggered at runtime.

The overall execution process of esprobe is shown in

Figure 1. We will describe the details of the key steps next.

2.1. Esprobe Module Initialization

During the initialization phase, esprobe requests several

pages of kernel executable memory to hold probes through

vmalloc(). Each page would be divided into several slots

that can be allocated as code patches. Because the size of a

code patch is set, the number of slots at each page can also

be determined. These memory slots will be reserved till the

esprobe module finishes execution.

2.2. Esprobe Object Registration

The registration phrase of an esprobe object can be

divided into two steps: preparing code patch and inserting it

into the desired kernel code location. At first, it selects a free

slot in the instruction pages; if there is no free slot, it will re-

turn an error message (such as TOO MANY PROBES
in our case).

The code in Figure 2, which will be used as the template

while preparing code patch, is already compiled into the

kernel. The right column in the figure lists the machine

code corresponding to the instruction on the left. The first

four instructions perform context saving, while the last

four instructions perform context restoring. The other three

instructions in the middle prepare two parameters and jump

to the unique entry of the probe handler.

After the code template is copied to the corresponding

slot, it will be modified accordingly. In the first underlined

instruction, the shift operand of the “MOV” instruction

should be changed to the slot ID. Thus register r0 holds the

ID of the slot and r1 holds the address of stack that points

to a pt regs structure 1. The second underlined instruction

is a function call instruction. Here we change the destination

address of the branch to invoke the esprobe handler function

(i.e., esprobe handler(intid, pt regs∗regs)). In this entry

we will look up the esprobe object with the slot ID and

call the pre-handler specified in the object. In the end, an

instruction that will jump back to kernel is inserted into the

slot.

1. pt regs is a C struct mapping to all register values, which is specific
to the underlying machine architecture

e24dd048

e88d7fff

e10f0000

e58d0040

e1a0100d

e3a00000

ebfffffe

e59d0040

e129f000

e89d7fff

E28dd048

.global code_patch_entry

SUB sp, sp, #72

STMIA sp, {r0-lr}

MRS r0, cpsr

STR r0, [sp, #64]

MOV r1, sp

MOV r0, #0

BL code_patch_entry

LDR r0, [sp, #64]

MSR cpsr, r0

LDMIA sp, {r0-lr}

ADD sp, sp, #72

Figure 2. The code template used in dynamic probe.

After the above steps, a code patch extending the kernel

that is able to collect running profiling information has been

prepared. The only remaining work is to replace the specified

kernel instruction with a jump instruction that splices the

kernel and code patch.

3. The Monitoring Framework

In this section, we present a lightweight dynamic per-

formance monitoring framework to reduce the monitoring

overhead on an embedded system. The overall architecture

of the proposed framework is shown in Figure 3.

The key idea in the proposed framework is to sepa-

rate the whole monitoring task into two collaborating sub-

tasks, which can be run on the target embedded system

and a high-performance host machine separately. We also

utilize the low-cost dynamic instrumentation mechanism

proposed in the last section in the target embedded sys-

tem to gather system profiling information. The result of

this separation/cooperation model is that most calculation

(including tasks such as visualization if necessary) work

will be done in the host machine that does not have strict

performance/resource constraints.

In the target embedded system, the added overhead comes

only from the probe module and the daemon module, which

can be implemented pretty efficiently. Our work is kind of

similar to Noji’s work on SystemTap [12]. However, the

key difference is that our framework doe not use SystemTap

and Kprobes in the infrastructure in order to minimize the

performance overhead due to monitoring.

To trace an embedded system, we can describe the in-

strumentation points and data fields to be collected in an

easy-to-write script. In our prototype implementation, XML

is used as our script language. We provide some predefined

trace hooks that is essential and important to understand

the whole embedded system. These scripts can also be used

by other users as templates to implement their own hooks.

If a user needs to insert hooks to some additional spots,

he only needs to write his own script and our framework

can perform all the remaining work automatically, without

requiring rebuilding or rebooting the target system.

3.1. Operations in the Host Side

To simplify the tasks on the target embedded system,

the proposed monitoring framework utilizes a compilation

process to generate instrumentation code. However, we could

use XML as the script language to write the specification that

contains probes and handlers. The runtime address of local

variables and function parameters should also be calculated

at the host machine based on the symbol table and procedure

call standards of its underlying architecture (ARM in our

case). The generated kernel module code will be cross-

compiled to a binary and then copied to a directory that

is mounted to the target system.

We will provide predefined events in a script library,

which can be used easily by users to generate their de-

sired scripts of monitoring events. In our framework, we

support the addition and removal of events according to user

preference without rebuilding the target embedded operating

system.

3.2. Operations in the Target Side

There are two main components in the target side. One

is the dynamic instrumentation component “esprobe”, and

the other is a daemon running in the user space whose main

task is to collect data.

As mentioned in section 2, the overhead of the dynamic

instrumentation in Linux is too heavy to be tolerated in

an embedded system. The esprobe probing on embedded

systems has similar features as kprobes, except that we

implement esprobe using direct jump instructions in order

to reduce its overhead. Esprobe is enlightened by Djprobe,

which itself is also an improvement of kprobes using direct

jump instruction in an x86 architecture.

The main task of the probing daemon is to collect tracing

data generated in a variety of probe handlers. We adopt

a swap buffer model to transmit data from memory to

permanent storage. The swap buffer model requires two

buffers that can will be used alternatively. When a buffer

is full, the kernel wakes the daemon up and uses the other

buffer as the current writing buffer. The old writing buffer

will be marked as the reading buffer, and can be transmitted

to the host machine as a whole directly through NFS.

3.3. Communication

With the monitoring task divided into two distributed sub-

tasks, how to communicate between the host machine and

the target system becomes an important issue.

Host(X86)

Scripts

Target Kernel

Debug Info

Parse &

Translate

Cross

Compile

C Source Code

Target (ARM)Target (ARM)

NFS

Target Kernel

esprobe

daemon

Kernel Module

Results
insmod

output

reference

swap buffer

Scripts lib

Figure 3. The architecture of the proposed dynamic performance monitoring framework.

After the kernel module binary has been created in the

host machine, the framework sends a message containing

the file name to the target system through sockets. The

daemon receives the message and then executes “insmod”

to dynamically load the kernel module. The daemon in the

target system transmits the running information data from

memory to the host machine’s disk through NFS until the

tracing task finishes.

3.3.1. Communication between kernel and user space.

First, to transfer data between kernel and user space, the

data was filled into a buffer resided in the kernel space. To

boost the efficiency of data relay, we adopt a swap buffer

model as discussed previously.

In Linux, the address space of every process is divided

into kernel space and user space. The user program should

not be allowed to process the data or code directly except

through system calls. The addresses in the user space there-

fore are all virtual addresses. To relay data to the disk, the

daemon should have the knowledge about the data address.

One typical implementation is to copy data from kernel to

user space through the /proc file system.

In our design, we use S3C44B0X as the target system that

does not possess memory management units (MMUs). All

processes share the same address space and the kernel data

segment can be accessed without protection. We create a

/proc entry in the directory through which the user daemon

can get the address of swap buffers and notify its process

ID (PID) to the kernel. Then the daemon goes to sleep till it

receives a signal. When one buffer is full, the kernel notifies

the daemon and uses the other empty buffer to write tracing

data. If the daemon resumes running, it will check the last

buffer ID it uses and select another buffer to write to.

3.3.2. Communication between host machine and target

system. There are many choices of communication methods

between the host and target, including Ethernet or serial

ports. After parsing and translating the XML scripts and

cross-compiling the target kernel module, the process in

the host machine should notify the daemon in the target

to insert the kernel module dynamically. Then the daemon

should relay collected data from the buffer to a permanent

storage medium. After that, the data could be analyzed and

visualized in the host machine.

We handle the communication through Ethernet. When

the kernel module is prepared in the host, the host process

puts the module into a directory shared through NFS over

Ethernet and sends a message containing the module name to

the daemon in the target system. The daemon then receives

this message and inserts the module. The pseudo code is

shown in Figure 4.

4. A Case Study

To demonstrate its feasibility and performance, we imple-

mented a prototype of the proposed monitoring framework.

As already mentioned, we use the S3C44B0X board to

implement the target side, which is running uClinux/ARM7.

We use a Dell Optiplex GX280 desktop as the host machine

to process data collected from the embedded board.

We developed a case study to utilize the proposed probing

tool in our experimental environment. In the example, we

host program:

parse and translate scripts;

cross-compile the module;

put the binary into NFS shared directory;

send(module_name);

…

target daemon:

receive(module_name);

system(“insmod module_name”);

…

put trace date into NFS shared directory;

Figure 4. Pseudo code of communication between host and target.

uint32_t uint32_t uint32_t uint32_t get_physical_addr(constget_physical_addr(constget_physical_addr(constget_physical_addr(const char *char *char *char *func_namefunc_namefunc_namefunc_name););););
static static static static structstructstructstruct esprobeesprobeesprobeesprobe espespespesp;;;;
intintintint handler_pre(structhandler_pre(structhandler_pre(structhandler_pre(struct esprobeesprobeesprobeesprobe ****espespespesp, , , , structstructstructstruct pt_regspt_regspt_regspt_regs ****regsregsregsregs))))
{{{{

static static static static intintintint exec_cntexec_cntexec_cntexec_cnt = 0;= 0;= 0;= 0;
printk("handlerprintk("handlerprintk("handlerprintk("handler execution, %d timesexecution, %d timesexecution, %d timesexecution, %d times\\\\n", ++n", ++n", ++n", ++exec_cntexec_cntexec_cntexec_cnt););););
printk("Theprintk("Theprintk("Theprintk("The command is: %command is: %command is: %command is: %ssss\\\\nnnn", ", ", ", regsregsregsregs---->ARM_r0);>ARM_r0);>ARM_r0);>ARM_r0);
return 1;return 1;return 1;return 1;

}}}}
static static static static intintintint probe_init(voidprobe_init(voidprobe_init(voidprobe_init(void))))
{{{{

intintintint ret;ret;ret;ret;
esp.pre_handleresp.pre_handleresp.pre_handleresp.pre_handler = = = = handler_prehandler_prehandler_prehandler_pre; //probe is registered here; //probe is registered here; //probe is registered here; //probe is registered here
esp.addresp.addresp.addresp.addr = (= (= (= (esprobe_opcode_tesprobe_opcode_tesprobe_opcode_tesprobe_opcode_t *) *) *) *) get_physical_addr("do_execveget_physical_addr("do_execveget_physical_addr("do_execveget_physical_addr("do_execve");");");");
if((retif((retif((retif((ret = = = = esprobe_register(&espesprobe_register(&espesprobe_register(&espesprobe_register(&esp)) < 0) //register failed)) < 0) //register failed)) < 0) //register failed)) < 0) //register failed

return return return return ----1;1;1;1;
return 0; //successreturn 0; //successreturn 0; //successreturn 0; //success

}}}}

static void static void static void static void probe_exit(voidprobe_exit(voidprobe_exit(voidprobe_exit(void))))
{{{{

esprobe_unregister(&espesprobe_unregister(&espesprobe_unregister(&espesprobe_unregister(&esp););););
}}}}

<4>handler execution, 36 times<4>handler execution, 36 times<4>handler execution, 36 times<4>handler execution, 36 times
<4>The command is: /proc/self/exe<4>The command is: /proc/self/exe<4>The command is: /proc/self/exe<4>The command is: /proc/self/exe
<4>handler execution, 37 times<4>handler execution, 37 times<4>handler execution, 37 times<4>handler execution, 37 times
<4>The command is: <4>The command is: <4>The command is: <4>The command is: busyboxbusyboxbusyboxbusybox

<4>handler execution, 38 times<4>handler execution, 38 times<4>handler execution, 38 times<4>handler execution, 38 times
<4>The command is: /<4>The command is: /<4>The command is: /<4>The command is: /usr/sbin/lsmodusr/sbin/lsmodusr/sbin/lsmodusr/sbin/lsmod
<4>handler execution, 39 times<4>handler execution, 39 times<4>handler execution, 39 times<4>handler execution, 39 times
<4>The command is: /bin/<4>The command is: /bin/<4>The command is: /bin/<4>The command is: /bin/lsmodlsmodlsmodlsmod
<4>handler execution, 40 times<4>handler execution, 40 times<4>handler execution, 40 times<4>handler execution, 40 times
<4>The command is: /<4>The command is: /<4>The command is: /<4>The command is: /usr/bin/lsmodusr/bin/lsmodusr/bin/lsmodusr/bin/lsmod
<4>handler execution, 41 times<4>handler execution, 41 times<4>handler execution, 41 times<4>handler execution, 41 times
<4>The command is: /<4>The command is: /<4>The command is: /<4>The command is: /sbin/lsmodsbin/lsmodsbin/lsmodsbin/lsmod
<4>handler execution, 42 times<4>handler execution, 42 times<4>handler execution, 42 times<4>handler execution, 42 times
<4>The command is: ./hello<4>The command is: ./hello<4>The command is: ./hello<4>The command is: ./hello

<4><4><4><4>esprobeesprobeesprobeesprobe unregisteredunregisteredunregisteredunregistered

(a) (b)

Figure 5. An example monitoring all commands executed from the shell. (a) Example code. (b) Running results.

use the code shown in Figure 5(a) to monitor all commands

executed from shell.

The shell will first fork a child and then load the desired

program using execve(). The corresponding kernel func-

tion is sys execve that calls do execve(). We could thus

accomplish instrumenting the function dynamically without

rebooting and recompiling.

First, we look up the physical address of do execve()
in System.map, which is a kernel symbol table generated

with each kernel compile. For instance, the entry address of

do execve() is 0x0c04029c.

The following code episode is the template of generated

C source code after parsing and translating. Its running

results are shown in figure 5(b), which shows the commands

running and the total times of handler execution.

We run busybox in uClinux. BusyBox combines tiny

versions of many common UNIX utilities into a single

small executable [13]. As shown from the resulting output,

if the command is a busybox command, such as lsmod,

/proc/self/exe, busybox and four other paths will be used

as the parameters of do execve(); when executing a non-

busybox command, such as user programs, do execve()

will be invoked only once. Through do execve() dynamic

instrumentation as we discussed previously, we can log what

is being executed with both flexibility and low overhead.

4.1. Performance Analysis

Because it is difficult to collect fine-grained performance

details on the target system (the S3C44B0X board in out

experiment), we will try to show the performance advantages

of the proposed framework through performance analysis.

As explained before, one traditional probe in Kprobes

would require at least two exceptions and four full context

switches, while the proposed esprobe needs only the jump

instruction and two context switches. This shows that the

proposed techniques completely removes the requirement

of exception handling and also reduces half of the context

switches needed compared to Kprobes. This demonstrates

that the proposed framework is more suitable in an embed-

ded environment.

Much more calculations might be needed in a monitoring

framework after the tracing data is acquired. That is when

data analysis and possibly more complicated tasks such as

visualization will be performed to sift through the huge

amount of collected data, trying to identify all kinds of

potential points of interest, and present the analysis results

from different angles. It is impossible to decide the complex-

ity of the analysis phase because it completely depends on

the purpose and specific implementation of each monitoring

task.

However, all these are irrelevant to the target embedded

system in our proposed framework since all these analysis

tasks could be performed in a host machine, which does

not have strict performance constraints and will not affect

the performance efficiency of the target embedded system.

This indicates that the proposed techniques could also be ap-

plied to a non-embedded system and reduce the monitoring

overhead by moving computing intensive tasks to another

machine not on the critical path if necessary.

5. Related Work

There has been a lot of existing effort in Linux monitor-

ing. For example, Linux Trace Toolkit(LTT) [1], LTTng [14]

and Linux Kernel State Tracer(LKST) [15] are static event

tracers that should modify the source code and then rebuild

the system. LTT records the running kernel data by inserting

function calls into kernel source code. The developers should

maintain patches for each release version of Linux kernel.

LKST is another kernel tracing tool that needs patches to

kernel that contains many hook check points. These hooks

can be checked and the handler associated with the point

can be changed. It is hard for these static instrumentation

tools to add probes at runtime, if not impossible. Another

disadvantage is that the code footprint will remain in the

kernel even after the tracer turns off.

SystemTap [5] use the kprobes [2] infrastructure to

dynamically instrument the kernel and user applications.

Kprobes is a dynamic kernel instrumentation tool. The main

issue of SystemTap is its overhead. Like debugging tools,

kprobes instruments the kernel through trap instruction and

hash table lookup. As mentioned earlier, one execution of

each probe requires two exceptions and four full context

switches. This will cause significant performance degrada-

tion on embedded system. We tried to improve dynamic

instrumentation in the proposed monitoring framework by

introducing a jump instruction (B in ARM instruction set)

instead of a trap instruction. This idea is borrowed from

djprobe [4] which is also an enhancement to kprobe.

To avoid the overhead of dynamic instrumentation tools,

it is also common to use static instrumentation in the

embedded system monitoring. For example, WindView in

VxWorks [16] and LTT in embedded Linux. However, static

instrumentation tools on embedded systems still have the

disadvantages mentioned above.

Profiling is another effective technique used for perfor-

mance analysis. Event tracer can be used to figure out where

the bottleneck is, while profiler will help us to find out why

the bottleneck happens. The commonly used profiling tools

are DCPI [9], oprofile [7] and kernprof [17], etc. However,

profiling does not work well for the situation that precise

sequences of events need to be observed.

6. Concluding Remarks

To perform successful dynamic monitoring on embedded

systems with relatively low overhead, this paper presents

a lightweight dynamic performance monitoring framework.

The proposed framework could reduce the monitoring over-

head by introducing a host/target separation and cooperation

model, as well as a low-cost dynamic instrumentation tool

suitable for an embedded environment.

With all computing intensive tasks moved to the host

machine, we are able to perform much more complicated

data processing for the embedded system tracing data. Our

future work include detailed performance study of the pro-

posed framework, and how to apply various data analyzing

techniques such as data mining to analyze the collected data,

in order to identify anomalies or threats to the system.

Acknowledgment

This work has been supported by the National High Tech-

nology Research and Development Program (863) of China

under Grant No. 2007AA010304 and 2007AA01Z133, the

National Basic Research Program of China (973) under

Grant No. 2009CB320703, and the Science Fund for Cre-

ative Research Groups of China under Grant No. 60821003.

Y. Guo is also supported by the National High Technology

Research and Development Program (863) of China under

Grant No. 2008AA01Z133.

References

[1] K. Yaghmour and M. R. Dagenais, “Measuring and charac-
terizing system behavior using kernel-level event logging,” in
ATEC ’00: Proceedings of the annual conference on USENIX
Annual Technical Conference. Berkeley, CA, USA: USENIX
Association, 2000, pp. 2–2.

[2] A. Mavinakayanahalli, P. Panchamukhi, J. Keniston, A. Ke-
shavamurthy, and M. Hiramatsu, “probing the guts of
kprobes,” in OLS (Ottawa Linux Symposium), 2006, pp. 101–
115.

[3] P. Panchamukhi, “Kernel debugging with kprobes:
Insert printk’s into the linux kernel on the fly,”
http://www.ibm.com/developerworks/library/l-kprobes.html.

[4] M. Hiramatsu and S. Oshima, “Djprobe-kernel probing with
the smallest overhead,” in OLS (Ottawa Linux Symposium),
2007, pp. 189–1995.

[5] V. Prasad, W. Cohen, F. C. Eigler, M. Hunt, J. Keniston,
and B. Chen, “Locating system problems using dynamic
instrumentation,” in OLS (Ottawa Linux Symposium), 2005,
pp. 49–64.

[6] S. L. Graham, P. B. Kessler, and M. K. McKusick, “gprof: A
call graph execution profiler,” in Proceedings of the SIGPLAN
’82 Symposium on Compiler Construction, ACM. ACM,
1982, pp. 120–126.

[7] J. Levon, “Oprofile - a system profiler for linux,”
http://oprofile.sourceforge.net/doc/index.html.

[8] A. Tamches and B. P. Miller, “Fine-grained dynamic in-
strumentation of commodity operating system kernels,” in
Proceedings of the 3rd Symposium on Operating Systans
Design and Implementation (OSDI-99). Berkeley, CA:
Usenix Association, Feb. 22–25 1999, pp. 117–130.

[9] J. Anderson, L. M. Berc, J. Dean, S. Ghemawat, M. R.
Henzinger, S.-T. Leung, R. L. Sites, M. T. Vandevoorde, C. A.
Waldspurger, and W. E. Weihl, “Continuous profiling: Where
have all the cycles gone?” ACM Transactions on Computer
Systems, vol. 15, no. 11, pp. 357–390, Nov. 1997.

[10] S. Bhatia, A. Kumar, M. Fiuczynski, and L. Peterson,
“Lightweight, high-resolution monitoring for troubleshooting
production systems,” in Eighth Symposium on Operating
Systems Design and Implementation (OSDI), 2008, pp. 103–
116.

[11] B. Cantrill, M. W. Shapiro, and A. H. Leventhal, “Dynamic
instrumentation of production systems,” in USENIX Annual
Technical Conference, General Track. USENIX, 2004, pp.
15–28.

[12] T. Nojiri, “SystemTAP implementation for embedded system
developments running on SH-4 (RTS7751R2D),” in Embed-
ded Linux Conference 2007 Technical Showcase, 2007.

[13] D. Vlasenko, “Busybox: The swiss army knife of embedded
linux,” http://www.busybox.net/about.html.

[14] M. Desnoyers and M. R.Dagenais, “The LTTng tracer: A low
impact performance and behavior monitor for GNU Linux,”
in OLS (Ottawa Linux Symposium), 2006, pp. 209–223.

[15] “Linux kernel state tracer web site,”
http://lkst.sourceforge.net/.

[16] D. Wilner, “Windview: A tool for understanding real-time em-
bedded software through system visualization,” in Workshop
on Languages, Compilers, & Tools for Real-Time Systems,
1995, pp. 117–123.

[17] SGI, “Kernprof (kernel profiling),”
http://oss.sgi.com/projects/kernprof/.

