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A Graph-Based Temporal Attention Framework for
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Abstract— Accurate spatio-temporal traffic forecasting serves
as the basis of dynamic strategy and applications for intelligent
transportation systems, which is of great practical significance
for improving traffic safety and mitigating road congestion.
Recently, deep learning methods such as convolutional neural
networks (CNN) have been applied to traffic flow forecasting,
which exhibits better performance than conventional methods.
However, these CNN-based methods typically learn traffic as
images to model spatial correlation, which is only applicable
to Euclidean grid map data rather than non-Euclidean multi-
sensor data. To address this problem, we propose a graph-based
temporal attention framework GTA, which considers both spatial
and temporal correlation, to forecast traffic flow based on data
collected from multiple sensors. More specifically, GTA can
better capture spatial dependencies leveraging graph embedding
techniques on sensor networks because it preserves more details
in the algorithms. We also introduce an attention mechanism to
adaptively identify the relations among temporal submodules.
Spatio-temporal dependencies are more effectively and com-
prehensively integrated due to the full use of the topological
properties of transportation networks. We evaluate GTA with
a large-scale traffic dataset from England and enhance it with
topology information. The experimental results show that our
approach outperforms several state-of-the-art baselines.

Index Terms— Traffic flow prediction, graph embedding, atten-
tion mechanism, road network distance.

I. INTRODUCTION

ECENTLY, with the acceleration of smart city construc-

tion, more and more sensor devices have been deployed
in the intricate urban road network to collect real-time traf-
fic data, laying a solid foundation for the development of
intelligent transportation systems (ITS). In order to protect
public traveling from congestion, it is necessary to forecast
spatio-temporal traffic flow accurately, which can provide
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decision support for traffic management, such as traffic sig-
nal changes and temporary traffic control. Therefore, it has
gradually attracted the attention of many researchers [1]-[4],
with wide applications in transportation anomaly detection,
optimal resource allocation, logistics supply chain, and city
management [5]-[10].

Inherent patterns often exist in the traffic flow, which
indicates that it is typically feasible to predict it accurately
to some extent [11]-[14]. Extensive research has been carried
out on traffic flow prediction during the past decades, including
approaches such as autoregressive integrated moving average
(ARIMA) [15], vector autoregressive (VAR) [16], and mul-
tilayer perceptron (MLP) [17]. Recently, deep models, such
as long short-term memory network (LSTM) [18] and CNN
[19], exhibit better predictive performance than shallow ones,
because of their strong capability to model temporal or spatial
dependencies [19]-[23].

For instance, Ma et al. [19] proposed to learn traffic as
an image and leverage CNN to extract abstract features for
network-wide traffic speed forecasting. The average accuracy
of this method is higher than other baselines by 42.91%.
In order to incorporate spatio-temporal dependencies of traffic
data, many researchers developed models that combine CNN
with LSTM to forecast traffic volumes, such as ConvLSTM
[24], DMVST-Net [25], CLTFP [26], etc. However, these
CNN-based methods are not suitable for non-Euclidean multi-
sensor data, due to their inability to extract shared knowledge
among the spatially correlated sensors.

Figure 1 illustrates an instance based on multiple sensors.
There exists a closer Euclidean distance between Point A and
Point B, which represent two sensors in a freeway network,
but a farther driving distance. Besides, there are quite different
variations in the magnitude of traffic flow, since these two
sensors are deployed on the opposite side of the road. This
instance demonstrates that spatial dependency depends to a
large extent on the physical geographical conditions and the
distribution of sensors. It is not supposed to be Euclidean, but
to be dominated by the road topology.

Currently, there are a few studies on spatial depen-
dency modeling using road topology [27]-[35]. For example,
Li et al. [27] proposed a diffusion convolutional recur-
rent neural network (DCRNN) that integrated the scheduled
sampling technique and the encoder-decoder architecture to
mine spatio-temporal dependencies from historical patterns
for traffic flow forecasting. However, the adjacency matrix
was extracted from the pairwise road network distances by
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Fig. 1. Distance dependency is not symmetrical between monitoring stations.

manually setting the threshold during pre-processing, which
may cause insufficient spatio-temporal correlation between the
sensor and its distant neighbors in multiple time steps.

To address this problem, this paper proposes GTA, a graph-
based temporal attention framework considering both spatial
and temporal correlation, to forecast traffic flow based on
multiple sensors. More specifically, GTA can better capture
spatial dependencies leveraging graph embedding technology
on sensor networks because it preserves more details in the
algorithms. We also introduce an attention mechanism to
adaptively identify the relations among temporal submod-
ules. Spatio-temporal dependencies are more effectively and
comprehensively integrated as we take full advantage of the
topological properties of transportation networks.

Our proposed framework consists of the following compo-
nents: data preprocessing, temporal module, graph embedding,
attention mechanism, and fusion. First, the collected traffic
data is normalized to [0, 1] during preprocessing. Next,
the preprocessed data is divided into three portions (monthly
pattern, weekly pattern, and current pattern) and fed into the
temporal module to forecast affine transformation matrices of
different patterns. Then, the spatial dependency is extracted
by leveraging graph embedding technology on the topology
of sensor networks depicted as road network distance. Next,
an attention mechanism is constructed to assign different
weights to the temporal submodules by using spatial embed-
ding feature and current pattern as input. Finally, the topology
is also fed into a fully connected layer to build the latent
matrix, which is exploited to more comprehensively integrate
spatio-temporal dependencies.

We evaluate GTA with a large-scale traffic dataset from
multiple England cities. Because the data do not contain
road topology information, we augment the data with road
network distances between two monitoring stations, which are
collected from Google services. Evaluation results show that
GTA outperforms several state-of-the art prediction methods.
We also perform a comparison between the variants of our
proposed model and sensitivity analysis of the parameters.

Contributions. This paper makes the following main
contributions:

« We propose a new deep learning framework GTA, which
further incorporates the attention mechanism to adap-
tively identify the relations among temporal submodules,
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in addition to applying graph embedding on multiple sen-
sor data. GTA also introduces a more effective and com-
prehensive strategy to integrate spatio-temporal depen-
dencies, which can take full advantage of the topological
properties of transportation networks.

o« We conduct extensive experiments based on a large
real-world traffic dataset from England, while enhancing
it with road topology information. The results show that
our method can yield better performance over the state-
of-the-art baseline methods.

o We release our enhanced traffic dataset with road network
topology information! to the research community under
the open government license v.3.0.2

The remainder of this paper is organized as follows.

Section II-A presents a literature review on traffic flow fore-
casting. Section III gives some relevant definitions used in
this paper. Section IV introduces our model GTA. Section V
presents and discusses the experimental results. Finally,
we conclude with Section VI.

II. RELATED WORK
A. Traffic Flow Prediction

Traffic flow forecasting has been investigated for multiple
decades [36]. A significant number of prediction models have
been developed to facilitate traffic control and management.
Vlahogianni ef al. [37] systematically reviewed existing meth-
ods including both computational intelligence and traditional
statistical models.

1) Lacking Consideration of Spatial Dependencies: Some
of these studies only took temporal dependencies into account
for traffic flow forecasting. For instance, Box et al. [38]
built an autoregressive moving average (ARMA) model, which
plays a fundamental role in the area of forecasting. Taking
ARMA as a basis, ARIMA [39], an extended version of
ARMA, was developed for traffic flow forecasting. It requires
stationary differential data and is not suitable for the highly
non-linear problem due to the use of linear architecture. Later,
a bunch of variations were developed, including seasonal
ARIMA (SARIMA) [40] designed for capturing the common
periodical features from time-series processes and Kohonen

1 https://github.com/skzhangPKU/GTA
2https ://[www.nationalarchives.gov.uk/doc/open-government-
licence/version/3/
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ARIMA (KARIMA) [41] constructed for short-term traffic
flow forecasting based on maps. Moreover, several studies
focused on time series forecasting under missing data. For
instance, Chen and Sun [42] proposed a low-rank autore-
gressive tensor completion (LATC-TNN) model for traffic
forecasting, which can effectively integrate local temporal
patterns and global trends.

To further mine the temporal correlation, some machine
learning methods based on probabilistic perspectives were
exploited to predict traffic flow. For instance, Qi and Ishak [43]
employed the Markov chain to tackle the dynamic changes in
traffic situations using state transition probabilities. Hong [44]
developed a hybrid model, called SSVRCSA, that combines
the seasonal SVR model with chaotic simulated annealing
algorithm for inter-urban traffic volume prediction. However,
they are under a naive assumption that traffic flow at one
prediction interval depends only on that of a few previous
intervals, which does not take periodicity into account.

Furthermore, deep learning technology, as a branch of
machine learning, was also explored to mine spatio-temporal
dependencies for short-term traffic flow forecasting. Several
researchers attempted to utilize common deep learning models
(MLP [17], LSTM [18], SAE [21], RBM [45], etc.) to forecast
traffic flow, which can achieve better predictive performance
by mining the temporal correlation of traffic data. However,
these approaches typically ignore the spatial dependencies of
traffic data.

2) Modeling Spatial Dependencies Using CNN: CNN has
been widely applied in a variety of fields. For instance,
Wang et al. [46] developed a siamesed fully convolutional
network, with the embedded feature of structured contour
and location prior as input, for road detection. Moreover,
a joint convolutional neural network [47] that integrates
context transfer was proposed to label street scenes, which
significantly outperformed other methods. Inspired by this,
several CNN-based methods are proposed to model the spatial
dependency by learning traffic as images, which are only
applicable to grid-map-based data rather than multi-sensor-
based data. Ma et al. [19] applied a deep learning architecture
of CNN to images converted from network traffic in antici-
pation of extracting spatio-temporal relation to predict large-
scale, network-wide traffic speed.

Moreover, a series of models that integrate CNN and LSTM
[45], [48]-[51] were constructed to forecast short-term traffic
flow. For instance, ConvLSTM [24] based on critical road
sections was built by using traffic speed as the input to
forecast the traffic evolution of global networks. Yao er al. [25]
put forward a Deep Multi-View Spatial-Temporal Network
(DMVST-Net) architecture that consists of semantic view,
spatial view, and temporal view for taxi demand prediction.
Wu and Tan [26] developed a deep framework, named CLTFP,
to forecast future short-term traffic volume. More specifically,
CLTFP captured spatial correlation using 1-dimension CNN
and temporal correlation including variability and periodicity
using LSTMs. However, these approaches are either inade-
quate or unreasonable in terms of spatial dependency.

3) Modeling Spatial Dependencies Using Graph Convolu-
tion: Currently, there are a few studies incorporating road

7745

topology to forecast traffic flow [27]—[35]. Most of them adopt
graph convolution methods to capture spatial dependencies.
Li et al. [27] proposed a diffusion convolutional recurrent
neural network (DCRNN) that integrated the scheduled sam-
pling technique and the encoder-decoder architecture to mine
spatial-temporal dependencies from historical patterns for traf-
fic flow forecasting. Similarly, STGCN [35] and ASTGCN
[28] were developed to model the dynamics of spatial-temporal
correlations by using several individual components. In these
methods, they did not consider localized spatial-temporal
dependencies. To address this issue, Song et al. [29] proposed
spatial-temporal synchronous graph convolutional networks
(STSGCN), which consist of several modules designed for
modeling the heterogeneities in spatial-temporal graphs.

Several attempts have also been made to incorpo-
rate the attention mechanism in graph convolution. For
instance, Zhang et al. [32] proposed the Gated Attention Net-
works (GaAN) to conduct traffic speed forecasting. The GaAN
can adaptively identify the importance of attention heads using
a convolutional sub-network. Zheng et al. [34] constructed
a graph multi-attention network (GMAN), which consists of
various types of attention modules such as spatial attention,
transform attention, and temporal attention, to model complex
spatio-temporal dependencies.

Moreover, Zhao et al. [33] built a temporal graph convo-
lutional network (T-GCN), which was employed to forecast
traffic flow on urban road networks. Wang et al. [31] developed
a spatial-temporal graph neural network (STGNN) model that
integrates transformer layers and graph neural network layers
for modeling series data. Wu et al. [52] proposed a novel
architecture (Graph WaveNet) to model spatial correlations
by developing an adaptive dependency matrix. Cui ef al. [53]
proposed a graph Markov network (GMN) and its variant
that incorporates spectral graph convolution (SGMN) for
spatial-temporal data forecasting with missing values. How-
ever, all of the above approaches rely on the adjacency
matrix, which is extracted from the pairwise road network
distances by manually setting the threshold. This may cause
insufficient spatial-temporal dependencies between the sensor
and its distant neighbors in multiple time steps.

In addition to the mainstream approaches mentioned above,
Chen et al. [54] proposed to leverage the SVD-combined
tensor decomposition (STD) to capture spatial-temporal traffic
speed patterns from partially observed samples. Cui et al. [55]
developed a graph wavelet gated recurrent neural net-
work (GWGR) to forecast network-scale traffic speed. More
specifically, GWGR captures spatial dependencies by incor-
porating the graph wavelet and temporal dependencies by
leveraging a gated recurrent structure. However, they ignored
the periodicity of traffic patterns in the modeling process.

B. The Attention Mechanism

The attention mechanism has been widely applied in
many fields, such as natural language processing, image
recognition, and speech recognition. For instance, Im and
Cho [56] proposed a distance-based self-attention model,
which captures the local dependency by using a simple
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distance mask, to understand sentences. Zhang et al. [57]
designed a context-aware dual-attention network (CADAN)
that integrates sentences and images for natural language
inference. Wang et al. [58] developed a multi-task attention
network to detect lane markings, which combines handcrafted
features and deep features. Moreover, a semi-supervised
learning algorithm [59], incorporating the attention mecha-
nism and bias-variance decomposition, was built to recognize
the synthetic aperture radar image. An attention recurrent
convolutional network (ARCNet) [60] was proposed for
remote sensing scene classification. Salazar et al. [61] devel-
oped a deep-learning-based framework that involves a fully
self-attentional network for connectionist temporal classifi-
cation. The main reason is its capability to identify local
importance.

C. Graph Embedding Technology

In reality, since there exists plenty of graph-structured data,
which contains latent characteristic patterns related to specific
problems, how to extract and mine these patterns is a critical
task. Existing classical graph embedding methods including
DeepWalk [62], Node2Vec [63], SDNE [64], and LINE [65],
have been applied to many systems. More specifically, Vallam
et al. [66] proposed an effective framework that leverages the
graph embedding technique to aggregate a set of incomplete
ranked lists. A semi-supervised graph embedding approach
(SemiGraph) [67] was built to predict dynamic links by incor-
porating the temporal and cross-sectional network structures.
Besides, Yao er al. [25] designed a hybrid deep learning
framework based on multiple views, where semantic views
are modeled by graph embedding. One potential reason is to
retain the details of the graph-structured data.

III. PRELIMINARIES

In this section, we present the definitions of several key
concepts and formulate the traffic flow forecasting problem as
follows.

Definition 1 (Sensor Network): The sensor network com-
posed of several monitoring stations is depicted as a weighted
directed graph, which takes sensors as vertices and the road
network distances as edge weights. We denote the directed
graph as G = (S, &€, D), in which § = {s;]1 <i < |S|} is the
collection of stations |S| = L, &€ = {(u,v) |u € S,v € S} is
the collection of edges that indicates vertex connectivity and
reachability, and D;; is the element of the weighted adjacency
matrix that stands for the proximity from vertex i to vertex j.

Definition 2 (Traffic Flow): The traffic flow is defined as the
number of vehicles passing through the monitoring station over
a certain time interval. For instance, given the time interval A¢,
yf jrl indicates the traffic flow of the monitoring station s; over
the time horizon [¢, t + At), where ¢ denotes the starting point
of the time horizon.

Definition 3 (The Traffic Flow Forecasting Problem):
The purpose of the traffic flow forecasting problem is
to predict traffic volume at the (r+ 1)"* time interval
yfjrl, given the historical observation sequence H' =
{y;flsi €S, je {t—T/—f—l,t— T +2,--- ,t}},whereSis
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the collection of all monitoring stations and 7" is the length of
historical traffic sequence. Our work aims to build a function
model F (-) that can mine the spatio-temporal correlation
from historical traffic patterns to forecast future traffic flow
accurately. Given the sensor network depicted as a weighted
directed graph G, we conduct multi-position global forecasting
considering the interaction of monitoring stations. Historical
observations of all monitoring stations are denoted as HX =
HI1S2 L = (HS H%2, L HS)T € RLXT' where L is the
number of monitoring stations. Therefore, the predicted traffic
flow y/y =y = (ks vt ’yzSJLrl)T e RFis

vt =F (H".g:0) M

where ® are all learnable parameters in the model.

IV. THE GTA FRAMEWORK

Our main research objective is to extract the spatio-temporal
correlation from the historical traffic patterns to make accurate
traffic flow prediction at different time intervals. Generally,
traffic flow forecasting can be divided into long-term (over
60 minutes) and short-term (0~60 minutes) prediction accord-
ing to the time interval, and the latter is of greater practical
significance in the application of ITS. We followed previous
work [68]-[71] and considered the generalization performance
of the model before conducting 15-min, 30-min, and 60-min
traffic flow forecasting. In addition, most individuals will
adopt a distance-prior strategy to drive in cities unless for
vehicle accidents and emergency traffic control, resulting in
the spatial (distance) correlation based on the road topology.

As the current deep models are less suitable for
high-dimensional sparse data, it is desirable to embed
the sparse representation of the spatial structure into a
lower-dimensional space. Indeed, some graph embedding
methods have been proposed and applied to various fields
successfully [66], [67]. It is shown that the embedded repre-
sentation not only preserves the intrinsic properties of spatial
structure but also incorporates context. Inspired by these,
this work attempts to investigate the effectiveness of graph
embedding methods on spatial dependencies modeling.

Furthermore, considering the repetitive nature of human
behavior, the temporal dependency of traffic flow is summa-
rized into three types (monthly periodicity, weekly periodicity,
and variability), which are the foundation of our sequence
modeling [25], [26], [30], [72]. Currently, some work [30] only
applied a simple combination of these temporal properties,
and could not adequately identify the relations among them
for multi-sensor traffic forecasting. Nevertheless, the attention
mechanism may solve this issue because of its ability to
determine the relative importance of different components.
Accordingly, we consider using an attention mechanism to
model the relations among temporal properties.

Therefore, we propose a graph-based temporal attention
framework GTA, which incorporates the temporal and spatial
correlation, for multi-sensor global traffic forecasting based
on historical traffic patterns. Figure 2 presents the GTA
framework, which is mainly composed of five functional
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components: data preprocessing, temporal module, graph
embedding, attention mechanism, and fusion.

For the preprocessing module, we leverage max-min nor-
malization technology to alleviate the problem of different
scales of traffic data collected from monitoring stations and
stacked autoencoders to perform high-level feature extraction
due to the effects of exogenous variables (vehicle accidents,
emergency traffic control, and extreme weather events).

The temporal components consist of several LSTMs, which
are constructed based on multiple views (monthly pattern,
weekly pattern, and current pattern). Moreover, we employ
an attention mechanism, with spatial embedding feature and
current pattern as input, assigning different weights to the
temporal submodules. Each submodule forecasts an affine
transformation matrix corresponding to temporal patterns, and
then the weighted fusion of these matrices is carried out.

The graph embedding technique can find the latent vector
representation from the topology of the sensor network, which
is exploited to capture the spatial dependency from road
network distance. Furthermore, a fully connected layer is
exploited to mine the latent spatial matrix for traffic flow
prediction.

Finally, the hybrid model is built to capture the
spatio-temporal dependency using the resulting transformation
matrix and current pattern as input. The prediction perfor-
mance of the model is evaluated and compared by various
error metrics.

A. Graph-Based Spatial Dependency Modeling

Given a sensor network G = (S, £, D), where |S| = L is the
number of stations, & is the collection of edges and D € RL*L
is the weight adjacency matrix depicted with road network
distance. It means that our work aims to simultaneously predict
the traffic volume of L positions ytL+1 with historical traffic
flow data H% (denoted as H for simplicity) as input.

The periodicity of traffic patterns, such as the travel habits
of commuters, holds only under an assumption, where the
topology of the sensor network keeps unchanged in a short
period. On the basis of this assumption, the distribution of
sensors deployed on the urban traffic network can reveal the
traffic pattern, which is fundamental to traffic flow forecasting.
Road network distance, rather than Euclidean distance, can
better reflect the correlation between monitoring stations. More
specifically, with a closer Euclidean distance but a further
driving distance, there are quite different changes in the
magnitude of traffic flow between two stations in a freeway
network. Therefore, it is more suitable to model the spatial
correlation using road network distance.

For the given directed graph G, the weight adjacency matrix,
depicted with the driving distance, is denoted as

dslsl dSlSZ dSISn
dszsl dszsz dSZS)L
= . s 2)
dsnsl dSILSZ dsnsn
where s; denotes the monitoring station i, and ds,»sj is the

driving distance from station i to station j.
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Next, we will introduce how the topology structure of
the directed graph is embedded into a low-dimensional rep-
resentation to preserve vertex similarity. Specifically, LINE
[65] is used to learn the embedding representations of the
graph. A brief description of the graph embedding method is
presented below. Its objective function is

0 =— z dSl‘Sj log p (Slei) > &
(S,',Sj)Eg

where p (s jls,-) is a conditional distribution that stands for
the probability of station s; under the given station s;. The
distribution is defined as follows:

exp (E;F/ : 175[)
L T -
2 k=1 €XP (CSTk -iis;)

where L is the number of monitoring stations, and ¢, and i
are the context vector representation and vertex vector repre-
sentation of s;, respectively. By optimizing the objective func-
tion O, we extract the low-dimensional vector representation
of all nodes GE € RY*8 (B < L) from the topology of sensor
networks depicted with the driving distance D € RL*L using
graph embedding technology. Here, B indicates the embedding
size, which is set to 128 in the present work. Specifically,
Eq. 3 is optimized with stochastic gradient descent using
negative sampling [73] and edge sampling [65].

Moreover, the weight adjacency matrix is fed into a dense
layer to generate the latent matrix, which is exploited to inte-
grate the spatial correlation and temporal correlation directly.
The procedure is described as follows:

p(sjlsi) = , “4)

LM? = g (W %D + bg)) , Q)

where g is a linear activation function, Wy, is an embedding
matrix, bg; is a zero vector, and * denotes a matrix multipli-
cation operation.

B. Attention-Based Temporal Dependency Modeling

Considering the characteristics of the traffic data, we sum-
marize the temporal dependency into three categories: monthly
pattern, weekly pattern, and current pattern. The current
pattern refers to the correlation between several recent time
intervals and the target one, e.g., the traffic conditions at
07:30 am will affect those at 08:00 am. The weekly and
monthly patterns refer to the repetitive nature of human
activities. For instance, weekdays exhibit similar variation
trends of traffic flow, including distinct morning and evening
rush hour periods. Furthermore, during weekends, the morning
rush hour periods may be delayed due to late wake-ups.

Accordingly, the input of the temporal module is divided
into three portions:

hg, (1 =T+ 1) hs (t° —T!+2) h, ()
2 h, (1€ =T/ 4+ 1) hg,(t° =T, +2) h, (1)
hy, (t€ — T! 4+ 1) hy, (1° = T! +2) hy, (1)

(6)
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TR T e
Ho=| 7 B S C:"=fm®C:"1+lt®C?’, (13)
: : 1 y" = o O tanh(C™), (14)

g, (07 — T +1) hg, (1 — T+2) - hy, (t%) to
(7)  where o is the sigmoid activation function, - and © stand
[ hs, (™ =T} +1) hg, (™ —T,,+2) hg, (1™)] for the matrix production and scalar product of two vectors
he,(t™" =T, +1) he,(t™ —T,4+2) -+ hs,@™) respectively, and W)" and b]' are both learnable parameters
H" = . . . > in the model. ranh is the hyperbolic tangent function, which
P : P41 he (g ) s L Cm contributes to the alleviation of the problem of gradient vanish
LAs, 07 = Ty +1) hey (07 =T, +2) ©hs )—( 8) due to its good gradient flow feature. Similarly, the hidden

where ¢ and " stand for the same moment of 7 in last
week and last month separately, 7/, T,,, and 7, stand for the
number of time intervals for varlablllty, monthly periodicity,
and weekly periodicity respectively, and Ay, (¢) indicates the
historical traffic volume of the station s, at the " time
interval.

Moreover, we propose to employ LSTM to extract the
temporal correlation from historical observations and forecast
the affine transformation matrix of the corresponding pattern.
Unlike RNN, the LSTM alleviates the problem of gradient
vanish and explosion, which is capable of learning long-term
dependencies [20], [74], [75]. Taking the monthly periodicity
as an example, we describe in detail the realization process of
the temporal submodule. The same procedure is also applica-
ble to weekly and current patterns. The input of the submodule
is denoted as I = (Iﬁ”,l’zn,ou ,I’T”’;), where I’;’ = H’;’ =
[hs1 (tm - Tr:l +p)a hsz(tm - Tn/1 +p)> R} hSL (tm - Tn/1 +p)]T
The hidden layer output at the time step ¢ is denoted as y}*. The
sequential representation of the traffic state can be calculated
iteratively by the following equations:

it =0 (W' IyL. 11+ b), ©
i = o (W) Iy 1+ 57) (10)
of =a (W) [y/ ., I"1+1b)), (11)

layer outputs for the weekly pattern y;” and current pattern y¢
can be obtained.

Then, a fully connected layer is employed to forecast the
affine transformation matrix using the hidden representation
as input, which is formulated as follows:

AT = reshape (f (ch}’f + be)) > (15)
AT" = reshape (f (way;u ‘*‘bfw))’ (16)
AT" = reshape (f (meYf" + bf’")) > a7

where Wye, Wy, and Wy, are weight matrices, byc, bry,
and b ¢, are bias vectors, f is the activation function, and AT*
is the affine transformation matrix. In this work, the reshape
operation returns a L x L matrix by stacking column-wise the
elements of a L % L vector.

In addition, an attention mechanism, which can incorporate
the temporal dependency and spatial dependency indirectly,
is employed to yield weights of affine transformation matrices
with the embedding representation of the directed graph and
traffic flow of the current pattern as input. The reasons for
using the embedding representation instead of the weighted
adjacency matrix are as follows: (1) There is a large amount
of redundancy caused by dys; = ds;5; in the asymmetric
matrix D. (2) The scalability of the system is improved.
More specifically, it is almost impossible to directly take the
adjacency matrix as a feature space for input when the number
of sensors is large. (3) The embedded vector, with simplicity
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and convenience, not only preserves the intrinsic properties of
spatial structure but also incorporates context.

Next, the process of the attention mechanism will be
explained in detail. The unnormalized relevance score of the
k-th temporal submodule can be formulated as:

us* = tanh (Wam [ ‘}{HGET] + bam) ,

where tanh is a hyperbolic tangent, | is a concatenation
operator, H., denotes the input of the current pattern for all
monitoring stations at time t, and W, and b,,, are the weight
matrix and bias vector, respectively. Furthermore, the weights
of affine transformation matrices, which can be calculated by
normalizing the relevance score, is described as follows:

(18)

k
expus

ﬁk: kaforkzla""KféW (19)

Zk expus
where >, ,b’k = 1, K;s is the number of temporal submodules,
and p¥ is the weight of the k-th temporal submodule. In this
work, K;s equals 3.

C. Prediction

This subsection describes the last step in the framework,
which involves incorporating the spatio-temporal correlation
and the formation of predicted traffic flow. Given the sensor
network, the framework models the temporal dependency
based on multiple views (monthly pattern, weekly pattern,
and current pattern), and spatial dependency using graph
embedding technology to forecast future traffic flow. For
simplicity, we define a pattern array pa = [c, w, m], which
includes the current pattern, weekly pattern, and monthly
pattern. A weighted sum of affine transformation matrices of
different patterns is formulated as follows:

Kis
WM, = > praTritl,
k

(20)

Algorithm 1: Training Procedure of GTA
Input: Sensor network G = (S, £, D);
Historical traffic data of all monitoring stations H;
All hyperparameters.
Output: Learned GTA model;
1 Employ graph embedding technology on G to extract
node vector representation LM?;
2 for k < 1tot do
3 | According to section IV.A, the historical temporal
pattern is divided into three portions: HEk HY-k and
Hm,k;
4 | Append ({HSK, HYK, H™k) Siq1) to X

5 Initialize all learnable parameters 6 in GTA;

6 repeat
7 | Randomly select a batch of training sample Aj; form
X3

8 | Optimize @ by minimizing the objective function
Eq.23 with X, LM?, and D as input.
9 until mer model stop criteria

7749

where S is the weight of the affine transformation matrix, K
is the number of affine transformation matrices, and pa [k] is
the k-th element in the pattern array pa. Besides, the resultant
transformation matrix is built by using the latent spatial matrix
as input, which can be formulated as follows:

RT, = LM‘ o WM,, 1)

where o denotes the element-wise product, and LMY is the
latent spatial matrix. Finally, based on the transformation
matrix, the traffic flow at time r + 1 can be calculated as
follows:

Vi =RT, My, + by, (22)

where - denotes the matrix production, b,; is the learnable
parameter, and H{, stands for the input of the current pattern
for all monitoring stations at time 7.

Given the historical observations and sensor network,
we need to minimize the following cost function for the hybrid
model:

TO) =" |yl =7+ e,

SkES

(23)

where 0 are all parameters used in the model, S is the set
of monitoring stations, W, are learnable weight matrices, 4
is a regularization coefficient of the penalty term Q, and
y;t, and 3| are the predicted value and observed value of
the monitoring station s; at the time interval 7 respectively.
In this work, €1 and ¢, regularization penalties are attempted;
the latter is chosen as per the experimental results. The
regularization coefficient is determined by employing a grid
search from a coarse-grained to a fine-grained manner.

Moreover, aside from square error, we also attempt to
leverage absolute error as the loss term of the optimization
object. The experimental results indicate that GTA can also
outperform other baselines under all evaluation metrics while
using the absolute error. Compared to square error, there
is only a slight difference in performance. With a trade-off
between performance and stability, we take square error as
the loss function to optimize the model.

The training procedure of the GTA framework is summa-
rized in Algorithm 1.

V. EXPERIMENTAL RESULTS
A. Datasets

We evaluate GTA using real traffic data collected from
highways in England. The traffic dataset includes average
speed, traffic flow, time period, location, and date of 249 moni-
toring stations. The temporal granularity of the original dataset
is 15 minutes, while it can be configured to 15 minutes,
30 minutes and 60 minutes, respectively, during the exper-
iments. The sensors are located from site A414 between
M1 J7 and A405, which covers several cities that include
Manchester, Liverpool, and Blackburn. Figure 3 presents the
distribution of monitoring stations used in the experiment.
Specifically, we use a whole year of traffic data ranging from
January 1st, 2014 to December 31st, 2014 for the experiments.
The total number of data entries is 8,724,960, the mean value
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Fig. 3. The distribution of monitoring stations studied in this experiment.

of traffic volume is 466. Among the data, the last two months
(11/01/2014-31/12/2014) are used as testing data, and the first
10 months (01/01/2014-10/31/2014) as training data.

We process the collected traffic data by normalizing them
to [0, 1] before we feed them into the algorithm. Because the
dataset does not contain road network distance between two
monitoring stations, we enhance the data with these topology
information based on distances collected from Google Ser-
vices.?

B. Settings

1) Baselines: In order to evaluate the performance of our
proposed model, we compare it with the following methods:

« ESWP: It is a model based on estimated, static weekly
profiles (ESWP). The model takes the traffic of the same
time period last week as the predicted value of the current
time period.

o PM: The persistence model (PM) takes the observed
value at time ¢ — 1 as the predicted value at time 7.

o« VAR: The vector autoregressive (VAR) for forecasting
multivariate time series is widely used in statistics and
econometrics, especially in sequence analysis. The model
is implemented by the statsmodels python package.

o MLP: It has a multi-layer structure (one input layer,
one or more hidden layers, and one output layer), which
can approximate the complex nonlinear mapping with the
assistance of activation functions. The hidden size is set
to 200.

o SAE [21]: It is a deep neural network model through
stacking autoencoders, which can learn the latent feature
representation of traffic flow. The SAE includes three
hidden layers, each of which contains 200 cells. The
learning rates are set to le ™3, %6_3 and le~* for these
hidden layers, respectively. The batch size is 128.

o LSTM [22]: It is a variant of the RNN model with wide
applications in machine translation, image annotation, and
speech recognition due to its ability of mining temporal

3 https://developers.google.com/maps/documentation/distance-matrix
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dependency. The hidden layer in LSTM holds 200 mem-
ory cells. The number of LSTM layers is 2. The L1 and
L2 weight decays are 2¢~* and 2¢~>, respectively.

o T-GCN [33]: It leverages the graph convolutional net-
work (GCN) and gated recurrent unit (GRU) to model
spatial and temporal dependencies, respectively.

o STGCN [35]: It extracts temporal dependencies using
gated CNNs and spatial features using ChebNet.

o ASTGCN [28]: ASTGCN is composed of several indi-
vidual components that integrate graph convolution and
attention mechanisms.

o STSGCN [29]: It is designed for modeling the hetero-
geneities in spatial-temporal graphs.

e GMAN [34]: It consists of various types of
attention modules to model complex spatio-temporal
dependencies.

o ConvLSTM [24]: The convolutional long short-term
memory (ConvLSTM) model extracts the temporal corre-
lation using LSTM and the spatial correlation using CNN
from historical traffic patterns, and thus forecasts future
traffic flow. The kernel size is set to 3. Both pool size and
stride are set to 2. It contains five convolution layers, five
pooling layers, two LSTM layers, and two fully connected
layers.

« DCRNN [27]: It is one of the cutting edge deep learning
models for forecasting, which uses a diffusion process
during the training stage to learn the representations
of spatial dependency. For DCRNN, the encoder and
decoder both contain two recurrent layers. The parameter
settings remain the same as recommend by the authors in
https://github.com/liyaguang/DCRNN.

o Graph-WaveNet [52]: It assembles graph convolution
with dilated casual convolution to learn spatial-temporal
dependencies simultaneously.

2) Setup: In this study, the historical traffic data is processed
on a PC (CPU: Intel (R) Core (TM) i5-4460 @ 3.20GHz,
GPU: NVIDIA GeForce GTX 750 Ti, memory: 12GB). More-
over, with the support of the Python libraries that include
Scikit-learn and TensorFlow, we build and implement the
deep learning models on a Graphics Processing Unit (GPU)
platform using Argon with Nvidia Tesla P100 Accelerator
Cards with 16GB of GPU memory. The training data is
randomly divided into training sets and validation sets with
a ratio of 8:2. The architecture of the GTA framework
consists of six LSTM layers (three two-layer LSTMs), one
embedding layer, one attention layer, and one fully connected
layer. Besides, there are some hyper-parameters settings of
the model as follows. An Adam optimizer with an initial
learning rate of 0.001 is used to update the model para-
meters. The regularization coefficient of the penalty term is
0.002. The mini-batch size is set to 128. The dropout rate is
set to 20%.

3) Evaluation Metric: The predictive performance of the
model is evaluated by Mean Absolute Error (MAE), Rooted
Mean Square Error (RMSE), and Mean Absolute Percentage
Error (MAPE), which are the most widely reported error
measures used in regression problems. The evaluation metrics
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TABLE I
PERFORMANCE COMPARISON BETWEEN GTA AND OTHER BASELINES FOR TRAFFIC FLOW FORECASTING

Method 15 min 30 min 60 min Average Error
MAE RMSE MAPE | MAE RMSE MAPE | MAE RMSE MAPE | MAE RMSE MAPE
ESWP 69.07 137.60 453% | 158.07 29190 454% | 423.50 695.11 53.3% | 216.88 374.87 48.0%
PM 3648  63.35 172% | 10645 18136 203% | 363.93 58742 379% | 16895 27738 25.1%
VAR 2549  41.71 18.7% | 54.70 89.78 18.5% | 14539 229.80 229% | 75.19 12043 20.0%
MLP 2699 4460 22.5% | 55.41 93.21 21.1% | 120.33  199.77 20.1% | 6749 11253 21.2%
SAE 25.51 42.18  209% | 49.75 85.78 192% | 117.60 206.77 19.7% | 6429 111.58 19.9%
LSTM 24.63  41.69 19.7% | 51.28 90.36 182% | 12695 22537 19.5% | 67.62 119.14 19.1%
ConvLSTM 2575 4342  18.6% | 55.71 96.41 17.3% | 11638 205.56 183% | 6595 11513 18.1%
T-GCN 3472 52.62 289% | 71.89 11227 268% | 151.42 231.87 30.6% 86.01 13225 28.8%
STGCN 26.44 4415 159% | 60.14 98.84  22.6% | 13326 21479 222% | 73.28 119.26 20.2%
ASTGCN 26.47  43.32 16.7% | 59.38 95.68 192% | 173.60 258.19 35.8% 86.48 13240 23.9%
STSGCN 23.64  40.88 15.4% | 55.56 96.45  23.7% | 128.04 225.11 263% | 69.08 120.81 21.8%
GMAN 25.04 4488 16.9% | 47.88 87.72 17.3% | 100.02 178.09 19.5% | 57.65 103.56 17.9%
DCRNN 22.61 39.21 155% | 44.27 78.98 16.5% | 97.86 17151 189% | 54.91 96.57 17.0%
Graph-WaveNet | 23.53  40.42 153% | 47.99 82.59 143% | 109.14 184.65 16.6% | 59.89 10255 154%
GTA 21.86 3694 153% | 42.92 75.02 13.6% | 9095 15993 139% | 51.91 90.63 14.3%
can be formulated as fOHOWS' 023 MAPE at Differept Time Intervals
MAE = = 24
F AT @4
i= lskES
MAPE = Z S A |y (25)
i=1 s;eS Yi
RMSE = Z Z -39, (26)
i=1 SkES

where N is the number of samples, |S| is the size of the
collection of stations S, and y;* and 3:* are the predicted
value and ground truth of the monitoring station s; on the i-th
sample, respectively.

C. Overall Results

In this section, we evaluate and compare the prediction
performance between different models (ESWP, PM, VAR,
MLP, SAE, LSTM, ConvLSTM, T-GCN, STGCN, ASTGCN,
STSGCN, GMAN, DCRNN, Graph-WaveNet, and GTA).
Table I presents the quantitative results of these models for
15-min, 30-min, and 60-min traffic flow forecasting in terms
of MAE, RMSE, and MAPE.

The results show that GTA achieves the best forecast
accuracy compared with other baseline methods. More specif-
ically, in the order listed in Table I, the average MAPE
values for the other baselines decrease 235.66%, 75.52%,
39.86%, 48.25%, 39.16%, 33.57%, 26.57%, 101.17%,
41.26%, 67.13%, 52.45%, 25.17%, 18.88%, and 7.7% relative
to the GTA. The main reason is that VAR, MLP, SAE, and
LSTM only take temporal dependencies into account, ConvL-
STM is not suitable for non-Euclidean multisensor data, and
graph-convolution-based methods (DCRNN, Graph-WaveNet,
STGCN, etc.) extract insufficient spatial correlations due to the
neglect of details in the algorithms. The finding demonstrates
that GTA can better capture spatio-temporal dependencies
based on sensor networks.

A~
s

0.13

15 min 30 min

Time Intervals

Fig. 4. The MAPE value of GTA and several selected methods on the 15-min,
30-min, and 60-min traffic flow prediction.

We can observe that GTA is robust in both evaluation
metrics and time intervals. More specifically, Figure 4 shows
that the slope of the black line is low, which reveals the
stable performance of GTA over different time intervals.
In the meantime, GTA exhibits better performance than other
baselines under all evaluation metrics. The results show that
GTA is insensitive to disturbances, which can better capture
irregular traffic patterns.

Moreover, prediction models perform differently under dif-
ferent evaluation metrics. More specifically, for 60-min traffic
flow forecasting, the MLP achieves a lower RMSE but a higher
MAE value compared with the SAE. For ConvLSTM, it is
superior to the common deep learning methods and classical
time series method in terms of MAPE, but not in terms of
MAE and RMSE. Even for DCRNN, it achieves a higher
MAPE value compared with ConvLSTM. Therefore, it is rare
that GTA can exhibit better performance under all evaluation
metrics.

We also notice that common deep learning methods (MLP,
SAE, and LSTM) are not significantly better than the
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TABLE 11
PERFORMANCE COMPARISON BETWEEN GTA AND ITS VARIANTS FOR TRAFFIC FLOW FORECASTING

Task [ Metric | T T+F G+A+T G+T+F A+T+F GTA
MAE 26.23 24.75 26.21 22.02 22.36 21.86

15 minutes RMSE 44.32 41.32 43.57 37.85 37.21 36.94
MAPE 19.3% 18.7% 19.4% 17.8% 17.4% 15.3%

MAE 50.94 47.98 50.59 44.17 51.05 42.92

30 minutes RMSE 86.23 83.33 85.83 76.88 87.37 75.02
MAPE 17.7% 16.2% 17.3% 16.3% 17.5% 13.6 %

MAE 107.44 105.88 104.02 95.45 104.32 90.95

60 minutes RMSE 185.92 186.54 182.17 170.04 183.81 159.93
MAPE 15.9% 15.1% 15.4% 15.1% 15.7% 13.9%

MAE 61.54 59.54 60.27 53.88 59.24 51.91

Average Error RMSE 105.49 103.73 103.87 94.92 102.80 90.63
MAPE 17.6% 16.7% 17.4% 16.4% 16.9% 14.3%

traditional statistical model. For instance, the RMSE value
of MLP for 15-min traffic flow forecasting is 44.60, which
is slightly larger compared with VAR. However, for 60-min
traffic flow prediction, its RMSE value is significantly lower
than that of VAR. This reveals that GTA fails to yield poor
performance like common deep models due to its reasonable
structural design.

D. Additional Assessment

Apart from MAE, RMSE, and MAPE evaluation met-
rics, we also use the coefficient of determination (R?) and
median absolute error (MedAE) for evaluation. R? and
MedAE are used to measure the correlation and error between
observed and predicted values, respectively. The definitions are
described as follows:

MedAE = median(|y; — yi|, - -
N
R = | - 2O (28)
Ym0 =)

where y = %le: 1 vi, and y; and y; are the predicted value
and ground truth of the i-th sample, respectively. Due to the
space limitation, we only report the results for 15-min traffic
flow prediction (see Table III). The same conclusion holds for
30-min and 60-min traffic forecasting.

From Table III, we observe that GTA outperforms other
competitive methods in terms of R? and MedAE. Specifically,
the R*> and MedAE values for GTA are 0.9893 and 13.34,
respectively. DCRNN demonstrates the second-best perfor-
mance while ESWP the worst performance, which is consis-
tent with previous reports. Besides, Graph-WaveNet performs
worse than STSGCN in terms of R*> and MedAE. Combining
the results in Table I, we find that STSGCN tends to yield
some relatively large absolute errors. Overall, the results once
again illustrate the effectiveness of our approach.

5 |)’N _SJ\Nl)a (27)

E. Different GTA Configurations

In order to investigate the influence of different components,
we construct 5 simplified variants of GTA, which are described
as follows. For simplicity, we use some notations, including
graph embedding (G), attention mechanism (A), temporal

module (T), and fully connected layer (F). Table II presents the
prediction performance of GTA and its variants over different
time horizons.

T: It exploits the temporal module to forecast an affine

transformation matrix. Then the traffic flow can be cal-

culated by using the matrix and current traffic pattern as
input.

o T+F: Taking T as a basis, we only employ a fully
connected layer to generate the latent matrix, which is
exploited to incorporate the temporal dependency and
spatial dependency directly.

e G+A+T: Compared with GTA, it eliminates the fully
connected layer for feature transformation of the weighted
adjacency matrix, which means there is no direct spa-
tiotemporal fusion.

o G+T+F: It uses graph embedding technology to extract
the low-dimensional vector representation of all nodes
and multiplies the representation with a learnable weight
matrix WE*L to form the input of building the resultant
affine transformation matrix.

o A+T+F: It only takes the current traffic pattern as

the input of attention mechanism to yield weights of

affine transformation matrices, which means no graph
embedding technology to incorporate the spatio-temporal
correlation indirectly.

From Table II, we can see that GTA outperforms all its vari-
ants in terms of RMSE, MAE, and MAPE. More specifically,
the average RMSE values for the other variants, in the order
listed in Table II, decrease 16.40%, 14.45%, 14.61%, 4.73%,
and 13.43% relative to the GTA. The results show that it is
beneficial to improve the predictive performance of GTA by
leveraging these components.

In addition, GTA performs better than G+T+F, which takes
T+F as a basis and only employs graph embedding technology
to yield the latent spatial matrix for spatio-temporal fusion.
One explanation is that an attention mechanism can adap-
tively identify the relations among temporal submodules. More
specifically, the prediction error of GTA under all evaluation
metrics is lower than that of G+T++F, which demonstrates the
validity of attention mechanism in traffic flow forecasting.
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TABLE III

R? AND MEDAE OF GTA AND DIFFERENT MODELS FOR 15-min TRAFFIC FLOW FORECASTING. HERE, CL AND WAVENET REPRESENT CONVLSTM
AND GRAPH-WAVENET, RESPECTIVELY. HIGHER RZ AND LOWER MEDAE BOTH INDICATE BETTER PERFORMANCE

[ESWP PM VAR MLP SAE LSTM CL T-GC

N STGCN ASTGCN STSGCN GMAN DCRNN WaveNet GTA

R? 10.8494 0.9083 0.9874 0.9843 0.9859 0.9863 0.9784 0.9803 0.9853 0.9858 0.9878 0.9836 0.9889 0.9859 0.9893
MedAE| 32.16 26.72 1631 1699 16.13 14.75 17.65 23.73 16.79 17.01 14.41 16.06  13.81 16.36  13.34
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Fig. 5.

GTA exhibits better performance than A+T+F, which elim-
inates graph embedding technology and carries out a weighted
sum of those temporal submodules based on attention mecha-
nism. More particularly, for 60-min traffic flow forecasting,
the RMSE value of GTA is dropped by 23.88 compared
with A+T+F. The results imply the effectiveness of graph
embedding technology in spatial dependency modeling.

Additionally, GTA outperforms both T+F and G+A+T on
forecasting. One possible reason is that GTA makes full use
of the topological properties of transportation networks. The
results reveal the spatio-temporal dependencies can be more
effectively and comprehensively integrated, resulting in lower
prediction errors.

F. Sensitivity Analysis

In this section, we investigate the effect of parameters
that include learning rate, batch size, and the number of
hidden layer units on model performance. Figure 5 shows the

(h) RMSE at different hidden size

100 200 300

Hidden size

(i) MAE at different hidden size

200
den size

300

The MAPE, RMSE, and MAE value of the GTA model at different learning rates, batch size, and hidden size.

prediction error of the model with respect to these parameters
over various time horizons.

We can see that GTA achieves the best performance in
all scenarios when the learning rate is set to 0.001. The
best learning rate available by the experiment is consistent
with that recommended by the optimizer algorithm. More
specifically, for 60-min traffic flow prediction, the MAPE value
of GTA of a 0.001 learning rate is 13.9% lower than that of a
0.01 learning rate, which indicates that there is a wide range
of performance fluctuations as the learning rate changes. One
possible reason is that inappropriate learning rate causes slow
convergence or even failure.

For batch size, we can observe that its impact on model
performance is minor relative to the learning rate. The MAE,
RSME, and MAPE value of the model vary slightly but mainly
remain stable as the batch size increases. More specifically,
taking 30-min traffic flow forecasting as an example, the MAE
value of GTA of a 64 batch size is 42.34, which is under
0.58 compared with that of a 128 batch size and under
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TABLE IV
TRAINING EFFICIENCY OF GTA AND DIFFERENT MODELS FOR 15-min TRAFFIC FLOW FORECASTING

[VAR MLP SAE LSTM ConvLSTM T-GCN STGCN STSGCN ASTGCN GMAN DCRNN Graph-WaveNet GTA

# of epochs|7008 109 60 136 93

time (hrs) {3.01 0.14 0.30 0.22 0.20 11.67

2969 49
0.25

1.75 compared with that of a 32 batch size. One potential
reason is that the batch size mainly affects the optimization
time required for the model to reach a certain precision.

Besides, from Figure 5(g), (h), and (i), it appears that the
prediction error of the model little varies as the number of
hidden layer units changes. More specifically, the MAPE value
of GTA of 200 hidden layer units in 60 minutes is reduced by
0.08% compared with that of 100 hidden units, and reduced
by 0.29% compared with that of 300 hidden units. The results
reveal that GTA is less sensitive to the number of hidden layer
units, at least in the range of 100 to 300.

G. Efficiency

To investigate the training efficiency of GTA, we conduct
a comparison with 11 other competitive baselines. Due to the
space limitation, we only present the case for 15-min traffic
flow prediction. The same conclusions are also applicable to
30-min and 60-min traffic flow forecasting. Table IV lists two
attributes that include the number of epochs and time, which
are used to evaluate the training efficiency of models.

From Table IV, we can observe that the training efficiency
of our proposed model is considered acceptable. For DCRNN,
its efficiency is lower than that of GTA. More specifically,
in comparison, GTA takes less time to complete the train-
ing of 100 epochs. One possible reason is that there are
many tedious and time-consuming convolution operations in
DCRNN. The same holds for T-GCN, STSGCN, ASTGCN,
and GMAN. The results show that a reasonable balance
between accuracy and efficiency needs to be achieved.

Besides, deep learning models can dramatically improve
efficiency compared to traditional models when involving
extensive training data. For instance, MLP achieves faster
convergence than VAR, probably due to GPU acceleration.
Different deep models significantly show different efficiencies.
More specifically, compared with MLP, SAE takes more time
due to pre-training, but fewer epochs to reach convergence.
In addition, the complexity of models may also affect training
efficiencies, such as ConvLSTM and Graph-WaveNet.

H. Effect of Traffic Patterns and Their Sequence Lengths

To evaluate the effect of different traffic patterns, we per-
form ablation analysis using 15-min traffic forecasting as an
example, as shown in Table V. NoMP, NoWP, and NoCP
indicate we eliminate the monthly pattern, weekly pattern, and
current pattern respectively. It is shown that the performance
decreases to varying degrees without these traffic patterns.
More specifically, the MAPE values for NoMP, NoWP, and
NoCP increase by 15.0%, 19.6%, and 34.0% relative to GTA
respectively, which indicates that the significance ranking of
these traffic patterns are as follows: the current pattern, weekly
pattern, and monthly pattern (from high to low). In particular,

169 79 67 100 62 87
8.68 1.68 2.87 3.42 1.18 0.66
TABLE V
THE ABLATION ANALYSIS OF TRAFFIC PATTERNS
Metric | NoMP NoWP NoCP ours
MAE 22.42 23.44 25.98 21.86
RMSE 37.09 38.62 42.53 36.94
MAPE 17.6% 18.3% 20.5% 15.3%
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Fig. 6. MAPE with respect to input sequence lengths for GTA.

GTA performs the best, demonstrating that the integration of
these patterns is effective for multi-sensor traffic forecasting.

Besides, we also investigate how the sequence length affects
the performance of GTA. Figure 6 illustrates the MAPE values
of GTA at different sequence lengths for 15-min traffic flow
forecasting. Note that our model yields the lowest prediction
error with a sequence length of 6. When the length is lower
than 6, the performance improves gradually as the sequence
length increases, which indicates the importance of taking
account of temporal correlations. Our model shows a reduced
performance when the length is increased beyond 6. One
potential reason is the difficulty of modeling longer temporal
dependencies.

L. Effect of Adding Fully Connected Layers

We also study the change in training costs after adding the
fully connected layer (F), which combines all the temporal
module, attention mechanism, and graph embedding. Contrast
experiments are conducted using different quantities of fully
connected layers (0 to 3). Similarly, we only depict the results
for 15-min traffic flow forecasting. Figure 7 shows the training
loss curves of these models after the max-min normalization.

One important observation from the results in Figure 7 is
that the training costs increase apparently with increasing the
number of fully connected layers. One possible reason is that
the model parameter space is too large. Besides, there is no
doubt that the test errors of these models show differences.
More specifically, the MAE, RMSE, and MAPE values for
GTA with one F are 22.19, 37.02, and 15.94%, respectively.
Compared with DCRNN, it exhibits better performance in
terms of MAE and RMSE, but not in terms of MAPE.
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TABLE VI
THE MAPE, RMSE, AND MAE VALUE OF GTA AND SEVERAL BASELINES AT DIFFERENT MISSING RATES
Task [ Metric [ LATC-TNN GMN-6 GMN-8 GMN-10 SGMN-6 SGMN-8 SGMN-10 GTA
MAE 69.34 42.08 42.47 42.27 39.35 39.29 39.34 32.08
Missing Rate = 10% | RMSE 122.68 72.28 73.09 72.58 66.94 66.82 66.91 53.29
MAPE 35.3% 23.8% 23.8% 23.7% 16.5% 16.5% 16.5% 21.3%
MAE 70.34 45.43 46.81 47.22 42.04 42.02 41.98 40.06
Missing Rate = 20% | RMSE 124.21 75.58 79.84 80.35 72.25 72.17 72.12 65.41
MAPE 35.8% 26.6% 26.5% 26.3% 18.2% 18.2% 18.1% 23.2%
MAE 73.44 47.48 50.56 54.48 51.94 49.98 49.72 53.13
Missing Rate = 40% | RMSE 128.94 77.76 81.30 88.79 91.89 87.19 86.28 83.54
MAPE 37.3% 28.1% 29.3% 30.9% 23.2% 21.9% 21.6% 28.2%
TABLE IX
-8 GTA
002 ¥~ GTA with one F THE PERFORMANCE OF GTA BEFORE AND AFTER REPLACING ITS ATTEN-

GTA with two Fs
—8— GTA with three Fs

0.026

0.024

0.022

Mean Square Error

0.020

0.018

0 20 40 60
Epochs

Fig. 7.
layers.

Training cost of GTA with different quantities of fully connected

TABLE VII

THE PERFORMANCE OF GTA BEFORE AND AFTER REPLACING ITS TEM-
PORAL MODULE

Metric | T-CNN T-MLP T-GRU ours

MAE 22.12 22.23 21.84 21.86

RMSE 37.17 37.45 36.97 36.94

MAPE 15.5% 15.7% 15.4% 15.3%
TABLE VIII

THE PERFORMANCE OF GTA BEFORE AND AFTER REPLACING ITS GRAPH
EMBEDDING TECHNOLOGY

Metric [ G-RS G-NDR ours

MAE 21.96 22.09 21.86
RMSE 37.12 37.47 36.94
MAPE 17.7% 17.9% 15.3%

However, for GTA with two or three Fs, they yield higher
prediction error under all evaluation metrics. These results also
demonstrate the rationality of our model architecture design.

J. Prediction Under Missing Data

As discussed in [42], [53], [54], there are often data quality
issues in real-world scenarios, such as missing data caused
by sensor damage. Therefore, we further investigate how our
model performs under missing data. It is compared with three
competitive baselines (LATC-TNN, GMN, and SGMN). Due
to space limitations, we only present the results for 15-min
traffic flow forecasting. Table VI illustrates the prediction
errors of GTA and several baselines at the missing rates
of 10%, 20%, and 40%. Here, GMN-n and SGMN-n stand
for the GMN and SGMN models with n-steps of historical
data, respectively.

TION MODULE

Metric [ A-FLR ours

MAE 22.02 21.86
RMSE 37.85 36.94
MAPE 17.8% 15.3%

As shown in Table VI, in terms of MAE and RMSE, GTA
yields the lowest prediction error at the missing rates of 10%
and 20%. More specifically, in the order listed in Table VI,
the MAE values for other baselines decrease by 116.1%,
31.2%, 32.4%, 31.8%, 22.7%, 22.5%, and 22.6% relative to
the GTA at the missing rates of 10%. When the missing rate
is 40%, GMN-6 achieve better prediction performance. The
results reveal that GTA is less suitable for those sensors with
high missing rates. In terms of MAPE, SGMN-10 outperforms
other methods for all missing rates. A higher MAPE value
and lower MAE and RMSE values indicate that our model
tends to yield smaller absolute errors at higher traffic volumes
than at lower ones. Moreover, LATC-TNN exhibits the worst
performance with different missing rates under all evaluation
metrics. One possible reason is that this method ignores the
spatial dependencies of traffic patterns.

K. Module Replacement Analysis

In this section, we explore whether our framework design is
separate and replaceable using 15-min traffic flow forecasting
as an example. Several variants for components such as the
temporal module, attention mechanism, and graph embedding
technology are constructed for experiments.

More specifically, for the temporal module, we attempt to
replace the LSTM with other common deep learning methods
such as CNN, MLP, and GRU. The corresponding overall
models are abbreviated to T-CNN, T-MLP, and T-GRU, respec-
tively. In terms of graph embedding technology, there are two
variants; one abbreviated to G-RS is a random selection (RS)
from the adjacency matrix, the other abbreviated to G-NDR is
nonlinear dimensionality reduction (NDR) of the matrix using
MLP. As for the attention mechanism, we only design a variant
abbreviated to A-FLR, which assigns a free learnable para-
meter (FLR) for each affine transformation matrix. Specific
analyses of these models are as follows.

Table VII demonstrates that T-GRU may constitute an
efficient alternative for the temporal model when focusing on
MAE. More particularly, T-GRU yields a lower prediction
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error than GTA in terms of MAE, but not in terms of
RMSE and MAPE. Besides, we can also observe that T-MLP
performs worst among all variants of the temporal module,
which implies MLP extracts insufficient temporal correlation.
For T-CNN, it is also inferior to GTA under all evaluation
metrics. These results indicate that LSTM is more suitable
to model temporal dependency compared with other common
deep models.

One observation in Table VIII is that graph embedding
technology plays a role in spatial dependency modeling. More
specifically, GTA exhibits better performance than G-RS and
G-NDR in terms of MAE, RMSE, and MAPE. The main
reason is that graph embedding technology not only preserves
the intrinsic properties of spatial structure but also incorporates
context.

Besides, from Table IX, it can be observed that A-FLR
exhibits lower performance than GTA in terms of MAE,
RMSE, and MAPE. More specifically, the MAE, RMSE, and
MAPE values of A-FLR are 22.02, 37.85, and 17.8%, respec-
tively, which are 0.16, 0.91, and 2.5% respectively higher
than that of GTA. One potential reason is that spatio-temporal
dependencies are effectively and comprehensively integrated.

VI. DISCUSSIONS
A. Deployment Considerations

Training and evaluation of deep models are typically carried
out on a large number of historical samples. However, their
performance might degrade in a production environment since
the data distribution used by the model in the prediction phase
is different from that used in the training phase. Therefore,
the quality of the deployed model needs to be monitored
to detect problems quickly and take corrective actions. One
routine action is to retrain the model regularly, but it comes
with high costs.

The combination of incremental learning and retraining may
offer a valid and feasible solution in practical applications.
More specifically, model weights are estimated from historical
samples and then trained with a smaller learning rate based
on incremental traffic data. When the prediction errors such
as MAE, RMSE, and MAPE, are greater than the acceptance
threshold, models will be retrained on all samples from certain
time periods. Indeed, this strategy has been already widely
applied in recommendation systems.

Moreover, another important consideration is the real-time
requirements of deployed models. It can be optimized by
1) using TensorRT to speed up inference, 2) using a dedicated
GPU card for inference, and 3) using the model compression
method to reduce the computational load. In terms of our
proposed model, its inference time (0.018 seconds) is much
lower than the time interval of traffic flow prediction, which
shows it is well suitable for real environments.

B. Key Benefit of GTA

Traffic flow forecasting has been investigated for many
years. Current state-of-the-art approaches rely on the adja-
cency matrix, which is extracted from the pairwise road
network distances by manually setting the threshold. This

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 23, NO. 7, JULY 2022

may cause insufficient spatial-temporal dependencies between
the sensor and its distant neighbors in multiple time steps.
In contrast, GTA introduces a combination of direct and
indirect ways, which can integrate spatial-temporal depen-
dencies more comprehensively. Graph embedding technology
is employed to extract latent vector representations from the
topology of transportation networks, which can better model
spatial dependencies between sensors. Besides, the integration
of multiple patterns (monthly periodicity, weekly periodicity,
and variability) can also lead to better performance.

C. Future Direction

In the future, we believe these two research directions are
important for traffic forecasting.

1) Traffic Prediction in Extreme Cases: Compared with
normal conditions, it is more challenging to predict traffic
flow in extreme cases such as peak-hour and post-accident
scenarios. In [76], the authors employed SAE to extract
abstract representations from static accident features and then
combined with LSTM to capture traffic patterns of extreme
conditions. However, the proposed method ignores the spatial
dependencies between sensors, and its performance needs to
be further improved.

2) Long-Term Temporal Dependency Modeling: Periodic
patterns often exist in the traffic flow. Currently, most studies
adopted RNNs with GRU or LSTM to capture the long-term
dependency from the time sequences with periodic features.
However, they are still insufficient for long sequential data.
Therefore, there is a need for further research in long-term
temporal dependency learning.

VII. CONCLUDING REMARKS

In this paper, we have proposed GTA, a graph-based tempo-
ral attention framework that incorporates the spatio-temporal
dependencies, to conduct multi-sensor traffic flow forecast-
ing over different time horizons. Inspired by representation
learning of social networks, we propose to employ graph
embedding technology on sensor networks, which can bet-
ter extract the spatial dependency. Moreover, an attention
mechanism is employed to adaptively identify the relations
among temporal submodules (monthly pattern, weekly pattern,
and current pattern). Spatio-temporal dependencies are more
effectively and comprehensively integrated due to the full
use of the topological properties of transportation networks.
Experiments on a large-scale traffic dataset of England show
that our approach significantly outperforms the state-of-the-art
baselines and has strong stability and robustness.

In the future, we will focus on the following aspects to
extend our work: (1) conduct multi-step traffic forecasting;
(2) perform experiments on more traffic data from differ-
ent cities; (3) introduce other exogenous variables (holidays,
accidents, weather, etc.) into the model for more accurate
forecasting.
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