

Abstract—Code implementing a crosscutting concern spreads
over many parts of the Linux code. Identifying these code
automatically can benefit both the maintainability and
evolvability of Linux. In this paper, we present a case study on
how to identify aspects in the Linux code. First, we analyze four
typical crosscutting concerns in Linux and show how to apply
existing mining approaches to identify these concerns. We then
propose three new mining approaches and compare their
performance with the original methods. Experiments show that
the proposed mining approaches can find these concerns more
efficiently in Linux.

I. INTRODUCTION
ince its introduction in the 1990s, Aspect-Oriented
Programming (AOP) [1][11][12] has enhanced the

maintenance and evolution of software by separating
concerns into modules. In order to successfully apply AOP to
existing legacy software, Aspect Mining (manually or
automatically) is introduced to identify potential aspects from
the legacy software. Once aspect candidates are identified,
code refactoring mechanisms can be applied to encapsulate
these crosscutting concerns into aspects, thus evolving legacy
software into aspect-oriented systems.

As a popular open source operating system, Linux has
experienced tremendous growth over the last two decades.
One important benefit of using Linux is that the developers
have total access to the source code: they can modify the
source code as they wish (when necessary) to meet specific
requirements.

However, to understand the Linux source code is
sometimes boring and time-consuming. Furthermore, to
modify the source code is typically error-prone, because code
that implements one feature/function usually spreads over
many parts of the Linux code. These scattered and tangled
concerns are called crosscutting concerns. One must be very
familiar with the source code to be able to modify them.

If we can identify crosscutting concerns in Linux with the
help of automated aspect mining tools, it will definitely
benefit both the maintainability and evolvability of Linux.
Some earlier efforts have tried to apply AOP to Linux
[17][18], however, their approaches are mainly focused on
how to encapsulate the source code into aspects, i.e. code
refactoring, rather than how to find aspects automatically.
Furthermore, these approaches tried to find the crosscutting
code manually instead of designing tools to identify it

This work is supported in part by the National Natural Science Foundation
of China under Grant No. 60373001 and the National HighTechnology
Research and Development Program("863"Program) of China under Grant
No. 2007AA01Z462

automatically.
On the other hand, many automated (semi-automated)

mining approaches have been proposed [2]. Most of these
work are motivated by Object-Oriented (OO) systems, and
few of them target at C language-based systems [9]. As we
will show in this paper, these approaches are not efficient
enough when applied to Linux. To the best of our knowledge,
no research has been reported on automated aspect mining
specifically designed for Linux.

In this paper, we first present a case study on how to find
aspects in Linux code automatically. We focus on four typical
crosscutting concerns in Linux: parameter check, error
handling, synchronization, and tracing. Commonly used
automated mining approaches [7][9] are implemented to
identify these aspects. However, our experiments show that
they are not effective on Linux.

We then present three new approaches to identify the
crosscutting concerns in Linux more effectively. The
proposed approaches include:

1. A pattern-based approach to identify parameter check
and error handling concerns.

2. A Classified fan-in analysis approach to identify
synchronization concern.

3. An Extended Classified fan-in analysis approach to
identify tracing concern.

We implement the above approaches on top of CDT*, the
C/C++ Development Tools on Eclipse†. Evaluations show
that the proposed approaches outperform existing approaches
considering both coverage and precision.

This paper makes the following main contributions:
 We identify four important crosscutting concerns in

Linux, and analyze their properties, especially the
symptoms used for mining.

 We present a case study on how current popular
mining approaches would fare when applied on Linux.
The results demonstrate that current approaches are
very inefficient when applied to Linux.

 Three new mining approaches are proposed to
improve the aspect mining efficiency on Linux. They
have shown great promises toward mining Linux
efficiently.

This paper is structured as follows. In the next section, we
describe related work. In section III, we identify four
important crosscutting concerns in Linux. We discuss how to
identify these aspects with existing automated approaches in

* www.eclipse.org/cdt/
† http://www.eclipse.org/

Toward Efficient Aspect Mining for Linux
Danfeng Zhang, Yao Guo, Yue Wang, and Xiangqun Chen

Key laboratory of High Confidence Software Technologies, Ministry of Education
Institute of Software, School of Electronics Engineering and Computer Science, Peking University

Email:{zhdf, wangyue}@os.pku.edu.cn, {yaoguo, cherry}@sei.pku.edu.cn

S

14th Asia-Pacific Software Engineering Conference

1530-1362/07 $25.00 © 2007 IEEE
DOI 10.1109/ASPEC.2007.30

191

section IV. In section V we propose three new approaches to
find these concerns more effectively. Then, in section VI, we
evaluate these new approaches, comparing them to existing
ones. We conclude in section VII.

II. RELATED WORK
Many researchers have adopted AOP to enhance the

development and evolution of operating systems. Chen [12]
made a survey of research on AOP in operating systems.

Yvonne Coady et al. [13][14][15] conducted a series of
research on reverse engineering on Free BSD. The PURE
team [16] re-implemented interrupt synchronization in the
PURE operating system family with Aspect C++. The Bossa
team [18] evolved Linux to support Bossa with AOP.
Fiuczynski [17] proposed a tool called c4 to help manipulate
patches at the level of their abstract syntax and semantics.

However, all these work on operating systems are focused
on how to refactor the systems, rather than how to identify
aspect candidates in operating systems. Furthermore, they all
identify aspects manually.

On the other hand, many contributions have been made on
automated aspect mining for many other applications.
Kellens and Mens [2] published a survey of (semi-)
automated aspect mining approaches. We classify these
approaches by the symptoms of the aspects they considered as
below:

A. Identifier Analysis Approaches
Good naming conventions of classes and methods are

common in many applications. Some approaches use these
conventions to find aspects in code.

Tourwe and Mens [3] proposed a tool called DelfSTof
which performs identifier analysis using the Formal Concept
Analysis [4] algorithm. Shepherd et al. [5] use Natural
Language Processing (NLP) information as an indicator for
possible aspect candidates.

B. Fan-in Analysis Approaches
In pre-AOP days, crosscutting concerns were often

implemented in an idiomatic way. An example of such an
idiom is the implementation of a crosscutting concern by
means of a single method in the system, which is called from
numerous places in the code.

Gybels and Kellens [6] propose the Unique Methods
heuristic that is defined as: “a method without a return value
that implements a message implemented by no other
method”. They detected typical aspects like update
notification and memory management in the context of a
Smalltalk image. Marin et al. [7] used the fan-in value of a
method m as the number of distinct method bodies, which can
invoke m. By identifying high fan-in methods, they found
many aspects in a number of open-source Java systems.

C. Clone Detection Analysis Approaches
Another example of an implementation idiom of

crosscutting concern in pre-AOP days is “code duplication”.
Shepherd et al. [8] use program dependence graphs (PDG)

to detect possible aspects. Experiment shows that, this

approach can find aspect candidates in reasonable time, and
about 90% of the candidates can be refactored. Bruntink et al.
[9] made a case study of two other clone detection techniques:
token-based, AST-based clone detection in a C-based system
ASML. They found that these techniques can find function
parameter checking and memory allocation handling aspects
efficiently, but it failed in finding error handling and dynamic
execution tracing aspects effectively.

III. CROSSCUTTING CONCERNS IN LINUX
In this section, we will discuss four typical crosscutting

concerns in the Linux code: parameter check, error handling,
synchronization, and tracing.

A. Properties of Crosscutting Concerns
In the original AOP paper [1], aspect is defined as a

property that can not be cleanly encapsulated in a generalized
procedure, and crosscutting concern is defined as a concern
that can not be cleanly encapsulated in a generalized
procedure.

However, the definition above is not concrete enough to
direct aspect mining activities. For example, according to this
definition, memory management, interrupt handing, and
system calls are all aspects in coarse granularity. In the
memory management aspect, page allocation and page
swapping are also aspects. And in finer granularity, parameter
check and error handling are also aspects. It shows that the
granularity of aspect mining is difficult to determine when
mining based on this definition.

Marin [10] proposed the concept crosscutting concern sort
to provide a clearer description of crosscutting concerns.
Based on this concept, the crosscutting concerns should have
the following properties:

 A general intent,
 An implementation idiom in a non aspect-oriented

language, and
 An aspect mechanism to refactor this concern.

These properties are more appropriate to guide aspect
mining, because now we understand the purpose (general
intent) of the aspect, how to identify it (implementation idiom)
and that it is meaningful to identify it (aspect mechanism).

B. Studied Concerns
With the properties above in mind, we choose the

following four typical crosscutting concerns in Linux to
discuss in detail:

 Parameter Check Concern: code to validate a
parameter or handle different parameters,

 Error Handling Concern: code to check whether a
function succeeds, and handle the error accordingly in
the case of an error,

 Synchronization Concern: code to handle
synchronization in Linux, and

 Tracing Concern: the trace point in the Linux code
implementing the system call “ptrace”.

The Linux version we use in our experiments is 2.4.18.
Due to the code size limit of CDT, we cannot analyze the

192

whole Linux system. Instead, we analyzed a subsystem of the
Linux system without net, file system, and platform (except
i386) related code. The subsystem we analyzed consists of
1064 “.c” files and 83,778 lines of code. We manually marked
all places related to these four concerns (during our attempt to
analyze the whole Linux code as a special interest group), and
calculated the code percentages of each aspect as shown in
Table 1.

We choose these four aspects because: (1) parameter check
and error handling are very common in Linux, combined
making up 19.40% of the code, (2) synchronization plays a
very important role in operating systems, and (3) tracing
crosscutting concern has a new symptom that no existing
mining approach has explored. We will discuss these four
concerns in detail next.
1) Parameter Check Concern

Parameter check concern is responsible for two tasks: the
validation of parameters, and when a parameter is a flag, this
concern is also responsible for handling different flags with
dedicated code.

Here is an example for validating a parameter in the file
“/linux/kernel/Module.c”, where “table” is a parameter of the
function “sys_get_kernel_syms”:

The code above checks whether the parameter “table” is

NULL, if so, it unlocks the kernel and returns. This code
pattern makes up only about 0.5% LOC in Linux.

An example to demonstrate the second task is taken from
the file “/linux/kernel/fork.c”, where “clone_flags” is a
parameter of the function “do_fork”:

This code segment checks the parameter “clone_flag”, and

sets the required field according to the parameter. This kind of
parameter check is more common in Linux, making up about

4.2% in Linux code.
Although we have shown only two simple examples to

demonstrate this concern, this crosscutting concern is very
important to Linux because it makes up almost 5% of Linux
source code as shown in Table 1.
2) Error Handling Concern

Error handling crosscutting concern is the code used to
check whether a function succeeds, and handle the error in
case of an error.

Here is an example, which is taken from the file
“/linux/kernel/fork.c”, in function “do_fork”:

This code segment calls the function “alloc_task_struct”,

and checks its return value p. If it is NULL, it indicates that
some error has occurred. This code pattern shows a simple
example of the error handling concern. The pattern and the
called function may vary for different occurrences of this
concern.

As shown in Table 1, this crosscutting concern makes up
almost 15% of Linux source code. It suggests that, if we can
refactor the kernel by modeling this concern separately into
an aspect, we can reduce up to 15% of the main routine source
code. Separating this crosscutting concern can greatly
improve the readability and maintainability of the Linux
code.
3) Synchronization Concern

Synchronization crosscutting concerns are responsible for
handling synchronization in Linux.

Many synchronization mechanisms are used in Linux
2.4.18, such as atomic operation, mutex, read/write
semaphore, spin lock, read/write lock, and big kernel lock.
Functions related to these mechanisms are summarized in
Table 2, where the bolded functions are function-like macros,
and others are inlined functions. As defined by GNU‡, a
function-like macro is a macro “whose use looks like a
function call”, and an object-like macro is “a simple identifier
which will be replaced by a code fragment”. The calls of these
certain function-like macros or inlined functions are the
symptoms of synchronization aspect.

Synchronization crosscutting concern in PURE has been
discussed in [16]. In Linux, identifying this crosscutting
concern is important because:

1. Many main routine code in Linux depends on the
implementation of the synchronization scheme. It is
error-prone to take a new synchronization scheme in Linux
code. As pointed out in [16], encapsulating these code can
greatly improve the architectural flexibility for an OS.

2. The synchronization code itself depends on the
synchronization primitives. It is hard to understand and
modify these code without modeling the usage and
implementation of these synchronization primitives together.

As shown in Table 1, this crosscutting concern makes up

‡ http://gcc.gnu.org/onlinedocs/gcc-4.1.0/cpp/

p = alloc_task_struct();
if (!p)

return p;

if (!(clone_flags & (CLONE_PARENT|
CLONE_THREAD))) {

p->p_opptr = current;
if (! (p->ptrace & PT_PTRACED))
p->p_pptr = current;

}
if (clone_flags & CLONE_THREAD) {
 p->tgid = current->tgid;
 list_add(&p->thread_group, ¤t->

thread_group)
}

if (table==NULL) {
 unlock_kernel();
 return i;
}

TABLE 1
CODE PERCENTAGES OF FOUR CROSSCUTTING CONCERNS

Aspect LOC Fraction
Parameter Check
Error Handling
Synchronization
Tracing

3943
12310
1162
203

4.71%
14.69%
1.39%
0.24%

Total 17618 21.03%

193

1.39% of Linux source code.
4) Tracing Concern

Tracing crosscutting concern is an example to show how
AOP can enhance the development of software. In Linux,
tracing crosscutting concern is the tracing point implementing
the system call: “ptrace”.

Here is an example taken from the function “do_fork” in
the file “/linux/kernel/fork.c”:

Such tracing stubs are used to implement the system call

“ptrace”, which is used to trace the system at runtime.
Providing these tracing points can offer a powerful debugging
and profiling tool to both OS developers and users. For
example, DTrace in Solaris [20] is a more powerful
implementation of tracing. In DTrace, even the smallest
system allows as many as 30,000 instrumentation points to be
traced.

As shown in Table 1, there are only 203 tracing points in
the subsystem we analyzed. Although the number is
significantly lower compared to DTrace, identifying this
crosscutting concern in Linux is still beneficial because:

1. It will be clear where these tracing points are and what
“ptrace” can do if we encapsulate this concern clearly.

2. By separating this crosscutting concern, it will be much
easier and clearer to add new tracing points in Linux. This
will definitely enhance the evolvability of Linux. With the

help of AOP, we could develop a more powerful tracing tool
on Linux.

IV. CURRENT ASPECT MINING APPROACHES
As mentioned in section II, many aspect mining

approaches have been proposed. We will implement some of
the current mining methods for each of the four crosscutting
concerns, and evaluate their mining efficiency in this section.

A. Evaluation Metrics
We first introduce two metrics to evaluate each aspect

mining approach:
1. Coverage: the percentage of places can be identified
which is related to a certain crosscutting concern. It is a
metric specific to a certain concern.
2. Precision: the percentage of identified aspect candidates
which are “true” aspects. If an approach can find more than
one type of concerns, all related concerns identified must
be considered to calculate its precision.
We can see that a low coverage requires a lot of work to

find other occurrences of the concern in the code, while a low
precision requires extra work to filter out “false” aspects
candidates. Our ultimate goal is to develop a good aspect
mining approach that will achieve both high coverage and
high precision.

B. Parameter Check and Error Handling Mining
Bruntink et al. [9] have tried to find three similar

crosscutting concerns in a C language system called ASML
with clone detection. These three concerns are called:
“General error handling and administration”, “Function pre
and post condition checking” and “Dedicated handling of
errors originating from C memory management”. They found
that clone detection can efficiently identify concerns such as
parameter checking and memory error handling.

We used CCFinder [21] (version 10.1.12.4), the same
clone detection tool used by Bruntink et al. [9], to evaluate its
performance on the Linux code. We set all the configurable
setting as used in [9].

CCFinder found a total of 4303 pairs of clone code; we
randomly analyzed 200 of these pairs carefully, and found
that among these 200 pairs, 117 pairs lead to a crosscutting
concern. Based on this, we estimate that the precision of this
approach in Linux is roughly 58%.

Among 734 places that are related to error handing aspect,
CCFinder can find only 324 of them, so the coverage for error
handling aspect is 44.14%. Similarly, we find the coverage
for parameter check aspect is 46.89%.

Neither the precision, nor the coverage seems encouraging.
Although this semi-automatic aspect mining approach can
find about 45% of these two crosscutting concerns, we have
to find the others manually, and filter out about 40% “false”
aspect candidates as well. Considering the importance of
these two crosscutting concerns in Linux as discussed in
section III, we believe a better approach should be taken for
these two crosscutting concerns.

if (p->ptrace & PT_PTRACED)
send_sig(SIGSTOP, p, 1);

TABLE 2
SYNCHRONIZATION MECHANISMS IN LINUX 2.4.18

Mechanisms Related functions
Atomic
operation

ATOMIC_INIT, atomic_read,
atomic_set, atomic_add, atomic_sub,
atomic_dec, atomic_add_negative,
atomic_sub_and_test, atomic_inc,
atomic_dec_and_test, atomic_inc_and_test

mutex DECLARE_MUTEX,
DECLARE_MUTEX_LOCKED,
down_interruptible, init_MUTEX,
init_MUTEX_LOCKED
down_trylock,up,down,

read/write
semaphore

DECLARE_RWSEM, init_rwsem,
down_write, up_read, up_write
down_read, rwsem_atomic_update,
rwsem_atomic_add,

spin lock spin_lock, spin_trylock, spin_unlock,
spin_lock_init, spin_is_locked,
spin_unlock_wait, spin_lock_bh,
spin_lock_string,spin_unlock_string,
spin_lock_irqsave, spin_lock_irq,
spin_unlock_irqrestore,
spin_unlock_irq, spin_is_locked
spin_unlock_bh, spin_trylock_bh,

read/write
lock

read_lock, write_lock, read_unlock,
write_unlock, rwlock_init

big kernel
lock

lock_kernel, unlock_kernel,
kernel_locked, release_kernel_lock,
reacquire_kernel_lock

194

C. Synchronization Mining
Fan-in analysis [7] is motivated by the symptom of a lot of

function calls in the source code. It is exactly the symptom of
synchronization crosscutting concern as we discussed in
section III. Thus it might be a good idea to find this aspect
using the fan-in analysis approach. As proposed in [7], the
fan-in of a method m is the number of distinct method bodies
that can invoke m. This approach follows three steps:

To adapt this approach in Linux, we notice that:
1. Because there is no polymorphism in Linux, the

calculation of fan-in will be much simpler than OO systems.
The fan-in is just the number of times this method was called
throughout the source code.

2. Besides functions, there are also function-like macros
acting like functions in C. To solve this problem, we extend
the definition of fan-in to include the fan-in of function-like
macros.

3. Getters and setters are a little different in Linux: they
have prefixes of set_, get_, and we can use this clue to filter
them. Although there are no utility methods such as toString()
in Linux, there are some meaningless functions, such as
functions with a prefix of _do, which needs to be filtered.

According to the above discussions, we implemented a tool
as a plug-in on Eclipse to evaluate the fan-in analysis
performance in Linux. We used the indexing interface
provided by CDT to parse the code, and get all the functions
and function-like macros. Using the search interface provided
by CDT, we can get the fan-in metric of all the functions.

To figure out which threshold is better for Linux, we
evaluated all the results with a threshold ranging from 20 to
140, with an interval of 20. Manually, we find 1162 places of
synchronization concern in the Linux code examined, while
this approach can find only 298 occurrences in the code at a
threshold of 60. A detailed result can be found in Figure 2.

The figure shows that a threshold of 60 is the best when
considering precision. But at this threshold, the coverage is
only 26.65%. With a lower threshold, we may get a higher
coverage, but with a lower precision. We will propose a more
specific approach in section V.

D. Tracing Mining
We found no previous work on mining tracing concern in

Linux. Bruntink et al. [9] used clone detection to find
dynamic execution tracing, but this concern is not like that in
Linux, and their evaluation showed that clone detection is not
suitable for this concern.

We notice that fan-in analysis is not suitable for this

concern, because there are no high fan-in function calls.
We also tried to use clone detection on it. We can only find

5 places of tracing crosscutting concerns out of the total of 41
concerns in the source code with CCFinder. The coverage is
only 12.19%.

To find this concern, we will propose a new aspect mining
approach using macros in C language.

V. NEW MINING APPROACHES
As shown by the above experimental results, although

some proposed approaches can be used to find the four
different crosscutting concerns, the performance is very poor.
In this section, we introduce three new approaches to find
these four aspects more efficiently.

A. Parameter Check and Error Handling Mining
As discussed in the previous section, clone detection works

poorly for these two concerns. Through examining the source
code, we found each concern follows a certain code pattern.

Parameter check follows a specific code pattern that can be
summarized as the following production rules, where terms if,
lpar, rpar, else, switch, lbpar, rbpar, null in bold stands for
terminals if, (,), else, switch, {, }, and null, and
non-terminator exp_of_para stands for an expression of a
parameter or a field of a parameter, code_segment stands for a
segment of code, and so on.

Similar to parameter check aspects, error handling also

follows the production rules below. Where non-terminator
exp_of_funcall stands for an expression of a function call, and
branch_statement stands for if-else statement or switch
statement.

Because each of these two concerns follows a certain code

pattern, i.e., a symptom, we can use a pattern-based approach
to find such aspects. This approach matches the exact code
patterns to identify aspect candidates, and it is suitable for
aspects with a specific pattern, such as the parameter check
and error handling crosscutting concerns in Linux.

We use DOM (Document Object Model) generated by
CDT to match the pattern defined by the user. By walking
through the DOM tree, we match the two patterns above.

This approach can also be used to find other crosscutting
concerns with a proper code pattern. An expert who is

Step 1. Automatically compute the fan-in metric for
all the methods in the targeted source code.

Step 2. Filter the result of the first step:
 Restrict the set of methods to those having a

fan-in above a certain threshold.
 Filter getters and setters from this restricted set.
 Filter utility methods such as toString().

Step 3. (Mainly manual) Analysis of the remaining set
of methods.

error_handing → if lpar exp_of_funcall rpar
code_segment else_segment |

switch lpar exp_of_funcall rpar lbpar
 case_statements default_statement rbpar |

assign_statement statement branch_statement
assign_statement → id EQ function_call semicolon
else_segment → else code_segment | null

parament_check → if lpar exp_of_para rpar
code_segment else_segment |

switch lpar exp_of_para rpar lbpar
 case_statements default_statement rbpar

else_segment → else code_segment | null

195

familiar with the source code will be needed to define the
code pattern. We will compare the performance of this
approach with the clone detection method in section VI.

B. Synchronization Mining
To understand why fan-in analysis works poorly for

synchronization concern in Linux, we analyzed the result of
fan-in analysis approach, and found out that only a few of
these functions (or function-like macros) related to
synchronization have a high fan-in in the code (such as
spin_lock()). In order to find more synchronization functions,
i.e. to improve its coverage, the threshold should be smaller.
However, a smaller threshold might bring more “false” aspect
candidates, resulting even worse precision.

We notice that Linux has a well-followed naming
convention: functions related to the same synchronization
mechanism that should be encapsulated in a same aspect
usually have the same prefix, such as automic_, spin_. With
this clue, we could classify these functions (or function-like
macros) according to their prefixes, and calculate the fan-in
of a whole cluster of functions. Functions in the same cluster
usually belong to a same concern that should be encapsulated
in an aspect. It is more meaningful to use the fan-in of a
cluster, rather than the fan-in of a single function.

As discussed above, a cluster of methods is defined as a
collection of methods with the same prefix; Fan-in of a
cluster c is defined as the sum of fan-in of each method m that
belongs to c.

We propose a classified fan-in analysis approach which
takes the following four steps:

By using the search interface provided by CDT, we can get

the fan-in of the certain prefix, i.e., a cluster of function or
function-like macros.

Although this approach is motivated by finding
synchronization concern in Linux like other fan-in analysis
approaches, it could find all the aspects with this same
symptom. We will show what typical concerns besides
synchronization concern it can find in section VI. We will
also evaluate the performance of this approach in comparison
with the original fan-in method in section VI.

C. Tracing Mining
As discussed in section IV, no existing approaches were

designed to find the symptom of this concern in Linux.
After analyzing the code carefully, we find out that the

tracing aspect always contains object-like macros that start
with “PT_”. All these macros are defined in the file
“\linux\include\linux\Sched.h”:

The appearance of these object-like macros is the unique

symptom of tracing aspect. We propose an extended
classified fan-in analysis for this concern. Similar to the
discussion above, to find a cluster of object-like macros is
more reasonable than to find a single macro.

Here, we define a cluster of object-like macros as a
collection of object-like macro with same prefix, and the
fan-in of a cluster c as the sum of fan-in of each object-like
macro o that belongs to c.

This approach can be described as four steps:

The differences of this approach compared to the previous

classified fan-in analysis include:
1. What we analyze here are object-like macros, not

function-like macros or functions in classified fan-in
analysis.

2. These two approaches are motivated by different aspect
symptoms. Classified fan-in analysis is based on the
implementation idiom of a single method in the system which
is called from numerous places in the code. Its motivation is
the same as fan-in analysis approach proposed in [7]. While
this approach is based on the phenomenon that many aspects
in Linux can be found by certain object-like macros, like PT_
prefix for trace aspect. It can find many crosscutting concerns
that can not be found by classified fan-in analysis.

Like classified fan-in analysis approach, this approach can
also find all the aspects with the same symptom. We evaluate
the performance of this approach in the next section.

While implementing this approach, there is a small
difference from the previous classified fan-in analysis.
Because CDT has replaced all object-like macros in the
preprocessing pass before indexing, we use a text-based
search for object-like macros instead.

Step 1. Classify all the object-like macros into classes
by the prefix of their signature.

Step 2. Automatically compute the fan-in metric for
all the classes generated in step 1.

Step 3. Filtering of the result of step 2:
 Restrict the set of classed to those having a fan-in

above a certain threshold.
 Filter meaningless classes, like class with a

prefix MAX_, MIN_.
Step 4. (Mainly manual) Analyze object-like macros in
the remaining set of classes.

Step 1. Classify all the functions and function-like
macros into classes by the prefix of their signature.

Step 2. Automatically compute the fan-in metric for
all the classes generated in step 1.

Step 3. Filter the results of step 2:
 Restrict the set of classed to those having a fan-in

above a certain threshold.
 Filter getters and setters from this restricted set

by filtering out classes with a prefix get_, set_.
 Filter meaningless classes, such as classes with a

prefix _do.
Step 4. (Mainly manual) Analyze methods in the

remaining set of classes.

#define PT_PTRACED 0x00000001
#define PT_TRACESYS 0x00000002
#define PT_DTRACE 0x00000004
#define PT_TRACESYSGOOD 0x00000008
#define PT_PTRACE_CAP 0x00000010

196

VI. EVALUATION
We implement our new approaches as a plug-in on Eclipse.

We evaluate the performance for each concern in this section.

A. Parameter Check and Error Handling Mining
Among the aspect candidates found by the pattern-based

approach, 691 places are related to the error handing aspect.
In contrast, we manually find 734 places related to error
handing. So the coverage of the pattern-based approach for
error handling is 94.14%.

Because parameter check crosscutting concern follows the
pattern we described strictly, it is not surprising that the
pattern-based approach can find all the 1954 places we
manually marked. Thus the coverage of pattern-based
approach for parameter check is 100%.

Among the 2347 results (some of them are both parameter
check and error handling), 2134 of them are real concerns. So
the precision of this approach in Linux is 90.92%.

We show the comparison of pattern-based approach and
clone detection in Figure 1. Compared to clone detection, this

new approach can achieve both higher coverage and higher
precision.

B. Synchronization Mining
Manually, we find 1162 occurrences of synchronization

crosscutting concerns in the Linux code studied, while
classified fan-in analysis can find 1121 occurrences at a
threshold of 20, and 827 occurrences at a threshold of 60. On
the other hand, with the original fan-in analysis approach, it
could only find 620 occurrences at the threshold of 20, and
298 occurrences at the threshold of 60.

We show a comparison of the coverage of synchronization
crosscutting concern between these two approaches at
different threshold in Figure 2(A). It is obvious that the
classified fan-in analysis approach improves the coverage of
synchronization significantly.

As pointed out in section V, although this approach is
motivated by identifying synchronization concern, it can
discover other crosscutting concerns as well. For example, in
our evaluation, we find fan-in for sk_ is 835: they are related
to socket concern; fan-in for FPU_ is 806: they are related to
FPU simulation concern. While calculating the precision of
the approach, we need to consider all the aspect candidates
identified by this approach.

Figure 2(B) shows a comparison of the precision between
these two approaches at different thresholds. It shows that the
classified fan-in analysis has a higher precision than the
original fan-in analysis. The precision of the new approach is
still high enough even at very low threshold (from 20 to 40),
while fan-in analysis gets a relatively low precision.

At a threshold around 20, the new approach can achieve
both high coverage and precision (both around 90%), which
suggests that a threshold at 20 might be good enough.

C. Tracing Mining
Considering the poor performance of clone detection to

find this crosscutting concern, there is no need to compare the
extended classified fan-in analysis approach to clone
detection. In this part, we will evaluate the performance of

0%

20%

40%

60%

80%

100%

Precision Coverage for error
handling

Coverage for parameter
check

Pattern Based Clone Detection

Figure 1. Performance Comparison Between Pattern-Based
Approach and Clone Detection.

5 0 %

6 0 %

7 0 %

8 0 %

9 0 %

1 0 0 %

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0

T hreshold

Pr
ec

is
io

n

new

old

0 %

20 %

40 %

60 %

80 %

1 00 %

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0

Thres ho ld

C
ov

er
ag

e

A. Coverage at different threshold. B. Precision at different threshold.

Figure 2. Performance comparison for classified fan-in analysis.
New: Classified fan-in analysis. Old: Original fan-in analysis.

197

this approach alone. The fan-in for PT_ prefix is 41. So, when
the threshold is over 41, the coverage is 0%, and when it is
less than or equal to 41, the coverage is 100%.

This approach is not restricted to tracing aspect. For
example, other aspects (such as X86_, PGDIR_, IPC_, which
are also aspects) can be found by this approach too. So when
calculating its precision, the other aspects must be
considered.

As shown in Figure 3, when the threshold is around 10, the
precision is very high (about 95%), and the coverage for the
tracing aspect is 100%. When it is larger than 10, the
precision is almost the same, but the approach can find fewer
aspect candidates. Thus a threshold of 10 is probably the best
for this approach.

VII. CONCLUSION
We present a case study of aspect mining in Linux in this

paper. We first identify four important aspects in Linux and
apply several existing aspect mining approaches to find these
four crosscutting concerns. The results show that these
approaches do not perform very well to mine aspects in Linux.
We then propose three new aspect mining approaches to
improve the efficiency of aspect mining in Linux.

Although more detailed analysis is needed to evaluate each
of the techniques proposed, we believe our work has
demonstrated some potential towards efficient aspect mining
in Linux. Besides mining aspects, it will also be important to
explore how to use the aspect candidates obtained to build an
aspect-oriented Linux, i.e., to refactor the crosscutting
concerns with AOP properly.

VIII. REFERENCES
[1] G. Kiczales, J. Lamping, and A. Mendhekar et al. “Aspect-Oriented

Programming.” In proc. European Conference on Object-Oriented
Programming. Finland. 1997.

[2] A. Kellens, and K. Mens, “A Survey of Aspect Mining Tools and
Techniques”, INGI Technical Report, 2005.

[3] T. Tourwe and K. Mens. “Mining aspectual views using formal concept
analysis”. In Source Code Analysis and Manipulation Workshop
(SCAM), 2004.

[4] B. Ganter and R. Wille. “Formal Concept Analysis: Mathematical
Foundations”. Spring-Verlag, 1999.

[5] D. Shepherd, T. Tourwe, and L. Pollock. “Using language clues to
discover crosscutting concerns”. In Workshop on the Modeling and
Analysis of Concerns, 2005.

[6] K. Gybels and A. Kellens. “Experiences with identifying aspects in
Smalltalk using ’unique methods’”. In Workshop on Linking Aspect
Technology and Evolution, AOSD, 2005.

[7] M. Marin, A. v. Deursen, and L. Moonen. “Identifying aspects using
fan-in analysis”. WCRE, 2004.

[8] D. Shepherd, E. Gibson, and L. Pollock. “Design and evaluation of an
automated aspect mining tool”. In International Conference on
Software Engineering Research and Practice, 2004.

[9] M. Bruntink, A. v. Deursen, and R. v. Engelen et al. “An evaluation of
clone detection techniques for identifying crosscutting concerns”.
ICSM , 2004.

[10] M. Marin. “Reasoning about assessing and improving the seed quality
of a generative aspect mining technique”. AOSD, 2006.

[11] D. Cao and H. Mei. “Aspect Orientation – A New Approach to
Programming”. Computer Science. 2003.

[12] X. Chen, F. Yang. “Research on Aspect Oriented Operating Systems”.
Journal of Software. 2006.

[13] Y. Coady, G. Kiczales and M. Feeley et al. “Structuring Operating
System Aspects”. ICSE, Aspect-Oriented Programming Workshop.
2001.

[14] Y. Coady, G. Kiczales and M. Feeley et al. “Using AspectC to Improve
the Modularity of Path-Specific Customization in Operating System”.
In Proc. 9th ACM SIGSOFT, FSE. 2001.

[15] Y. Coady and G. Kiczales, “Back to the Future: A Retroactive Study of
Aspect Evolution in Operation System Code”, In proc. of AOSD, 2003

[16] D. Mahrenholz, Olaf Spinczyk and Andreas Gal et al. “An
Aspect-Oriented Implementation of Interrupt Synchronization in the
PURE Operating System Family”. In proc. of ECOOP Workshop on
Object Orientation and Operating Systems. 2002.

[17] M. E. Fiuczynski, R. Grimm and Y. Coady et al. “patch(1) Considered
Harmful”. In Proc. Workshop on Hot Topics in Operating Systems,
2005.

[18] R. A. Åberg, J. L. Lawall and M. Südholt et al. ”Evolving an OS kernel
using temporal logic and Aspect-oriented programming”. In Proc.
AOSD Workshop on Aspects, Components, and Patterns for
Infrastructure Software. 2003.

[19] O. Spinczyk and D. Lohmann. “Using AOP to Develop
Architectural-Neutral Operating System Components”. In proc. of the
11th workshopon ACM SIGOPS European workshop: beyond the PC.
2004.

[20] B. M. Cantrill and M. W. Shapiro et al. “Dynamic Instrumentation of
Production Systems”. In proc. ACM SIGPLAN conference on
Programming language design and implementation. 2005.

[21] T. Kamiya and S. Kusumoto et al. “CCFinder: A multilinguistic
token-based code clone detection system for large scale source code”.
IEEE Transactions on Software Engineering, 28(7):645-670, July
2002.

80%

85%

90%

95%

100%

0 5 10 20 40 80 160
Threshold

Pr
ec

is
io

n

Figure 3. Precision at different threshold for extended

classified fan-in analysis

198

