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ABSTRACT 
Energy is a bottleneck in smart phone systems, and knowing the 
status of the battery lifetime and being able to use it efficiently is 
an important requirement from users. We propose a system 
context-aware approach for predicting battery lifetime, which 
allows a user to know the accurate battery status and to utilize the 
power efficiently.  We refer to a collection of system component 
states as system context and model the quantitative relation 
between system context attributes and the battery discharge rate 
by multiple linear regressions. When the user changes applications 
or operations, we can dynamically predict the remaining battery 
lifetime as well as its variations by monitoring system context 
attributes. We implement the CABLI system with our approach as 
on an HTC G1 smart phone running the Android operating system. 
Experiments show that our model describes how the changes of 
system component states affect the battery lifetime, and that it 
improves the accuracy of online battery lifetime prediction.   

Categories and Subject Descriptors 
D.4. [Operating Systems]: Organization and Design – Real-time 
systems and embedded systems, Performance – Modeling and 
prediction 

General Terms 
Management, Measurement, Experimentation, Human Factors 

Keywords 
Smart Phone, battery lifetime, energy consumption, system 
context-aware. 

1. INTRODUCTION 
A smart phone has extended its functionalities beyond the 
traditional role of a “phone” and become a pervasive computing 
device. The always-on background applications increase the 
complexity of the system environment as well as the power 
consumption. For smart phone users, battery lifetime is one of the 
primary usability concerns. Knowing the status of the battery 
lifetime and using it efficiently is an important requirement from 
users.  

Traditional solutions take the form of a battery indicator, 
informing users the remaining battery charge level with four to 
seven bars. However, it is hard for users to know how long the 
battery lasts if they perform a variety of tasks, and how their 

changes of operations affect the battery lifetime. If the operating 
system can provide more accurate and quantitative information 
about remaining battery energy and lifetime, then the users can 
adjust the operations to extend the battery life and enjoy more 
quality time. 

Prior researches tried to monitor the battery energy level during 
the execution of some target applications and then to predict the 
battery lifetime based on the battery discharge measurements of a 
past period #,[1]. These approaches work well when the target 
application is the only running application in the system and has a 
constant workload. However, in a multi-process OS environment 
with background concurrent applications, it is difficult to identify 
which application should account for energy consumption in a 
certain period. Furthermore, the assumption that the future energy 
consumption was the same as the historical measurement is in 
general not valid. 

In this paper, we propose a system context-aware approach for 
battery lifetime prediction in smart phone systems. We obtain the 
critical system components that affect energy consumption of a 
smart phone and refer to a collection of their states as system 
context. We then build a quantitative model for the system context 
and the battery discharge rate by using multiple linear regressions. 
In addition, we monitor the system context and dynamically 
predict the remaining battery lifetime and its variation. 

We implement this approach on an HTC G1 smart phone running 
the Android operating system. In our experiments, we analyze the 
prediction efficiency of the model and compare it with an existing 
approach [1]. The results show that our model describes how the 
changes of system component states affect the battery lifetime, 
and it improves the accuracy of online battery lifetime prediction.  

We organize the rest of the paper as follows. Section 2 describes 
the related work. Section 3 presents the process of the approach 
and the system context-aware battery lifetime model. After 
presenting experimental results in Section 4, we conclude with 
Section 5. 

2. RELATED WORK 
There has been a lot of work on laptop battery lifetime prediction. 
Most of early researchers adopted electrochemical features to 
predict battery lifetime and optimize the energy usage [2, 3].   

The battery lifetime research of mobile phones received a lot of 
attention over the years. Rahmati et al. studied human-battery 
interactions and improved the interaction between users and 
battery discharge of smart phones [4]. They pointed out that users 
need higher resolution battery indicators, which enable them to 
charge phones more conveniently. However, they did not discuss 
how to accurately predict battery lifetime. 

In order to enhance user experiences of using smart phones, some 
researchers measured and analyzed energy consumption and 
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battery lifetime under different applications and usage patterns 
[5][6][7]. They did not consider how the system components affect 
the battery lifetime and how to use this information to predict the 
battery lifetime.  

Ravi et al. proposed a battery management approach for mobile 
phones [8]. They used a base curve and the discharge speedup 
factor to predict the battery life. However, their approach can only 
be applied to a given set of applications observed in advance. Our 
approach is applied to the entire smart phone systems, not limited 
to some special applications.  

Wen et al. proposed an online approach for predicting battery 
lifetime [1]. They assumed that the future energy consumption is 
the same as the historical measurements. This approach works on 
various applications, but it has relatively large mean errors for 
variable workloads. In our method, the states of system 
components are more crucial for battery lifetime prediction. Our 
experiment results show that our approach performs with higher 
accuracy and provides users better usage experiences than their 
approach.  

Shye et al. studied mobile architectures by a logger application 
that collected real user activity and the traces of power 
consumption [9]. They adopted a linear regression analysis method 
and system parameters similar with ours. But they didn’t consider 
the relationship between the battery lifetime and the system 
component states. We model the quantitative relationship among 
the battery discharge rate, battery lifetime and the system 
component states. One of our distinguished contributions is that 
we applied the model to battery lifetime prediction, and achieved 
much more accuracy than the existing approaches.  Their work 
confirms our finding that the system component states are the key 
and straightforward indicators for battery energy consumption and 
lifetime prediction.  

3. SYSTEM CONTEXT-AWARE BATTERY 
LIFETIME PREDICTION  
Through extensive profiling, we found that the changes of system 
component states are driven by applications, and that the system 
component states are good indicators for workloads in the system. 
The battery lifetime is affected by the summation of energy 
consumption of all system components. Energy consumption of a 
component depends on its power state (which can be mapped to 
the operation state) and the duration it remains in that state. 
Therefore, we can use regression analysis to quantify the relation 
between system component states and battery energy consumption. 

3.1 System Context 
In a mobile phone, the major energy consumers are the CPU, LCD 
backlight, and network interface [9, 10].  However, no existing work 
has conducted the quantitative analysis on the relation between 
these component states and battery discharge rate.  

We analyze a large amount of profiling data quantitatively, and 
find out that there are approximately linear relation between the 
battery discharge rate and some system component state attributes 
(Table 1). For some components, we use their resource utilizations 
to describe their states because the resource utilizations more 
accurately express the workload intensiveness and can be mapped 
to energy consumption of the components. For example, we use 
average CPU utilization during a time interval to describe CPU 
state, and use data transfer rate to describe the state of the 
network interface.   

We refer to a set of system component states as system context 
and treat each state as an attribute of the system context. We 
denote a system context and its attributes as a 
tuple                             . Table 1 shows the system context 
attributes we use in our current prediction model. The values of 
the context attributes vary according to differently running 
applications and  user’s operations. 

Table 1.  System Context Attributes 

Attribute Description & Range Example

CPU Utilization
(cpu) 

The ratio between the  idle time to the 
total time of a interval,  [0-1] 

0.2 

LCD Backlight 
Brightness (brt)

Range from [30,255] in HTC G1 255 

Wireless State 
(wifi) 

Disable or Enable [0, 1] 0 

IO Idle Rate (io) IO idle rate during a time interval 0.006 

Data Transfer 
rate(spd) 

Volumes of data transferred (KB) 0 

It is well known that intensive usage of components tends to 
reduce battery lifetime. However, in order to accurately predict the 
battery lifetime, we need to present the quantitative relation 
between the system context and the battery discharge rate. 

3.2 The Process of Our Approach 
Our approach for battery lifetime prediction consists of two stages: 
modeling and predicting. Figure 1 shows the process of this 
approach. 

 

Figure 1. Process of dynamic battery lifetime prediction 

During the modeling stage, we custom specific scenarios that have 
stable system component states for a whole battery lifetime 
duration. For example, we run a video player application that 
plays a movie with the maximum LCD backlight brightness value 
255. For the whole battery lifetime, the average CPU utilization, 
wifi, io, and spd are all approximately stable, as listed in the third 
volume in Table 1.  

Then we profile the battery energy level vs. time under this 
scenario during the whole battery lifetime by using the API 
provided by the Java framework and the operating system. Figure 
2(a) shows the battery discharge curves and battery lifetime of the 
VideoPlayer application under this scenario. The battery energy 
level is in terms of percentage. The slope of the fitted line of the 
curve is the discharge rate, which means the battery energy level 
decreasement per minute. In this example, its absolute value on 
average is 0.5174.  

If we change the brightness to another value (for HTC G1, this 
value ranges between 30 and 255), such as 30, while keeping other 
component states fixed, we can get another discharge rate 0.3417 
shown in Figure 2(b).  

 C brt ,cpu , w ifi ,io , spd
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Figure 2. Battery discharge curve and battery lifetime of 
VideoPlayer application with the brightness of 255 and 30. 

In this manner, we collect a series of discharge rates under 
different system contexts. The Table 2 shows a sample list of 
system context attributes and the battery discharge rate. 

Table 2.  A sample list of system context attributes and battery 
discharge rate 

(brt, cpu, wifi, io, spd) Battery Discharge 
Rate 

255, 0.2, 0, 0.008, 0 0.56 
192, 0.2, 0, 0, 0.008, 0 0.47 
80, 0.2, 0, 0, 0.008, 0 0.41 
30, 0.2, 0, 0, 0.008, 0 0.35 

255, 1, 0, 0, 0 0.61 
255, 0.91, 0, 0, 0 0.58 
255, 0.73, 0, 0, 0 0.55 
255, 0.63, 0, 0, 0 0.52 
255, 0.38, 0, 0, 0 0.50 
255, 0.3, 0, 0, 0 0.48 
255, 0.2, 0, 0, 0 0.47 
255, 0.1, 0, 0, 0 0.46 

255, 0.06, 1, 0, 40 0.69 
255, 0.04, 1, 0, 30 0.67 
255, 0.03, 1, 0, 20 0.66 
255, 0.02, 1, 0, 10 0.65 

With the collected data, we conduct multiple linear regressions 
and achieve a quantitative model to describe how the discharge 
rate of the battery changes along with system component states. 
We save the model as coefficient sets. The modeling work is a 
one-time work for a smart phone battery, and the results built from 
the data can be used again for a long period before the battery  
ages. 

In the predicting phase, we monitor the battery energy level and 
system component states under the current application scenario. 
Then, we use the model coefficients and the monitored attributes 
to compute the discharge rate of the battery. With the discharge 
rate and the current battery energy level, we can predict the 

remaining battery lifetime. Furthermore, by calculating the 
difference of the current and the last prediction, we can tell the 
variation of predicted battery lifetime caused by the changes of the 
system component states. 

3.3 Regressions of Discharge Rate 
In order to predict the remaining battery lifetime, we first need to 
estimate the discharge rate by using the system context attributes. 
As shown in Figure 2, the discharge rate is the energy 
consumption rate of the system. We build a quantitative model of 
system context and discharge rate by using multiple linear 
regression analysis. 

We take system context attributes as independent variables and 
battery discharge rate as dependent variables. We use the multi-
linear regression model shown in equation 1 to describe their 
relationship.  

                               (1) 

where,  

 

A is an (     ) dependent variable vector representing the 
absolute battery discharge rate, where n is the number of 
discharge rates. X is an (      ) matrix of attribute values, where k is 
the number of attributes. c is a (   ) vector of regression 
coefficients.   is an (     ) vector of random errors, and they 
account for derivations of the actual data from the predicted 
values. We usually think of    as a statistical error and assume that 
it is normally distributed with mean zero and variance   , 
abbreviated as                 .  

In order to find out how the system context attributes affect the 
prediction accuracy and identify the most proper set of system 
context attributes, we adapt a model family of six equations, 
which includes different attributes selected from (brt, cpu, wifi, io, 
spd). Table 3 lists the names of the equations and their 
descriptions. The dr1 equation only considers the LCD brightness, 
and other system contexts are treated as constants. The dr2 
equation only considers CPU utilization. The dr3 equation 
considers the LCD brightness and CPU utilization. The 
subsequent equations incorporate more and more system context 
attributes in the model.  

Table 3.  Different System Context Attributes 

Equation k brt cpu wifi io spd
dr2brt 1 √     
dr2cpu 1  √    
dr3 2 √ √    
dr4 3 √ √ √   
dr5 4 √ √ √ √  
dr6 5 √ √ √ √ √ 

The experiment results presented in the next section illustrate that 
different combinations of system context attributes result in 
different prediction accuracy, and there is a trade-off between the 
complexity and the prediction accuracy of the model.  
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We put the absolute values of battery discharge rate and system 
context attributes in the matrix and use the method of least squares 
to compute the coefficients. With different combinations of 
context attributes, we get different equations by the regression 
model. They are shown as a set of equations in formula 2. 

   (2) 

The above equations describe how the changes of system context 
attributes affect the variations of battery discharge rate and the 
battery lifetime.  For example, suppose that the current battery 
energy level is 86. If a user changes the LCD backlight brightness 
value from 128 to 192 while keeping other contexts fixed, then 
with the dr6 equation we calculate that the absolute discharge rate 
changes from 0.43 to 0.49. In addition, we can predict that the 
battery lifetime will shrink from 200 minutes to 175 minutes. This 
gives the user quantitative information about the change of the 
battery lifetime and the impacts of his operations on the battery 
lifetime. 

3.4 Discharge Rate-Based Battery Lifetime 
Prediction 
In this part, we will present how to predict the battery lifetime by 
using the estimated discharge rate. Refer to the battery discharge 
curve in Figure 2, we use formula 3 to describe the relationship 
between the battery energy level and the remaining time: 

                                          (3) 

where, v is the battery energy level in terms of percentage, c 
represents the context tuple, and t is the time in minutes. We write 
the linear regression function of the battery discharge curve under 
the context tuple c as in formula 4: 

                                   (4) 

where,     and (-     ) are the intercept and slope of the trend line, 
respectively. In order to illustrate the prediction model more 
clearly, we plot the line with variable names in Figure 3.                 
(  ) measures the change in the mean of v for a unit change in t, 
which is the discharge rate of the battery. 

 

Figure 3. A trend line of a battery discharge curve 

Suppose at the time t0, the battery energy level is vcur, and the 
target battery energy level is vtar at t1. Then, we calculate the 
battery lifetime from t0 to t1 by the formula 5. 

                  (5) 

4. EXPERIMENTS AND EVALUATION 
We implement the CABLI system using our approach in an HTC 
G1 smart phone running the Android operating system (Linux 
kernel 2.6.27). The phone has a 528MHZ Qualcomm MSM7201A 
ARM11 processor and 256MB flash memory.  It is equipped with 
an 1150mAh/3.7V lithium-ion battery, and the capacity of the 
battery is 15318mJ in terms of energy.  

We develop a set of tools in the CABLI system. A system context 
monitor service tool collects the profiling data in the running 
system. A modeling tool analyzes the data and achieves the 
coefficients of the model. A battery lifetime indicator monitors the 
system contexts and predicts the battery lifetime online by using 
the prepared model coefficients. 

In order to achieve good results for the regression model, we 
collect a large amount of data from more than 40 different test 
scenarios. We select 16 group samples to build the model and use 
other data to evaluate the model. These samples are collected 
under the scenarios with stable system component states, which 
are CPU utilization, LCD backlight brightness, WiFi state, I/O idle 
rate, and network data transfer rate. 

We use the benchmarks listed in Table 4 to test the prediction 
accuracy. For example, VideoPlayer provided by HTC G1 
produces approximately constant workload; Simulate-2 written by 
ourselves produces variable CPU utilization which we can control. 
Furthermore, we randomly run applications, such as settings, 
contacts, notes, etc., to produce variable workload, and name these 
scenarios as MiscOpera.   

Table 4.  Benchmark Descriptions 

Benchmark Workload Description 

VideoPlayer Constant An video player Java program 

Ping Variable 
An operating system native utility, sends 
data to the server by WiFi 

QuickSort Constant 
A sorting Java program with quick sort 
algorithm 

Dijkstra Constant 
A graph search Java program that solves 
the single-source shortest path 

BubbleSort Constant 
A sorting Java program with bubble sort 
algorithm 

MiscOpera Variable 
Miscellaneous and applications, such as 
settings, contacts, notes 

Simulate-1 Constant 
A CPU-intensive Java program with 
constant CPU utilization  

Simulate-2 Variable A CPU-intensive Java program with 
variable CPU utilization 

In the following sections, we first show an analysis on the energy 
consumption distributions of the smart phone. Then we evaluate 
the fitness of the regression model. Last, we present the 
comparison of our approach with a previous approach on 
efficiency and performance. 

4.1 Energy consumption distributions 
As described above, the battery discharge rate expresses the 
battery energy dissipation by the smart phone in the unit time. 
Based on the regressive model of the battery discharge rate, we 
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can understand the contribution of each system component to the 
discharge rate under a given certain system context. 

We select four examples that are listed in Table 5, and analyze 
energy consumption distributions of the system components under 
these system contexts.  

Table 5.  System component states  

Context 
Number 

brt cpu wifi spd io 

No.1 255 0.06 1 40 0.008

No.2 192 0.2 0 0 0.008

No.3 255 1 1 40 0.008

No.4 255 0.2 1 0 0.007

As shown in Figure 4, the energy consumption distributions of the 
system components are direct proportional to their states and 
resource utilizations, which is in conformity with our common 
sense. For example, the context No.1  has the same brt, wifi, io 
and spd attribute values with context No.3, but its cpu utilization 
is 0.6, which in less than that of No.3. Then, the CPU energy 
consumption of No.1 is less than that of No.3 by about 14%. This 
demonstrates that our model can be used to evaluate how the 
component states affect energy consumption of the smart phone 
system. 

Our model also can be used to support the online dynamic power 
management.  For example, during the system execution, we 
monitor the system component states and estimate energy 
consumption distributions of system components, and then we can 
adjust the workloads or states of the system components online to 
make trade-off between the performance and energy consumption.  
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Figure 4. Energy consumption distributions of the system 
components 

4.2 Model Evaluation 
We evaluate the fitness of the prediction model by using residuals 
and prediction errors of the battery discharge rate. The difference 
between the sampled value which is used to build model and the 
estimated value is called a residual. The prediction error is the 
difference between the observed value and the estimated value. 
The residuals and prediction errors of the discharge rate are shown 
in Figure 5. 

From the results, we can find that, the mean residual of dr6 is less 
than 0.2%, and the mean prediction error is less than 1%. The 
dr2brt model has the worst absolute residual of not more than 2% 
and the dr2cpu has the worst absolute error of not more than 3%. 
This means that the model with context attributes including LCD 

backlight, CPU utilization, WiFi state, I/O idle rate and network 
data transfer rate performs the best, and that the too few system 
context attributes affect the performance of the regression model. 

dr6 dr5 dr4 dr3 dr2cpu dr2 brt

-0.025

-0.020

-0.015

-0.010

-0.005

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

-0.025

-0.020

-0.015

-0.010

-0.005

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

 M
ea

n 
R

es
id

ua
ls

M
e

an
  

E
rr

or
s

Equation

 Mean  Errors
 Mean Residuals

Mean Errors and Residuals of Discharge Rate

 

Figure 5. Prediction errors and residuals of discharge rate 

4.3 A Comparison with Wen’s Approach 
First, we compare Wen’s approach [1] (denoted as HBI) with ours 
(denoted as CABLI). We execute the above benchmarks and 
monitor the battery energy level vs. time. We predict the battery 
lifetime with two different approaches at every battery energy 
level and get the prediction errors. Because of the limited space, 
we take a VideoPlayer scenario and a ping wireless data transfer 
scenario as examples to illustrate the efficiency of the approaches. 
From the results in Figure 6, we find that the prediction error of 
HBI is about -35%~55%, while that of CABLI is only about -10% 
~10%. The reason is that HBI assumes that the future battery 
power drainage tends to be the same with the history. In contrast, 
CABLI thinks that the system components are the major power 
consumers and predicts the battery power drainage based on the 
current values of their states. Therefore, it can reflect the variation 
of the remaining battery lifetime more accurately.  
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Figure 6. Prediction errors of the approaches. 

4.4 Prediction Errors of the Equations 
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Figure 7. Mean prediction errors of different equations 

In CABLI, different model equations represent different 
complexity levels of the model. We compare the prediction results 
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of battery lifetime obtained by different equations. In Figure 7, we 
take Simulate-2 and MiscOpera as the examples. The results show 
that, the mean error of dr6 is the smallest and is within -2% ~ 2%, 
and dr6 performs best among the six equations.   

4.5 Prediction Errors of Variations of the 
Battery Lifetime for Changed Workloads 
When a user changes the workload, which approach can 
accurately notify the user the variations of the battery lifetime 
caused by the changes? In order to answer this question, we 
compare the prediction errors of variations of the battery lifetime 
given by the two approaches. 

In Figure 8, we present the errors and the percentage errors of the 
predicted changes under five scenarios. The labels “255->80”, 
“255->30”,”30->255” represent three scenarios of the VideoPlayer 
application. Under these scenarios, the user changes backlight 
brightness from 255 to 80, 255 to 30, and 30 to 255, respectively. 
The label “Video->sort” represents a scenario, under which, the 
user changes VideoPlayer to Quicksort. The label “cpu0.8->0.5” 
represents a scenario of the simulate-2 program, under which, the 
user changes CPU utilization from 0.8 to 0.5. From the Figure 8, 
we can find that the maximum percentage error of CABLI is less 
than 6%, while that of HBI is close to 40%. CABLI predicts the 
battery lifetime changes more accurately than HBI, and performs 
better than HBI. 
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Figure 8.  Prediction Errors and Percentage Errors under 
changed workloads 

5. CONCLUSION 
We propose a system context-aware approach for online battery 
lifetime prediction.  We uses multiple linear regressions to build a 
quantitative battery lifetime prediction model for smart phones. 
The model describes how the changes of system context attributes 
affect the variations of energy consumption and battery lifetime. 
Using this approach, we dynamically predict the remaining battery 
lifetime based on monitored system context attributes. We 
implement our approach in the HTC G1 smart phone running the 
Android operating system. Experiments show that our approach 
predicts battery lifetime with higher accuracy than prior works. 
The accurate prediction of remaining battery lifetime can provides 
smart phone users with better usage experiences.  
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