
A System Context-Aware Approach for Battery Lifetime
Prediction in Smart Phones

Xia Zhao, Yao Guo, Qing Feng, and Xiangqun Chen
Key Laboratory of High Confidence Software Technologies (Ministry of Education)

School of Electronics Engineering and Computer Science, Peking University, Beijing, China
{zhaoxia,yaoguo,cherry}@sei.pku.edu.cn,fengqing@os.pku.edu.cn

ABSTRACT
Energy is a bottleneck in smart phone systems, and knowing the
status of the battery lifetime and being able to use it efficiently is
an important requirement from users. We propose a system
context-aware approach for predicting battery lifetime, which
allows a user to know the accurate battery status and to utilize the
power efficiently. We refer to a collection of system component
states as system context and model the quantitative relation
between system context attributes and the battery discharge rate
by multiple linear regressions. When the user changes applications
or operations, we can dynamically predict the remaining battery
lifetime as well as its variations by monitoring system context
attributes. We implement the CABLI system with our approach as
on an HTC G1 smart phone running the Android operating system.
Experiments show that our model describes how the changes of
system component states affect the battery lifetime, and that it
improves the accuracy of online battery lifetime prediction.

Categories and Subject Descriptors
D.4. [Operating Systems]: Organization and Design – Real-time
systems and embedded systems, Performance – Modeling and
prediction

General Terms
Management, Measurement, Experimentation, Human Factors

Keywords
Smart Phone, battery lifetime, energy consumption, system
context-aware.

1. INTRODUCTION
A smart phone has extended its functionalities beyond the
traditional role of a “phone” and become a pervasive computing
device. The always-on background applications increase the
complexity of the system environment as well as the power
consumption. For smart phone users, battery lifetime is one of the
primary usability concerns. Knowing the status of the battery
lifetime and using it efficiently is an important requirement from
users.

Traditional solutions take the form of a battery indicator,
informing users the remaining battery charge level with four to
seven bars. However, it is hard for users to know how long the
battery lasts if they perform a variety of tasks, and how their

changes of operations affect the battery lifetime. If the operating
system can provide more accurate and quantitative information
about remaining battery energy and lifetime, then the users can
adjust the operations to extend the battery life and enjoy more
quality time.

Prior researches tried to monitor the battery energy level during
the execution of some target applications and then to predict the
battery lifetime based on the battery discharge measurements of a
past period #,[1]. These approaches work well when the target
application is the only running application in the system and has a
constant workload. However, in a multi-process OS environment
with background concurrent applications, it is difficult to identify
which application should account for energy consumption in a
certain period. Furthermore, the assumption that the future energy
consumption was the same as the historical measurement is in
general not valid.

In this paper, we propose a system context-aware approach for
battery lifetime prediction in smart phone systems. We obtain the
critical system components that affect energy consumption of a
smart phone and refer to a collection of their states as system
context. We then build a quantitative model for the system context
and the battery discharge rate by using multiple linear regressions.
In addition, we monitor the system context and dynamically
predict the remaining battery lifetime and its variation.

We implement this approach on an HTC G1 smart phone running
the Android operating system. In our experiments, we analyze the
prediction efficiency of the model and compare it with an existing
approach [1]. The results show that our model describes how the
changes of system component states affect the battery lifetime,
and it improves the accuracy of online battery lifetime prediction.

We organize the rest of the paper as follows. Section 2 describes
the related work. Section 3 presents the process of the approach
and the system context-aware battery lifetime model. After
presenting experimental results in Section 4, we conclude with
Section 5.

2. RELATED WORK
There has been a lot of work on laptop battery lifetime prediction.
Most of early researchers adopted electrochemical features to
predict battery lifetime and optimize the energy usage [2, 3].

The battery lifetime research of mobile phones received a lot of
attention over the years. Rahmati et al. studied human-battery
interactions and improved the interaction between users and
battery discharge of smart phones [4]. They pointed out that users
need higher resolution battery indicators, which enable them to
charge phones more conveniently. However, they did not discuss
how to accurately predict battery lifetime.

In order to enhance user experiences of using smart phones, some
researchers measured and analyzed energy consumption and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SAC’11, March 21–25, 2011, TaiChung, Taiwan.
Copyright 2011 ACM 978-1-4503-0113-8/11/03…$10.00.

641

battery lifetime under different applications and usage patterns
[5][6][7]. They did not consider how the system components affect
the battery lifetime and how to use this information to predict the
battery lifetime.

Ravi et al. proposed a battery management approach for mobile
phones [8]. They used a base curve and the discharge speedup
factor to predict the battery life. However, their approach can only
be applied to a given set of applications observed in advance. Our
approach is applied to the entire smart phone systems, not limited
to some special applications.

Wen et al. proposed an online approach for predicting battery
lifetime [1]. They assumed that the future energy consumption is
the same as the historical measurements. This approach works on
various applications, but it has relatively large mean errors for
variable workloads. In our method, the states of system
components are more crucial for battery lifetime prediction. Our
experiment results show that our approach performs with higher
accuracy and provides users better usage experiences than their
approach.

Shye et al. studied mobile architectures by a logger application
that collected real user activity and the traces of power
consumption [9]. They adopted a linear regression analysis method
and system parameters similar with ours. But they didn’t consider
the relationship between the battery lifetime and the system
component states. We model the quantitative relationship among
the battery discharge rate, battery lifetime and the system
component states. One of our distinguished contributions is that
we applied the model to battery lifetime prediction, and achieved
much more accuracy than the existing approaches. Their work
confirms our finding that the system component states are the key
and straightforward indicators for battery energy consumption and
lifetime prediction.

3. SYSTEM CONTEXT-AWARE BATTERY
LIFETIME PREDICTION
Through extensive profiling, we found that the changes of system
component states are driven by applications, and that the system
component states are good indicators for workloads in the system.
The battery lifetime is affected by the summation of energy
consumption of all system components. Energy consumption of a
component depends on its power state (which can be mapped to
the operation state) and the duration it remains in that state.
Therefore, we can use regression analysis to quantify the relation
between system component states and battery energy consumption.

3.1 System Context
In a mobile phone, the major energy consumers are the CPU, LCD
backlight, and network interface [9, 10]. However, no existing work
has conducted the quantitative analysis on the relation between
these component states and battery discharge rate.

We analyze a large amount of profiling data quantitatively, and
find out that there are approximately linear relation between the
battery discharge rate and some system component state attributes
(Table 1). For some components, we use their resource utilizations
to describe their states because the resource utilizations more
accurately express the workload intensiveness and can be mapped
to energy consumption of the components. For example, we use
average CPU utilization during a time interval to describe CPU
state, and use data transfer rate to describe the state of the
network interface.

We refer to a set of system component states as system context
and treat each state as an attribute of the system context. We
denote a system context and its attributes as a
tuple . Table 1 shows the system context
attributes we use in our current prediction model. The values of
the context attributes vary according to differently running
applications and user’s operations.

Table 1. System Context Attributes

Attribute Description & Range Example

CPU Utilization
(cpu)

The ratio between the idle time to the
total time of a interval, [0-1]

0.2

LCD Backlight
Brightness (brt)

Range from [30,255] in HTC G1 255

Wireless State
(wifi)

Disable or Enable [0, 1] 0

IO Idle Rate (io) IO idle rate during a time interval 0.006

Data Transfer
rate(spd)

Volumes of data transferred (KB) 0

It is well known that intensive usage of components tends to
reduce battery lifetime. However, in order to accurately predict the
battery lifetime, we need to present the quantitative relation
between the system context and the battery discharge rate.

3.2 The Process of Our Approach
Our approach for battery lifetime prediction consists of two stages:
modeling and predicting. Figure 1 shows the process of this
approach.

Figure 1. Process of dynamic battery lifetime prediction

During the modeling stage, we custom specific scenarios that have
stable system component states for a whole battery lifetime
duration. For example, we run a video player application that
plays a movie with the maximum LCD backlight brightness value
255. For the whole battery lifetime, the average CPU utilization,
wifi, io, and spd are all approximately stable, as listed in the third
volume in Table 1.

Then we profile the battery energy level vs. time under this
scenario during the whole battery lifetime by using the API
provided by the Java framework and the operating system. Figure
2(a) shows the battery discharge curves and battery lifetime of the
VideoPlayer application under this scenario. The battery energy
level is in terms of percentage. The slope of the fitted line of the
curve is the discharge rate, which means the battery energy level
decreasement per minute. In this example, its absolute value on
average is 0.5174.

If we change the brightness to another value (for HTC G1, this
value ranges between 30 and 255), such as 30, while keeping other
component states fixed, we can get another discharge rate 0.3417
shown in Figure 2(b).

 C brt ,cpu , w ifi ,io , spd

642

(a)

(b)

Figure 2. Battery discharge curve and battery lifetime of
VideoPlayer application with the brightness of 255 and 30.

In this manner, we collect a series of discharge rates under
different system contexts. The Table 2 shows a sample list of
system context attributes and the battery discharge rate.

Table 2. A sample list of system context attributes and battery
discharge rate

(brt, cpu, wifi, io, spd) Battery Discharge
Rate

255, 0.2, 0, 0.008, 0 0.56
192, 0.2, 0, 0, 0.008, 0 0.47
80, 0.2, 0, 0, 0.008, 0 0.41
30, 0.2, 0, 0, 0.008, 0 0.35

255, 1, 0, 0, 0 0.61
255, 0.91, 0, 0, 0 0.58
255, 0.73, 0, 0, 0 0.55
255, 0.63, 0, 0, 0 0.52
255, 0.38, 0, 0, 0 0.50
255, 0.3, 0, 0, 0 0.48
255, 0.2, 0, 0, 0 0.47
255, 0.1, 0, 0, 0 0.46

255, 0.06, 1, 0, 40 0.69
255, 0.04, 1, 0, 30 0.67
255, 0.03, 1, 0, 20 0.66
255, 0.02, 1, 0, 10 0.65

With the collected data, we conduct multiple linear regressions
and achieve a quantitative model to describe how the discharge
rate of the battery changes along with system component states.
We save the model as coefficient sets. The modeling work is a
one-time work for a smart phone battery, and the results built from
the data can be used again for a long period before the battery
ages.

In the predicting phase, we monitor the battery energy level and
system component states under the current application scenario.
Then, we use the model coefficients and the monitored attributes
to compute the discharge rate of the battery. With the discharge
rate and the current battery energy level, we can predict the

remaining battery lifetime. Furthermore, by calculating the
difference of the current and the last prediction, we can tell the
variation of predicted battery lifetime caused by the changes of the
system component states.

3.3 Regressions of Discharge Rate
In order to predict the remaining battery lifetime, we first need to
estimate the discharge rate by using the system context attributes.
As shown in Figure 2, the discharge rate is the energy
consumption rate of the system. We build a quantitative model of
system context and discharge rate by using multiple linear
regression analysis.

We take system context attributes as independent variables and
battery discharge rate as dependent variables. We use the multi-
linear regression model shown in equation 1 to describe their
relationship.

 (1)

where,

A is an () dependent variable vector representing the
absolute battery discharge rate, where n is the number of
discharge rates. X is an () matrix of attribute values, where k is
the number of attributes. c is a () vector of regression
coefficients. is an () vector of random errors, and they
account for derivations of the actual data from the predicted
values. We usually think of as a statistical error and assume that
it is normally distributed with mean zero and variance ,
abbreviated as .

In order to find out how the system context attributes affect the
prediction accuracy and identify the most proper set of system
context attributes, we adapt a model family of six equations,
which includes different attributes selected from (brt, cpu, wifi, io,
spd). Table 3 lists the names of the equations and their
descriptions. The dr1 equation only considers the LCD brightness,
and other system contexts are treated as constants. The dr2
equation only considers CPU utilization. The dr3 equation
considers the LCD brightness and CPU utilization. The
subsequent equations incorporate more and more system context
attributes in the model.

Table 3. Different System Context Attributes

Equation k brt cpu wifi io spd
dr2brt 1 √
dr2cpu 1 √
dr3 2 √ √
dr4 3 √ √ √
dr5 4 √ √ √ √
dr6 5 √ √ √ √ √

The experiment results presented in the next section illustrate that
different combinations of system context attributes result in
different prediction accuracy, and there is a trade-off between the
complexity and the prediction accuracy of the model.

y = ‐0.5614x + 100.98
R² = 0.9949

0

20

40

60

80

100

13 44 72 103 133 164 194

battery energy level (%)

255brt

linear255

time(min.)

y = ‐0.3471x + 100.99
R² = 0.9936

0

20

40

60

80

100

13 44 72 103 133 164 194 225 256 286

battery energy level (%)

30brt
linear30

time(min.)
 A cX

0 01 11 12 1

2 21 22 2 1 1

1 2

1

1

1

1

k

k

n n nkn k n

ca x x x

a x x x c
, , ,and

x x xa c

A X c ε

 20N ,

2

1n

1n

n k
1k

643

We put the absolute values of battery discharge rate and system
context attributes in the matrix and use the method of least squares
to compute the coefficients. With different combinations of
context attributes, we get different equations by the regression
model. They are shown as a set of equations in formula 2.

 (2)

The above equations describe how the changes of system context
attributes affect the variations of battery discharge rate and the
battery lifetime. For example, suppose that the current battery
energy level is 86. If a user changes the LCD backlight brightness
value from 128 to 192 while keeping other contexts fixed, then
with the dr6 equation we calculate that the absolute discharge rate
changes from 0.43 to 0.49. In addition, we can predict that the
battery lifetime will shrink from 200 minutes to 175 minutes. This
gives the user quantitative information about the change of the
battery lifetime and the impacts of his operations on the battery
lifetime.

3.4 Discharge Rate-Based Battery Lifetime
Prediction
In this part, we will present how to predict the battery lifetime by
using the estimated discharge rate. Refer to the battery discharge
curve in Figure 2, we use formula 3 to describe the relationship
between the battery energy level and the remaining time:

 (3)

where, v is the battery energy level in terms of percentage, c
represents the context tuple, and t is the time in minutes. We write
the linear regression function of the battery discharge curve under
the context tuple c as in formula 4:

 (4)

where, and (-) are the intercept and slope of the trend line,
respectively. In order to illustrate the prediction model more
clearly, we plot the line with variable names in Figure 3.
() measures the change in the mean of v for a unit change in t,
which is the discharge rate of the battery.

Figure 3. A trend line of a battery discharge curve

Suppose at the time t0, the battery energy level is vcur, and the
target battery energy level is vtar at t1. Then, we calculate the
battery lifetime from t0 to t1 by the formula 5.

 (5)

4. EXPERIMENTS AND EVALUATION
We implement the CABLI system using our approach in an HTC
G1 smart phone running the Android operating system (Linux
kernel 2.6.27). The phone has a 528MHZ Qualcomm MSM7201A
ARM11 processor and 256MB flash memory. It is equipped with
an 1150mAh/3.7V lithium-ion battery, and the capacity of the
battery is 15318mJ in terms of energy.

We develop a set of tools in the CABLI system. A system context
monitor service tool collects the profiling data in the running
system. A modeling tool analyzes the data and achieves the
coefficients of the model. A battery lifetime indicator monitors the
system contexts and predicts the battery lifetime online by using
the prepared model coefficients.

In order to achieve good results for the regression model, we
collect a large amount of data from more than 40 different test
scenarios. We select 16 group samples to build the model and use
other data to evaluate the model. These samples are collected
under the scenarios with stable system component states, which
are CPU utilization, LCD backlight brightness, WiFi state, I/O idle
rate, and network data transfer rate.

We use the benchmarks listed in Table 4 to test the prediction
accuracy. For example, VideoPlayer provided by HTC G1
produces approximately constant workload; Simulate-2 written by
ourselves produces variable CPU utilization which we can control.
Furthermore, we randomly run applications, such as settings,
contacts, notes, etc., to produce variable workload, and name these
scenarios as MiscOpera.

Table 4. Benchmark Descriptions

Benchmark Workload Description

VideoPlayer Constant An video player Java program

Ping Variable
An operating system native utility, sends
data to the server by WiFi

QuickSort Constant
A sorting Java program with quick sort
algorithm

Dijkstra Constant
A graph search Java program that solves
the single-source shortest path

BubbleSort Constant
A sorting Java program with bubble sort
algorithm

MiscOpera Variable
Miscellaneous and applications, such as
settings, contacts, notes

Simulate-1 Constant
A CPU-intensive Java program with
constant CPU utilization

Simulate-2 Variable A CPU-intensive Java program with
variable CPU utilization

In the following sections, we first show an analysis on the energy
consumption distributions of the smart phone. Then we evaluate
the fitness of the regression model. Last, we present the
comparison of our approach with a previous approach on
efficiency and performance.

4.1 Energy consumption distributions
As described above, the battery discharge rate expresses the
battery energy dissipation by the smart phone in the unit time.
Based on the regressive model of the battery discharge rate, we

1

2

3

4

5

6

0326

0502

0324 0125

0324 0125 0208

0252 0118 022 7090

0252 0118 015

a = . +0.0008 brt

a = . +0.056 cpu

a = . +0.0006 brt . cpu

a = . +0.0006 brt . cpu . wifi

a = . +0.0008 brt . cpu . wifi . *io

a = . +0.0008 brt . cpu .

 9 7090wifi . *io 0.0017*spd

 cv=F t

c cv t

0

cur tar
cur tar 1

c

v v
T(v ,v) t t

c c

c

644

can understand the contribution of each system component to the
discharge rate under a given certain system context.

We select four examples that are listed in Table 5, and analyze
energy consumption distributions of the system components under
these system contexts.

Table 5. System component states

Context
Number

brt cpu wifi spd io

No.1 255 0.06 1 40 0.008

No.2 192 0.2 0 0 0.008

No.3 255 1 1 40 0.008

No.4 255 0.2 1 0 0.007

As shown in Figure 4, the energy consumption distributions of the
system components are direct proportional to their states and
resource utilizations, which is in conformity with our common
sense. For example, the context No.1 has the same brt, wifi, io
and spd attribute values with context No.3, but its cpu utilization
is 0.6, which in less than that of No.3. Then, the CPU energy
consumption of No.1 is less than that of No.3 by about 14%. This
demonstrates that our model can be used to evaluate how the
component states affect energy consumption of the smart phone
system.

Our model also can be used to support the online dynamic power
management. For example, during the system execution, we
monitor the system component states and estimate energy
consumption distributions of system components, and then we can
adjust the workloads or states of the system components online to
make trade-off between the performance and energy consumption.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

No.4No.3No.2

E
ne

rg
y

D
is

tr
ib

u
tio

n

System Context

 other
 io
 spd
 wifi
 cpu
 brt

No.1

Figure 4. Energy consumption distributions of the system
components

4.2 Model Evaluation
We evaluate the fitness of the prediction model by using residuals
and prediction errors of the battery discharge rate. The difference
between the sampled value which is used to build model and the
estimated value is called a residual. The prediction error is the
difference between the observed value and the estimated value.
The residuals and prediction errors of the discharge rate are shown
in Figure 5.

From the results, we can find that, the mean residual of dr6 is less
than 0.2%, and the mean prediction error is less than 1%. The
dr2brt model has the worst absolute residual of not more than 2%
and the dr2cpu has the worst absolute error of not more than 3%.
This means that the model with context attributes including LCD

backlight, CPU utilization, WiFi state, I/O idle rate and network
data transfer rate performs the best, and that the too few system
context attributes affect the performance of the regression model.

dr6 dr5 dr4 dr3 dr2cpu dr2 brt

-0.025

-0.020

-0.015

-0.010

-0.005

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

-0.025

-0.020

-0.015

-0.010

-0.005

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

 M
ea

n
R

es
id

ua
ls

M
e

an

E
rr

or
s

Equation

 Mean Errors
 Mean Residuals

Mean Errors and Residuals of Discharge Rate

Figure 5. Prediction errors and residuals of discharge rate

4.3 A Comparison with Wen’s Approach
First, we compare Wen’s approach [1] (denoted as HBI) with ours
(denoted as CABLI). We execute the above benchmarks and
monitor the battery energy level vs. time. We predict the battery
lifetime with two different approaches at every battery energy
level and get the prediction errors. Because of the limited space,
we take a VideoPlayer scenario and a ping wireless data transfer
scenario as examples to illustrate the efficiency of the approaches.
From the results in Figure 6, we find that the prediction error of
HBI is about -35%~55%, while that of CABLI is only about -10%
~10%. The reason is that HBI assumes that the future battery
power drainage tends to be the same with the history. In contrast,
CABLI thinks that the system components are the major power
consumers and predicts the battery power drainage based on the
current values of their states. Therefore, it can reflect the variation
of the remaining battery lifetime more accurately.

0 50 100 150 200
-40

-30

-20

-10

0

10

20

30

40

50

60

70

80

90

100

-40

-30

-20

-10

0

10

20

30

40

50

60

70

80

90

100

(a)

 M
e

an
 E

rr
or

 (
%

)

B
at

te
ry

Le
ve

l

Time

 BatteryLevel
 Context-based
 History-based

VideoPlayer with Brightness 255

0 20 40 60 80 100 120
-40

-30

-20

-10

0

10

20

30

40

50

60

70

80

90

100

-40

-30

-20

-10

0

10

20

30

40

50

60

70

80

90

100

 M
e

an
 E

rr
o

r
(%

)

B
at

te
ry

L
e

ve
l

Time

 BatteryLevel
 Context-based
 History-based

Ping with 3KB Data Transferred

(b)

Figure 6. Prediction errors of the approaches.

4.4 Prediction Errors of the Equations

HBI dr6 dr5 dr4 dr3 dr2cpudr2brt

-14

-12

-10

-8

-6

-4

-2

0

2

4

6

M
ea

n
E

rr
o

rs
 (

%
)

 cpu_30
 cpu_38
 cpu_63
 cpu_78
 cpu_100(a)

Simulate-2 with Variable CPU Utilization

HBI dr6 dr5 dr4 dr3 dr2cpudr2brt

-8

-6

-4

-2

0

2

M
ea

n
 E

rr
o

rs
 (

%
)

 cpu_Ram_1
 cpu_Ram_3
 random-1
 random-2

(d)

Variable Workload with Misc Operations

Figure 7. Mean prediction errors of different equations

In CABLI, different model equations represent different
complexity levels of the model. We compare the prediction results

645

of battery lifetime obtained by different equations. In Figure 7, we
take Simulate-2 and MiscOpera as the examples. The results show
that, the mean error of dr6 is the smallest and is within -2% ~ 2%,
and dr6 performs best among the six equations.

4.5 Prediction Errors of Variations of the
Battery Lifetime for Changed Workloads
When a user changes the workload, which approach can
accurately notify the user the variations of the battery lifetime
caused by the changes? In order to answer this question, we
compare the prediction errors of variations of the battery lifetime
given by the two approaches.

In Figure 8, we present the errors and the percentage errors of the
predicted changes under five scenarios. The labels “255->80”,
“255->30”,”30->255” represent three scenarios of the VideoPlayer
application. Under these scenarios, the user changes backlight
brightness from 255 to 80, 255 to 30, and 30 to 255, respectively.
The label “Video->sort” represents a scenario, under which, the
user changes VideoPlayer to Quicksort. The label “cpu0.8->0.5”
represents a scenario of the simulate-2 program, under which, the
user changes CPU utilization from 0.8 to 0.5. From the Figure 8,
we can find that the maximum percentage error of CABLI is less
than 6%, while that of HBI is close to 40%. CABLI predicts the
battery lifetime changes more accurately than HBI, and performs
better than HBI.

255->80 255->30 30->255 Video->Sort cpu0.8->0.5

-40

-20

0

20

40

60

80

-40

-20

0

20

40

60

80

P
e

rc
e

n
ta

g
e

 E
rr

o
rs

 (
%

)

E
rr

o
rs

 CABLI_Err
 CABLI_Err%
 HBI_Err
 HBI_Err%

Prediction Errors and Percentage Errors

Figure 8. Prediction Errors and Percentage Errors under
changed workloads

5. CONCLUSION
We propose a system context-aware approach for online battery
lifetime prediction. We uses multiple linear regressions to build a
quantitative battery lifetime prediction model for smart phones.
The model describes how the changes of system context attributes
affect the variations of energy consumption and battery lifetime.
Using this approach, we dynamically predict the remaining battery
lifetime based on monitored system context attributes. We
implement our approach in the HTC G1 smart phone running the
Android operating system. Experiments show that our approach
predicts battery lifetime with higher accuracy than prior works.
The accurate prediction of remaining battery lifetime can provides
smart phone users with better usage experiences.

6. ACKNOWLEDGEMENT

This work was supported by the National High Technology
Development Program of China (863) under Grant No.
2008AA01Z133, the National Basic Research Program of China
(973) under Grant No. 2009CB320703, the Science Fund for
Creative Research Groups of China under Grant No. 60821003,
and the China Postdoctoral Science Foundation under Grant No.
20090450234.

7. REFERENCES
[1]Y. Wen, R. Wolski, C. Krintz, and R. Krintz, "Online

Prediction of Battery Lifetime for Embedded and Mobile
Devices," in Issue on Embedded Systems: Springer-Verlag
Heidelberg Lecture Notes in Computer Science, 2004, p. 2004.

 [2]D. U. Sauer and H. Wenzl, "Comparison of different
approaches for lifetime prediction of electrochemical systems-
-Using lead-acid batteries as example," Journal of Power
Sources, vol. 176, pp. 534 - 546, 2008.

 [3]L. Benini, G. Castelli, A. Macii, E. Macii, M. Poncino, and R.
Scarsi, "Discrete-time battery models for system-level low-
power design," IEEE Trans. Very Large Scale Integr. Syst.,
vol. 9, pp. 630--640, 2001.

 [4]A. Rahmati, A. Qian and L. Zhong, "Understanding human-
battery interaction on mobile phones," in MobileHCI '07:
Proceedings of the 9th international conference on Human
computer interaction with mobile devices and services, New
York, NY, USA, 2007, pp. 265--272.

 [5]A. Carroll and G. Heiser, "An analysis of power consumption
in a smartphone," in Proceedings of the 2010 USENIX Annual
Technical Conference, Boston, MA, USA, 2010.

 [6]J. Kang, C. Park, S. Seo, M. Choi, and J. W. Hong, "User-
Centric Prediction for Battery Lifetime of Mobile Devices," in
APNOMS '08: Proceedings of the 11th Asia-Pacific
Symposium on Network Operations and Management, Berlin,
Heidelberg, 2008, pp. 531--534.

 [7]N. Balasubramanian, A. Balasubramanian and A.
Venkataramani, "Energy consumption in mobile phones: a
measurement study and implications for network
applications," in IMC '09: Proceedings of the 9th ACM
SIGCOMM conference on Internet measurement conference,
New York, NY, USA, 2009, pp. 280--293.

 [8]N. Ravi, J. Scott, L. Han, and L. Iftode, "Context-aware
Battery Management for Mobile Phones," in PERCOM '08:
Proceedings of the 2008 Sixth Annual IEEE International
Conference on Pervasive Computing and Communications,
Washington, DC, USA, 2008, pp. 224--233.

 [9]A. Shye, B. Scholbrock and G. Memik, "Into the wild:
Studying real user activity patterns to guide power
optimization for mobile architectures," in Proceedings of the
International Symposium on Microarchitecture (MICRO
2009), 2009.

[10]H. Falaki, R. Mahajan, S. Kandula, D. Lymberopoulos, R.
Govindan, and D. Estrin, "Diversity in smartphone usage," in
MobiSys '10: Proceedings of the 8th international conference
on Mobile systems, applications, and services, New York, NY,
USA, 2010, pp. 179--194.

646

