
Policy-based Access Control for Robotic Applications

Yi Zong, Yao Guo, Xiangqun Chen
Key Laboratory of High-Confidence Software Technologies (Ministry of Education),

School of Electronics Engineering and Computer Science, Peking University, Beijing, China

{zongyi, yaoguo, cherry}@pku.edu.cn

Abstract—With the wide application of modern robots, more
concerns have been raised on security and privacy of robotic
systems and applications. Although the Robot Operating System
(ROS) is commonly used on different robots, there have been
few work considering the security aspects of ROS. As ROS
does not employ even the basic permission control mechanism,
applications can access any resources without limitation, which
could result in equipment damage, harm to human, as well as
privacy leakage.

In this paper we propose an access control mechanism for
ROS based on an extended policy-based access control (PBAC)
model. Specifically, we extend ROS to add an additional node
dedicated for access control so that it can provide user identity
and permission management services. The proposed mechanism
also allows the administrator to revoke a permission dynamically.
We implemented the proposed method in ROS and demonstrated
its applicability and performance through several case studies.

Index Terms—Access control, policy-based access control, per-
missions, robots, robotic applications.

I. INTRODUCTION

Nowadays, a variety of robots are widely used in many areas

including industry, medical and home usage. For example,

industrial robots are used in many mission critical scenarios,

such as automobile manufacturing pipelines, or robot arms

launched into space. Family robots such as NAO and Pepper

can be used for doing housework or providing services in

restaurants.

While the functionality of robot hardware becomes more

powerful, software is also becoming more complicated and

flexible. As a result, the functionality of a robot is no longer

fixed after it is shipped. For example, many modern robots are

equipped with an operating system (such as ROS or Linux),

such that it is possible to install new applications (often

developed by third-party developers) on the robots.

However, the possibility of including new or third-party ap-

plications in a system aggravates the security issues, especially

for robots used in critical or sensitive environments. Specifi-

cally, it will be dangerous if accesses to certain resources are

not well-managed. If all code can access sensors or operate

actuators without any protection, it may cause damages to

equipment, or even do harm to human users [1]. For example,

a malicious application may cause robot arms change their

motion trajectory, as a surgery robot may kill the patient.

Traditional computer systems solve similar issues by em-

ploying various access control mechanisms. Take the file

system as a typical case, where every file has a permission

attribute and users are classified into user groups, such that

certain files can only be accessed by specific users or groups.

In a more recent example, smartphone operating systems such

as Android protect nearly all kinds of resources with permis-

sions, such as sensors including GPS location and camera, or

accesses to Internet or contact lists. Each permission is used

to protect one or more resources, while applications need to

declare what permissions they want to use. Users can manage

(grant or deny) all the permissions for each application.

However, most robot systems are not equipped with similar

access control mechanisms. Take ROS [2], the most popular

robot operating system, as an example. The applications writ-

ten for ROS are represented as nodes, and the communications

between nodes are in the forms of Topics and Services.

However, every node has access to every Topic and Service.

There is no limitation when accessing all the resources.

Although there is a few work on improving the communication

security for ROS [3], [4], to the best of our knowledge, there

are currently no comprehensive access control mechanisms

designed for robot systems.

In this paper, we propose a policy-based access control

mechanism for ROS, which enables permission management

of robot applications developed with ROS. With the intro-

duction of Android-like permissions, each application in ROS

can be controlled as to whether they are allowed to access

a specific resource or perform certain actions. The users can

control the requests to resources with user-determined policies.

Our model extends the popular policy-based access control

(PBAC) method, which offers great flexibility in permission

management. PBAC is used to manage the accesses to different

types of resources. Each application should have the permis-

sion to a resource before accessing it. A permission manager

is responsible for making all the access control decisions. It

can also change the permission status if needed.

Besides applying and adapting the original version of the

PBAC permission model to ROS, we also extend it in our

design so that it is able to support dynamic access control

such as runtime permission revoking. Our extended model

can support this through self-defined policies, which can be

modified by the administrator during runtime, when a threat is

detected and a revoking action is needed to protect the system.

We implement the proposed access control mechanism by

modifying the original ROS code base. As most of the func-

tions in ROS are provided in the form of Topics and Services,

we treat each Topic and Service as a function. A permission

consists of several functions that are used to perform a certain

set of operations, which needs to be protected from certain

applications (or nodes in ROS). We add an access management

node to control all the access management features. When a

node tries to access a permission, its intention will be verified

368

2019 IEEE International Conference on Service-Oriented System Engineering (SOSE)

978-1-7281-1442-2/19/$31.00 ©2019 IEEE
DOI 10.1109/SOSE.2019.00062

by a policy engine with user-defined policies so that it can

decide whether the access request should be approved.

In this paper, we make the following main contributions:

1) We propose a permission control model for robot appli-

cations in the context of ROS, based on the policy-based

access control (PBAC) model.

2) We implement the proposed permission control mech-

anism by modifying the ROS code base. It allows the

system administrator to control the permission dynami-

cally and revoke a specific permission when necessary.

3) We demonstrated the applicability and efficiency of our

permission control mechanism with experiments and

several case studies.

II. BACKGROUND AND RELATED WORK

A. Applications in ROS

ROS [2] is a middleware platform (or operating system) for

programming robot applications. It was originally designed for

PR2 robots built by Willow Garage Inc. Since PR2 exploits

a distributed architecture that contains many nodes running

separate operating systems communicating with each other by

the Ethernet, ROS is designed to support the architecture in

which different nodes connected through network.

A Node is the basic unit in ROS applications, which runs as

a separate process in a robotic system. There are many kinds

of nodes and among them is a master node serving as the root

of all nodes. The master node stores information of all nodes

and provides index services for other nodes.

Topic and Service are the default communication mecha-

nisms provided by the ROS framework. Users can transmit

structured messages in these ways. A node can publish/-

subscribe to topics to share common messages and request

services provided by other nodes in different ROS applications.

Since ROS provides an interface to write ROS nodes, there

are many third parties who write common nodes for ROS

applications. There is a community emerged and many popular

open source packages can be found on the ROS website, which

are available to everyone for free.

However, security mechanisms are generally missing in

ROS. In the vanilla version of ROS, any node can publish/sub-

scribe to any interested topics without proper auditing, as well

as request any service in the ROS system. This can potentially

cause serious harm to equipment or even humans as a robotic

system may involve various critical operations.

B. Security Enhancement for ROS

There are some previous work on improving the security of

ROS. For example, Dieber et al. provide encryption and a basic

access control mechanism [3] for ROS applications. It provides

node identification and communication encryption. All nodes

should be aware which nodes they can communicate with in

order to prevent unintended access. This prevents malicious

users from connecting to the ROS application.

SROS [4] is an experimental project that deals with security

in ROS. It uses the X.509 security chain to provide encryption

and trust in the system. It also provides automated tools to deal

with keys or other concepts needed to enhance the security of

ROS applications. However, the lack of a comprehensive per-

mission control model can make access management difficult,

especially for scenarios that requires fine-grained control.

C. Access Control Mechanisms

Many existing OSs (such as Android) are equipped with

some kind of access control models. For example, Mandatory

Access Control (MAC) [5] has been adopted by many systems.

It provides basic functions to manage permissions. It is widely

used since the model is simple and easy to implement.

Role-based access control (RBAC) is another popular mech-

anism widely used in web applications. It assigns each

user a role (eg. User, Administrator) so that different roles

have different access permissions. Policy-based Access Con-

trol(PBAC) or Attribute-based Access Control [6] is another

popular access control model which processes each access

request with a policy engine. It decides whether a request

is permitted by the attributes provided by users, resources

or contexts [7]. This results in a flexible framework for

managing permissions. It is also easily extensible since the

policy enforcement endpoint can load user-defined policies.

III. AN ACCESS CONTROL MODEL FOR ROS

A. Overview

Robotic systems are different from traditional computers for

several aspects. For example, in modern robot applications

based on ROS, there are many nodes in the system commu-

nicating with each other through the network. So designing

access control for ROS is facing several challenges:

• Robot systems contain many functions that involve inter-

acting with humans or other robots and equipment. The

access control model should be versatile so that it can

deal with complex running scenarios.

• Threats can outbreak anytime while the system is running.

So we should support dynamic access control, where the

policies can be modified at run time. The model should

support the revoking of a given permission, which is im-

portant when facing malicious actions that has previously

been granted certain permissions.

• Since the permission control mechanism is designed to

extend the ability of ROS, it should be compatible to the

existing ROS code and provide an easy way to support

existing applications.

In order to meet these requirements, the key idea of our

design is to introduce a customized policy-based access control

model to the original ROS system. By introducing a PBAC

permission control mechanism, it is possible to meet the

requirements of robotic applications, as well as adapting to

the ROS framework.

B. Policy-based Access Control

The typical architecture of a policy-based access control

model [8] consists of several endpoints that works together.

The access manager includes components such as Policy

369

Fig. 1: Overall architecture of policy-based access control for ROS.

Enforcement Point (PEP), Policy Decision Point (PDP) and

Policy Information Point (PIP).

When a robot application wants to access the locomotion

permission, it should send a request to the PEP. PEP serves

as a gatekeeper to all permissions. It forwards the request to

the PDP, which decides if the permission is granted. PDP is

loaded with policies defined by the administrator and evaluates

the request. If additional information such as context data

is necessary, it should consult the PIP to retrieve related

information.

C. Attributes

In our PBAC model, an attribute can be any user-defined

information for anyone in the system, which can be accessed

by the permission control manager. Generally, there are four

kinds of common attributes:

• Subject. It describes the user’s information. For exam-

ple, this user application is developed by some trusted

organization and the attribute can be the signature of the

code signed by that organization.

• Resource. This contains the information of the resources

being requested. For example, if a user wants to request

the maintenance information of a running system, the

attributes should contain this information and deliver it

to the PEP.

• Action. This kind of attributes describe the types of user’s

intention to certain kind of resources, such as getting a

resource or deleting some obsolete information.

• Context. This contains auxiliary information related to

the context such as the running environment. A typical

example is the timing information. If a system wants to

grant accesses only during work time or work days, this

attributes will be useful.

D. Policies

Policies are statements that describe if a user access should

be granted according to its information attached to the re-

quest. For example, administrators can use a domain specific

language (DSL) to describe the policies for certain systems or

use a commonly used scripting language to represent policies,

since the result of a certain policy evaluation is usually grant,
deny or uncertain.

In real-world scenarios, policies should have different pri-

orities so that important policies should be evaluated first.

For example, if a threat is detected and it is found that the

malicious access is from a certain node, the administrator can

insert a high priority policy to the permission control unit.

After the policy takes effect, the threat could be eliminated.

IV. THE PBAC ARCHITECTURE FOR ROS

A. Overview

ROS supports many programming languages. The most

widely adopted languages for writing ROS nodes are Python

and C++. ROS itself also provides libraries and tools to build

different nodes, creating topics and services. Our work extends

the ROS framework by adding a permission control node. The

overall architecture of our design is shown in Fig. 1.

B. PBAC Model Design

1) Permission Categories: Our method permission control

method is based on the widely used ROS framework and

ROS itself provides interfaces for nodes to interact with each

other using the predefined concept of Topics and Services. Our

permission control model treats these two methods as basic

units.

As described above, a function of a robot system is provided

by topics and services. Programming a robot application

requires a combination of multiple functions. Since a certain

set of functions are often used together to implement a kind

of capability, the functions can be divided into categories.

370

For example, a humanoid can contain multiple types of

actuators for different types of joints. Controlling the pose of

the robot requires multiple functions such as controlling ankles

and waists. If we want to control the access of the pose of a

robot, we may categorize these functions into one permission

category.

Some functions are commonly used by robot applications,

such as locomotion. Many scenarios require common func-

tions. For example, both moving forward and grabbing objects

require environment information. So functions like detecting

objects should belong to multiple categories.

2) Policy-based Access Control: PBAC provides strong

flexibility so as to allow administrators to control all the

accesses easily. For each access of certain resources, a boolean

value is calculated based on certain criteria using user at-

tributes. So the permission can be versatile to adapt to most

permission control scenarios. Furthermore, attributes can con-

tain role information, so part of role based access control

(RBAC) can also be implemented using boolean logic.

We gave each user a certain set of attributes that can be

customized by the system manager. When an access to a

certain resource occurs, the system will check if the user is

allowed to access the resource. If the access is permitted, the

resource owner is notified that the user’s request is permitted.

Also, the system provides an interface to allow the resource

to check if the access is still valid. This notification step is

meant to support dynamic revoking of certain permissions.

3) Identity Tokens & Access Tokens: Given a permission

model, we should use a method to grant a permission of

accessing a certain function. We use identity tokens and access

tokens to deal with this problem. When a node running user

application (we denote this as Napp) tries to access a permis-

sion Pperm, it sends its user credential to the access manager

Nmgr, which itself is a ROS node. The access manager com-

pares the credential to the information stored in its database

and returns a randomly generated id token, TokenNapp
=

random() if the credential is correct. The identity token has

an expiration time texp. The (Napp, T okenNapp , texp) pair is

stored in the memory for further use and returned to Napp. The

temporary identity token is used because we want to keep user

credentials in secret when making requests to other nodes.

Next, Napp will use its identity token to request an access

token from the Nmgr, it sends req = (TokenNapp , Pperm)
to Nmgr in which Pperm is a list of permissions Napp wants

to access. After getting the permission request, the request is

evaluated by the policy engine and returns (result, Tokenreq)
to Napp in which result is a boolean value, with related

information indicating whether the request is granted. If it is

granted, Tokenreq is an access token for the request, otherwise

the value should be NULL. After getting the access token,

Napp can request services provided by Nserv by adding the

access token to each of the request as a parameter. Nserv can

contact Nmgr to verify whether this token is valid for relevant

permissions.

This design allows the revoking of both identity token and

access token. When a threat is detected, after the cause is

Fig. 2: The access control process.

found by the system automatically or found by administrators,

Nmgr is notified which permission or user is compromised.

It can use a Topic to inform others about this incident and

the related tokens are revoked. After this, further requests

involving compromised tokens will be automatically rejected.

This process is described in Fig. 2.

C. Access Manager

As mentioned above, we use the access manager to control

all the access permissions in a robot system. It is designed as

a normal ROS node so that our access control mechanism can

be used in every ROS compatible system without modification.

Since we are using policy-based access control, we store all

the user information into a database, which is accessible by

the permission manager.

A permission implements a set of services and topics using

the libraries provides by the ROS framework. These services

and topics are used to manage all the permissions in the robot

system. Here we describe some key functions of the access

manager:

• Service:RequestIdentityToken. This service takes the

user’s identity information as input. The main job is to

authenticate the user’s identity. If it is valid, it generates

an identity token to represent the user’s identity. Since

all the permission-related information is stored in the

access manager, it can act like a central user information

manager, so that a resource owner does not need the

credentials of the user to authenticate the user’s identity.

• Service:RequestAccessToken. This service is to grant

the user’s access request according to policies. The input

is the user’s identity token and the permissions the user

want to access. If the access request is granted, this

371

service will return an access token to the user. The user

can access resources of the resource owner.

• Service:VerifyToken. When a user accesses a function,

it provides the request parameters along with the access

token. The resource owner can send the access token

to the permission manager. If the permission manager

have the record, it will return to the resource owner the

permission categories which have been approved, such

that the resource owner can provide service to the user.

• Topic:RevokedTokens. When the robot system is run-

ning, some incidents may threaten the normal running

of the system. Administrators knows all the permissions

used in the system and all the access tokens linked to

them. Thus they can dynamically revoke access tokens

affected by the threats. The RevokedTokens topic is

used to broadcast the invalidated access tokens. When

the service provider receives them, it will prevent further

accesses to the requested services immediately.

D. Policy Engine

1) Policy Representation: Policies are used by the permis-

sion manager to decide whether to allow an access request.

They are functions written and managed by system adminis-

trators. In this work, we use the LUA [9] scripting language to

represent them. A policy is represented as a function that takes

attributes as input and returns a value indicating the access is

granted, rejected or undecided.

The policy engine exposes the user’s attributes and permis-

sion categories to the LUA scripting environment. In our im-

plementation, administrators can use UserInfo and Permissions
to access user attributes and permission category information

in LUA scripts.

All the policy files can be loaded both during start-up or

runtime. When a request is received, the policy engine will

examine each policy according to a preset priority order to

see if a policy would grant or deny the access. If none of the

policies have granted the access request, the policy engine will

reject the access request by default.

2) User Identity: Identifying a user is fundamental to

access control. An identity should be kept secret, both at start-

up and during run time. We employ a centralized user identity

authentication method. The access control node assigns a user

credential to each node. If a node wants to access certain

permission controlled by the manager, it should provide its

credential first and get an identity token. Then it will use this

token to access other nodes as it can be verified by other nodes.

3) Permission Revoking: When there occurs a potential risk

which may cause fatal error to the ROS system, it should be

dealt with immediately and do not interfere other parts of the

system. After the administrator detects the incident, the policy

can be modified so that the node who provides services can

know that the access token is revoked and stop serving the

affected node. At the same time, the system can revoke the

user’s credential, so that the user can not get its identity token

and access other permissions any more.

TABLE I: Permissions defined for Pioneer 3DX.

Service Permission
left wheel Locomotion
right wheel Locomotion
Camera ImageCapture
InfraRed Communication
Bluetooth Communication

V. EXPERIMENTS

A. Implementation

We implemented the proposed access control mechanism

based on the ROS framework. We used Python to implement

the access control node that provides user identity service

and access control service. The policies are defined by the

administrator, which can be written in either LUA or Python.

All functions are implemented by services and topics in the

access control node. Every node can connect to the service

providing user identity authentication or permission related

operations, but only the system administrator can modify the

access policies.

B. Experimental Setup

We use a popular robot system to carry out our experiments:

the Pioneer 3-DX[10]. It is a general-purpose mobile platform

with many sensors and an on-board computer. It is widely

used in many indoor or outdoor scenarios and is supported

by ROS in both simulators (Fig. 3) and real-world scenarios

along with a number of packages specifically designed for this

type of robots. In our experiments, the robot will perform a

patrolling task in a room, getting images of different places.

This will require the ability of locomotion and sensing in order

to take photos and avoid obstacles. We assume that only the

users whose role is the operator can perform this task. Table I

describes a list of functions used in this test case along with the

permission categories these functions belong to. We will test

three scenarios to demonstrate our access control mechanism:

• A normal user without the operator role requests permis-

sions to perform this task and it should be rejected by the

access control manager.

• A user designated as an operator requests permission to

perform this task and it is granted by the access manager.

• Suppose one of the sensors is malfunctioning, so that

the robot collides with obstacles. This situation will

be reported to the system administrator. At the same

time, the system goes into the fail-safe mode and the

permissions given to the operator group will be revoked.

This involves two policies. One is allowing only the op-
erators to perform the patrolling task, and the other is when

the system is set to fail-safe mode, only administrators can

access these functions. We omit the detailed policies here as

they are straightforward. Since all the nodes are connected in

the local network with low latency (less than one millisecond),

the expiration time of an identity token is set to 1 second. All

the requests should be handled within that time period.

372

Fig. 3: The Pioneer 3DX robot used in our experiment.

C. Results

1) Access Control: For the scenario mentioned above, the

system was able to work properly as expected:

• When a non-operator user tried to perform the task, it

was denied access.

• When an operator user tried to perform the same task, it

was allowed and executed normally.

• Finally, when the permission was revoked from the op-

erator group, all users except the administrator could not

perform the given task.

2) Performance Overhead: Compared to the original ROS

framework, the main overhead of our work is mainly due to

the negotiation process. Since our work focuses on access

control, which does not involve data encryption (although

encryption can be combined with our work), it does incur

much computational overhead. It requires several additional

requests over the network through the ROS framework and

some extra computational time when evaluating the policies.

For the scenario above, we compare the time cost of the

responses with and without our access control mechanism,

and the average time overhead is about 3ms, which includes

the time spent in getting the identity token, requesting and

verifying the access token.

Note that in our experiments, we made 1000 requests and

calculated the average time overhead. After the connection is

established, it requires no additional overhead over the normal

ROS communication. In order to get rid of the influence of

different policies, we assume that every request would be

granted immediately.

Because the policy retrieving and evaluation overhead is

related to the number of policies, we then test the influence

on time overhead with different numbers of policies. Fig. 4

shows the average time cost of each policy when the number

of policies increase. We can see that the average time cost per

policy is decreasing when the number of policies increases.

When the number is large enough, nearly all computation is

due to policy evaluation, while the average time is reduced to

0.2ms per policy.

The experiment result shows that the performance overhead

incurred by access control is very small and almost negligible,

which is adequate for most real-time tasks.

VI. CONCLUSION

This paper has proposed a policy-based access control

(PBAC) mechanism for ROS, such that we are able to con-

Fig. 4: The average time overhead of access control with

respect to the number of policies.

trol the resource accesses in robotic application written for

ROS. With an extended PBAC model, we can support not

only common access control functionalities, but also dynamic

access control with run time revoking. We have demonstrated

the applicability and efficiency of the proposed method with

experiments and case studies. Our future work include expand-

ing the coverage of the access control method to cover more

functionality and different types of robots.

ACKNOWLEDGEMENT

This work was partly supported by the National Key Re-

search and Development Program (2017YFB1001904) and the

National Natural Science Foundation of China (61772042).

REFERENCES

[1] A. M. Zanchettin, N. M. Ceriani, P. Rocco, H. Ding, and B. Matthias,
“Safety in human-robot collaborative manufacturing environments: Met-
rics and control,” IEEE Transactions on Automation Science and Engi-
neering, vol. 13, no. 2, pp. 882–893, 2016.

[2] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “ROS: an open-source Robot Operating
System,” in ICRA workshop on open source software, vol. 3, p. 5, Kobe,
Japan, 2009.

[3] B. Dieber, S. Kacianka, S. Rass, and P. Schartner, “Application-level
security for ros-based applications,” in Intelligent Robots and Systems
(IROS), 2016 IEEE/RSJ International Conference on, pp. 4477–4482,
IEEE, 2016.

[4] R. White, D. Christensen, I. Henrik, D. Quigley, et al., “Sros: Securing
ros over the wire, in the graph, and through the kernel,” arXiv preprint
arXiv:1611.07060, 2016.

[5] S. Osborn, “Mandatory access control and role-based access control
revisited,” in Proceedings of the second ACM workshop on Role-based
access control, pp. 31–40, ACM, 1997.

[6] V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-based encryp-
tion for fine-grained access control of encrypted data,” in Proceedings
of the 13th ACM conference on Computer and communications security,
pp. 89–98, Acm, 2006.

[7] G. Bai, L. Gu, T. Feng, Y. Guo, and X. Chen, “Context-aware usage con-
trol for android,” in Security and Privacy in Communication Networks
- 6th Iternational ICST Conference, SecureComm 2010, Singapore,
September 7-9, 2010. Proceedings, pp. 326–343, 2010.

[8] X. Jin, R. Krishnan, and R. Sandhu, “A unified attribute-based access
control model covering DAC, MAC and RBAC,” in IFIP Annual
Conference on Data and Applications Security and Privacy, pp. 41–55,
Springer, 2012.

[9] R. Ierusalimschy, L. H. De Figueiredo, and W. C. Filho, “Luaan exten-
sible extension language,” Software: Practice and Experience, vol. 26,
no. 6, pp. 635–652, 1996.

[10] Y. Mei, Y.-H. Lu, Y. C. Hu, and C. G. Lee, “A case study of mobile
robot’s energy consumption and conservation techniques,” in Advanced
Robotics, 2005. ICAR’05. Proceedings., 12th International Conference
on, pp. 492–497, IEEE, 2005.

373

