
Dependency-aware Form Understanding

Shaokun Zhang
MOE Key Lab of HCST,

Dept of Computer Science,
Peking University, Beijing, China

skzhang@pku.edu.cn

Yuanchun Li
Microsoft Research

Beijing, China

Yuanchun.Li@microsoft.com

Weixiang Yan
Beijing University of

Posts and Telecommunications
Beijing, China

yanweixiang@bupt.edu.cn

Yao Guo†

MOE Key Lab of HCST,
Dept of Computer Science,

Peking University, Beijing, China
yaoguo@pku.edu.cn

Xiangqun Chen
MOE Key Lab of HCST,

Dept of Computer Science,
Peking University, Beijing, China

cherry@pku.edu.cn

Abstract—Form understanding is an important task in many
fields such as software testing, AI assistants, and improving
accessibility. One key goal of understanding a complex set of
forms is to identify the dependencies between form elements.
However, it remains a challenge to capture the dependencies
accurately due to the diversity of UI design patterns and the
variety in development experiences. In this paper, we propose
a deep-learning-based approach called DependEX, which inte-
grates convolutional neural networks (CNNs) and transformers to
help understand dependencies within forms. DependEX extracts
semantic features from UI images using CNN-based models,
captures contextual patterns using a multilayer transformer
encoder module, and models dependencies between form elements
using two embedding layers. We evaluate DependEX with a large-
scale dataset from mobile Web applications. Experimental results
show that our proposed model achieves over 92% accuracy in
identifying dependencies between UI elements, which significantly
outperforms other competitive methods, especially for heuristic-
based methods. We also conduct case studies on automatic
form filling and test case generation from natural language
(NL) instructions, which demonstrates the applicability of our
approach.

Index Terms—Form understanding, dependencies, deep learn-
ing, CNN, automatic form filling

I. INTRODUCTION

Form understanding is useful for various purposes in many

software engineering applications [1]–[4]. For example, in

automated testing for mobile applications, valid inputs are

required in the form fields to explore hidden states, in order

to achieve higher code coverage. In AI assistants, natural

language commands are interpreted to carry out specific

tasks, most of which are related to forms. It is crucial for

understanding complex forms to extract dependencies between

form elements. However, it is extremely challenging to model

the dependencies mainly due to: 1) the differences in code

behavior and programming experience between developers; 2)

the diversity of its layout, style, and content.

Many studies have been conducted to describe and con-

textualize the form inputs using semantic annotations such as

†Corresponding author.

tooltip and aria attributes [5]–[7]. However, such annotations

are not available in many form elements, as shown in Figure

1(a). This is mainly due to the poor development behavior of

programmers, which leads to a lack of descriptive annotations

or incorrect attributes in elements. The scenario has been

supported in more recent literature [8], [9]. In addition, several

record-and-replay methods are proposed to understand the

form inputs. For instance, Li et al. [6] associated text labels

with individual UI elements by aggregating user interaction

trace collected by app developers. However, this strategy

with limited scalability is infeasible and inapplicable when

confronted with an abundant number of applications. For these

cases, it is necessary to identify the label of inputs based on

visual or logical contexts.

Several attempts have been made to capture dependen-

cies between form inputs and labels by developing heuristic

rules [9]–[11]. For instance, Pasupat et al. [9] proposed to

incorporate spatial context into the embedding-based model to

understand web elements such as text boxes. More specifically,

one sample was taken from all neighboring label texts of the

element as its semantics. Consider the example in Figure 1(d).

Suppose that our goal is to identify the label related to the first

input box. The heuristic method mentioned above will fail with

a 50% probability because there are adjacent elements both

above and below the input box. In summary, this approach

has shown limited effectiveness in capturing relationships

(dependencies) between inputs and labels. It is also difficult

to design a good heuristic rule due to the complexity of UI

layouts, as illustrated in Figure 1.

Conventional machine learning methods have also been

proposed to understand dependencies within forms [12]–[14].

However, they rely heavily on predefined features hand-

engineered by domain experts. To improve the robustness

and effectiveness, a more intelligent method for form under-

standing is clearly needed. Recently, deep learning models

have been demonstrated as a powerful tool to automatically

extract latent patterns from large volumes of samples [15],

[16]. Especially for CNNs, they can learn hierarchical feature

139

2021 IEEE 32nd International Symposium on Software Reliability Engineering (ISSRE)

2332-6549/21/$31.00 ©2021 IEEE
DOI 10.1109/ISSRE52982.2021.00026

(a) below (b) left (c) right (d) above

Fig. 1: Examples of “label-element” dependencies in different mobile applications. Here we show that, in real applications, the

descriptions (i.e., labels, shown in green boxes) of an input element (shown in red boxes) can be located in different places
around the input elements.

representation from inputs in an end-to-end manner with a

broad spectrum of applications in computer vision tasks [17]–

[20]. More recently, He et al. [19] proposed a model called

ResNet to understand the context of different images, achiev-

ing superior performance in object recognition. Although these

models have the potential to be applied to software engineering

tasks such as dependency understanding, the majority of deep-

learning-based models commonly require large-scale, well-

annotated training data.

To deal with these issues, we first construct a new dataset

UIE-Dependency for form understanding, which involves a

large number of GUI pages. The dataset consists of 25,140

annotated samples represented as triplets, which describe

dependencies between two form elements. We focus on two

representative dependency types: label-element and input-
action. Figure 1 presents some examples within these raw

pages, which mainly include what we refer as “label-element”

dependencies, which shows the relationship of a description

(i.e., label) of a given input element. The “input-action”

dependency is used to describe where an action (button) is

followed after all input elements were filled. Besides these

two dependency types, we also include a type called “others”

for evaluation purpose. Furthermore, all samples are annotated

by a combination of automated and manual approaches, which

we will describe in detail later.

Inspired by popular methods used in image classifica-

tion and machine translation, we propose a deep-learning-

based model called DependEX, which incorporates CNNs

and transformers to extract dependencies between elements.

More specifically, DependEX employs CNN-based models to

extract semantic features of UI elements and then applies mul-

tiple transformer encoder layers to model contextual patterns.

Finally, two fully connected layers are exploited to capture

dependencies between form elements.

We evaluate DependEX with the aforementioned dataset

collected from mobile Web applications. Experimental results

indicate that our approach performs significantly better than

the other competitive models in capturing dependencies be-

tween UI elements, achieving an accuracy of 92.12%. In

addition, we also conduct two case studies on automatic

form filling and test generation from NL instructions, which

incorporate DependEX in the corresponding pipelines and

demonstrate the benefits and applicability of our method.

In summary, this paper makes the following main contribu-

tions:

• We propose a new deep learning-based dependency-

aware form understanding approach DependEX, which

can learn better discriminative features using a multi-layer

transformer encoder module as it incorporates relative

position information.

• We conduct extensive experiments on a large-scale form

dependency dataset collected from mobile Web appli-

cations. The experimental results demonstrate that our

proposed approach outperforms state-of-the-art prediction

methods.

• We demonstrate the applicability of the proposed method

through two case studies: automatic form filling and test

case generation from NL instructions. The results show

that it can adapt to different scenarios and exhibit better

performance than existing approaches.

In addition, we have constructed the first large-scale dataset

of form dependencies between UI elements, which will be

released to the research community1.

II. PRELIMINARIES

In the context of mobile applications (as well as in general

software applications), a form contains a tree of elements,

which are divided into two main types: labels, inputs such

as checkbox, radio box, and selection lists, and actions such

as buttons. Each input element generally corresponds to a

textual description. Note that the terms “labels” and “textual

descriptions” are used interchangeably in the remainder of

this paper. Besides, there may be multiple actions in one

1https://github.com/skzhangPKU/DependEX

140

form, as shown in Fig. 1(d). To automatically and efficiently

discover the large amount of available content hidden behind

the form, it is necessary to understand its intrinsic patterns

(dependencies between UI elements). Next, we will provide

the definitions of relevant concepts.

Definition 1 (The Form Understanding Problem). In this

work, we seek to understand the forms from the perspective

of dependencies between elements. It is transformed into a

typical pattern classification problem. Given a large number

of annotated samples, we aim to construct a structural model

G to learn dependencies between UI elements. The problem

can be formulated as follows:

Yd = G (Ue,Pe; Θ) (1)

where Ue and Pe denote UI elements and the corresponding

view hierarchies, respectively, Yd represents the dependencies

between elements, and Θ stands for learnable parameters. The

view hierarchy, like the one depicted in the lower left section

of Fig. 2, is obtained by using a webbot.

There may exist multiple dependencies between form el-

ements. In this paper, we primarily focus on two aspects:

understanding the semantics of form inputs and determining

which action to choose for interaction, which are represented

as label-element and input-action dependency extraction prob-

lems, respectively. However, our work is generic and can be

easily extended to many other dependencies.

Definition 2 (Label-Element Dependency Extraction). Let

Fo be a form in the UI of a mobile Web application U ,

which contains a set of input elements E = {e1, e2, · · · , en}.
Let D = {d1, d2, · · · , dm} be a set of textual descriptions

in U . The goal of label-element dependency extraction is

determining the set of mappings M between each input field

ei in E and the corresponding descriptive labels dj in D, such

that:

M = {(ei, dj) |
n⋃

i=1

ei = E and
⋃

dj ⊆ D and dj is the

best semantic description of ei}
Definition 3 (Input-Action Dependency Extraction). Let

A = {a1, a2, · · · , ap} be a set of actions in form Fo. The

goal of input-action dependency extraction is to find a set of

corresponding target actions Â given all required input fields

E∗ = {e1∗ , e2∗ , · · · , eq∗}, such that:

Â = {ak | E∗; ak ∈ A and E∗ ⊆ E and ak can result in a

valid form submission if all fields in E∗ are filled}

III. OUR APPROACH

To solve the problem formulated in the previous section,

we propose DependEX, a deep learning based approach

to dependency-aware form understanding. The key goal of

DependEX is to develop a general approach that is able

to identify (and distinguish between) different dependencies

within a form, in order to help understand forms and boost

the efficiency in tasks such as software testing.

Fig. 2 illustrates the overall architecture of our approach,

which consists of the following functional modules: data

preprocessing, semantic feature extraction, and contextual fea-

ture modeling. The preprocessing module can be split into

three main steps, including augmentation, normalization, and

resizing. Based on the preprocessed data described above, De-

pendEX leverages a CNN [21] to extract semantic features of

UI elements and then applies a multilayer transformer encoder

module [22] that incorporates relative position information to

model contextual patterns. Finally, two embedded layers are

used to learn discriminative features to identify dependencies

between elements.

A. Data Preprocessing

Given a UI image I , whose width, height, and channel are

W , H , and C, respectively, we extract a set of n bounding

boxes about the label, input, and action from the UI tree based

on some of the attributes (i.e., ”form id”) automatically. The

set of bounding boxes is denoted as

B = {B1, B2, . . . , Bn} (2)

where the bounding box Bi can be described as follows:

Bi = (xi
min, y

i
min, x

i
max, y

i
max) (3)

Here the coordinates (xi
min, y

i
min) and

(
xi
max, y

i
max

)
stand

for the top-left and bottom-right corner points of the bounding

box, respectively. Note that we take the top-left corner of the

image as the origin (0, 0) in the coordinate system. Further,

we can crop a set of region images based on these coordinates,

which are denoted as

R = {R1, R2, . . . , Rn} (4)

where Ri represents the rectangle area of the original image

with (xi
min, y

i
min) as its top-left coordinates and (xi

max −
xi
min, y

i
max−yimin) as its width and height. Then, to lessen the

effects of background variation, we paste the cropped region

images onto a gray blank image of the same size as the original

image. Next, we perform various data transformations, includ-

ing augmentation (random brightness, contrast, and saturation

changing), normalization, and resizing, to avoid the risk of

overfitting. The procedure is described as follows:

Imerge = paste(R, Ibg) (5)

Itrans = transforms(Imerge) (6)

where Imerge and Itrans stand for the image produced after

the paste and transform operations separately, and Ibg stands

for the gray blank image.

B. Semantic Feature Extraction

To extract the semantic features from UI images, we lever-

age CNN models, which have shown superior performance

on image recognition tasks compared with conventional meth-

ods [23]–[27]. The main reason is that CNN-based models can

capture high-level latent patterns from images via a hierarchi-

cal layer-based structure. The feature extraction process can

be described as follows:

Fm = CNN(Itrans;W) (7)

where Fm indicates the feature map extracted from the image

Itrans and W are all learnable parameters of the CNN model.

Our CNN model mainly involves two operations: convolution

and pooling.

141

Fig. 2: The overall architecture of DependEX.

Besides, to capture position dependencies of semantic fea-

tures, the feature map extracted from the CNN is reshaped

and then fed into an embedding layer, which is described as

follows: F ′
m = reshape(Fm) (8)

Fe = embedding(F ′
m) (9)

where F ′
m represents the output produced after the reshape

operation, and Fe is the embedded semantic feature.

C. Contextual Feature Modeling

To capture the spatial context pattern of the embedded

semantic features, we adopt the multilayer transformer encoder

module, which is a part of the transformer architecture [22].

Our intuition is that abstract dependencies can be extracted
based on relative positional relationships between UI elements
within a given context. Besides, knowledge such as the prox-

imity and closure between semantically correlated UI elements

also provides a significant insight into the problem. There are

different methods for embedding a collection, where elements

are structurally correlated with each other. For instance, graph

convolutional networks [28] utilize an adjacency matrix deter-

mined by the UI layout to adjust the effect of neighbors on an

object. Transformers [29] can learn the relationship between

objects by incorporating the relative positions. Thus we choose

transformers to capture contextual patterns.

The multilayer module takes the embedded semantic feature

as input, i.e.,

H0 = Fe = {Fr1
e ,Fr2

e , . . . ,FrL
e } (10)

where Fri
e indicates the i-th element of the embedded feature

sequence, and L is the length of the sequence. Further, the

multilayer encoder module can be phrased as follows:

Hl = transformer encoder(Hl−1), for l = 1, . . . , N
(11)

where Hl−1 represents the input of the i-th encoder module,

and N is the number of modules. For the encoder module,

it contains three components: positional encoding, multi-head

self-attention layer, and feed-forward layer. The positional

encoding represents the relative position information of em-

bedded semantic features, which can be integrated into the

model to better learn dependencies between UI elements. The

multi-head self-attention layer is used to capture local and

global patterns between input vectors. The resulting output is a

concatenation of attention value vectors generated by multiple

heads in the same position.

D. Dependency Relation Identification

As mentioned in the previous sections, we leverage a CNN

to extract embedded semantic features of UI elements and

a multilayer transformer encoder module that incorporates

relative position information to capture contextual patterns.

To model dependency relations between UI elements, the

contextual features extracted from encoder modules are fed

into two fully connected layers, the first of which is followed

by a batch normalization layer and a ReLU activation layer.

Finally, we apply a softmax operation to the output of fully

connected layers. Specifically, it can be formulated as follows:

Fd = W r
1 ×HN + br1 (12)

Fbr
d = relu(batch norm(Fd)) (13)

Yr = softmax(W r
2 ×Fbr

d + br2) (14)

where W r
∗ and br∗ are both trainable parameters in the model,

Fd stands for the output of the first dense layer, and Yr

indicates the estimation score of the model for each category.

Joint Loss Function. Our model is optimized by leveraging

a joint loss that consists of softmax cross-entropy loss and

center loss. The center loss can contribute to better learn

discriminative features. The joint loss is defined as follows:

L = Ls + μLc (15)

where Ls denotes the softmax cross-entropy loss, Lc stands

for the center loss, and μ controls the trade-off between Ls

and Lc.

To reduce the within-class variance of discriminative fea-

tures, we introduce the center loss, which is calculated using

the output feature vector of the last hidden layer. The system

142

assigns a global center to each category and minimizes the

distance between the output feature vector and the center.

However, it is impractical to calculate the center for all

output features. One intuitive solution is to update parameters

based on mini-batch. Specifically, the center loss is defined as

follows:

Lc =
1

Nb

Nb∑

i=1

‖F i
d − zt∗i ‖2 (16)

where t∗i stands for the category to which the sample cor-

responding to the i-th output feature belongs, and zk (k ∈
{1, 2, . . . , Cn}) denotes the global center for the k-th cate-

gory.The center vector is updated according to the following

formula:

∂Lc

zk
=

1

Nb + 1
·

Nb∑

i=1

(zt∗i −F i
d) · 1{t∗i = k} (17)

where 1{·} denotes the indicator function. The function value

is defined as 1 when the category of the i-th sample is equal

to k and 0 otherwise.

IV. EVALUATION

Section 4.1 presents the experimental setups including

dataset, compared methods and comparing metrics, etc. Sec-

tion 4.2 compares the performance of DependEX with other

competitive models. Section 4.3 investigates the effect of

hyperparameters on the overall performance of DependEX.

Section 4.4 evaluates the usefulness of our approach with two

case studies: automatic form filling and test case generation

from NL instructions.

A. Experimental Setups

1) Datasets: We evaluate DependEX with a large-scale

dataset (UIE-Dependency) collected from mobile Web applica-

tions by ourselves. We implement a crawler to collect raw sam-

ples from 20,000 mobile Web sites, which performs actions

such as clicks on these sites in order to reach more different

UI states. The raw dataset contains a total of 51,695 samples,

each of which involves a UI state and a view hierarchy. A

UI can contain 0 or more forms, and each form has multiple

types (e.g., login, contact, registration, and search). After

screening and removal of UIs without forms, the remaining

samples are selected for analysis. Here, 0 forms mean that

the UI does not interact with the remote server. Furthermore,

we adopt a combination of automated and manual methods

to label relations between form elements, which results in

25,140 annotated element dependency pairs (label-element:

8558, input-action: 5811, others: 10771). Overall, in terms

of label-element and input-action dependencies, around 87%

of samples are manually annotated or refined on top of the

automatic labeling process. Notably, there are a large number

of pairs in the “others” category, where input elements are

randomly mapped to incorrect descriptions or actions. This

aims to keep a balanced sample distribution. The sample size

is 10771, which is fewer than the sum of 8558 and 5881,

mostly because there is only one action or description in some

forms. 80% of all pairs are taken as the training dataset, and

the remaining part is used as a testing dataset. In addition,

Fig. 3: An illustrative example of the annotation process. Here,

the blue box indicates the form F , the green box the text

descriptions T∗, the yellow box the buttons B∗, and the red

box and the orange box indicate the input element I1 and its

placeholder P . The right part of the figure shows the attributes

of I1.

we also perform a series of basic preprocessing operations,

including augmentation, normalization, and resizing.

The whole annotation process is summarized in Algo-

rithm 1. To clarify the procedure of this algorithm, a rep-

resentative example is presented in Fig. 3. We observe that

form F consists of two text descriptions (T1 and T2), two

buttons (B1 and B2), and an input element (I1) that contains

the placeholder (P). In the first phase, shown in lines 3-11,

T1 and T2 are grouped into the set L, B1 and B2 into the A,

and I1 is grouped into the set I . Besides, the input I1 itself is

a semantic description due to the presence of the placeholder

text. In the next phase, in lines 13-19 of Algorithm 1, the

‘labelText’ attribute value of the input I1 (“Email or phone”)

is the same as the text of T2, which implies a label-element

dependency between T2 and I1. In the last phase, we manually

label I1 and B2 as the input-action dependency since there are

multiple buttons in the form (lines 21-24).

2) Compared Methods: To evaluate the effectiveness of

DependEX, we compare it against the following methods:

• RS [9]: It randomly selects (RS) one from all neighboring

descriptions of the element as its semantics.

• SCD: It selects the closest description (SCD) of the

element in terms of distance.

• GP [7]: It captures dependencies between input elements

and labels based on Gestalt principles (GP) of visual

perception.

• GNB [5]: It is a Gaussian Naı̈ve Bayes (GNB) classifier.

• VGGNet [23]: It is made up of a series of convolutional,

pooling, and dense layers.

• ResNet [24]: It designs a residual structure that uses

shortcut connections to mitigate the degradation of net-

works.

• GoogleNet [25]: It consists of a variety of different

inception modules, which can model local characteristics

at multiple scales.

• DenseNet [26]: It has a hierarchical structure, where each

layer takes the output of all previous layers as input.

143

Algorithm 1: The annotation process

1 for each form Fo do
2 // Phase 1
3 for each element e ∈ Fo do
4 if e.hasText then
5 Append e to the set of label fields L;

6 if e.tagName is ’BUTTON’ then
7 Append e to the set of actions A;

8 if e.tagName is ’INPUT’ then
9 Append e to the set of input fields I;

10 if e.hasPlaceholder then
11 Append 〈e, (e)〉 to the set of

dependencies between labels and input
fields Dl;

12 // Phase 2
13 for each input field ei ∈ I do
14 for each label field ej ∈ L do
15 if ej .text equals ei.labelText then
16 if Dl[ei].hasElement then
17 Append ej to Dl[ei];
18 else
19 Append 〈ei, (ej)〉 to Dl;

20 // Phase 3
21 if A.size equals 1 then
22 Append 〈I, A[0]〉 to the set of dependencies

between input elements and actions Di;
23 else
24 Manually annotate input-action dependencies;

25 Manually annotate unlabeled label-element
dependencies;

26 Manually check and correct annotation errors.

3) Hardware Setup and Parameters: In this study, we

conduct all pretreatment operations that include augmentation,

normalization, and resizing on a PC (CPU: Intel (R) Core

(TM) i7-9700F @ 3.00GHz, Memory: 16GB). The deep

learning models are built and implemented in the PyTorch

environment on a CUDA-enabled NVIDIA GPU (RTX 2080

Ti).

The weights of all CNN-based architectures are initialized

from the corresponding ImageNet pre-trained models and fine-

tuned on the UIE-Dependency dataset. For these CNN-based

models, all layers except the last one are frozen, and the

last layer is replaced with a randomly initialized layer that

outputs the number of dependency types. VGGNet, ResNet,

and DenseNet consist of 19, 101, and 201 layers, respectively.

We also employ an Adam optimizer at an initial learning rate

of 0.001 and a batch size of 64 to update the weights.

4) Evaluation Metrics: We assess the performance of

machine-learning-based models using the standard metrics

(i.e., accuracy, precision, recall, and F1 scores), which are

widely used in classification tasks. The evaluation metrics are

described as follows:

accuracy =
TP + TN

TP + FN + TN + FP
(18)

precision =
TP

TP + FP
(19)

recall =
TP

TP + FN
(20)

F1−score = 2× precision× recall

precision+ recall
(21)

where TP, TN, FN, and FP stand for true positive, true

negative, false negative, and false positive, respectively.

We evaluate the performance of heuristic methods using

identification accuracy (the ratio between the number of cor-

rectly identified samples and the total number of samples).

Notably, their accuracy should be compared with the recall

value of classification methods on LE.

B. Overall Results

In this section, we evaluate and compare the performance

of different models (RS, GP, SCD, GNB, VGGNet, ResNet,

GoogleNet, DenseNet, and DependEX). Table I presents the

quantitative results of these models for identifying dependen-

cies between UI elements.

The results show that DependEX performs the best among

deep-learning-based models on the dataset. Specifically, De-

pendEX increases the mean accuracy by 15.33%, 16.05%,

19.21%, and 14.99% with respect to VGGNet, ResNet,

GoogleNet, and DenseNet, respectively. The results demon-

strate the benefits of incorporating transformer encoders into

the model, indicating that these pure CNN architectures are

less suitable for form understanding. For other evaluation

metrics (precision, recall, and F1-score), it also surpasses all

competitors, which implies the effectiveness and robustness of

DependEX. Moreover, a higher F1-score value indicates that

our model tends to exhibit better results on LE than IA2.

We can also observe that DependEX outperforms RS, SCD,

GP, and GNB. The main reason is that the scalability of

these heuristic methods and machine-learning-based methods

is limited. For example, GP only considers the top and left

sides of input elements while ignoring its right and bottom

sides. Thus, it will fail for samples like those shown in Fig.s 1

(a) and (c). We also show an illustrative example missed by

both RS and SCD but correctly identified by DependEX in

Fig. 5. In this case, RS and SCD mistakenly take the ‘PRICE’

description as the semantics of the input element. We believe

that it is difficult to design a good heuristic rule due to the

complexity of UI layouts. Thus a learning-based approach

makes sense because modeling dependencies between form

elements ultimately requires some heuristics, which is exactly

what DependEX is designed to learn.

There exhibit slight inconsistencies in the performance

ranking of baseline models under different evaluation metrics.

From Table 1, we observe no strong correlation between evalu-

ation indicators. For instance, the average accuracy, precision,

recall, and F1-score values of DenseNet are 77.13%, 75.42%,

75.22%, and 75.29%, respectively. Compared with VGGNet,

it achieves better performance in terms of the mean accuracy

2F1-score considers both precision and recall, and provides an overall
measure of classification performance.

144

TABLE I: Performance comparison of different models. Here, LE and IA indicate the two dependency classes: label-element

and input-action, respectively. AVG represents the average value for all classes. Note that RS, SCD, and GP are heuristic
methods, which only consider label-element dependency extraction. Therefore, their precision, recall, and F1-score are not
reported in the table.

Model Accuracy (%)
Precision (%) Recall (%) F1-score (%)

LE IA AVG LE IA AVG LE IA AVG

Baselines

RS [9] 28.86 - - - - - - - - -
SCD 46.04 - - - - - - - - -

GP [7] 43.42 - - - - - - - - -
GNB [5] 41.98 40.27 42.33 42.25 59.74 15.57 39.05 48.11 22.76 37.95

Pretrained CNN architectures

VGGNet [23] 76.79 70.09 67.63 75.83 82.63 64.16 75.24 75.85 65.85 75.23
ResNet [24] 76.07 71.44 65.79 74.32 80.18 57.57 73.56 75.56 61.41 73.76

GoogleNet [25] 72.91 72.91 61.77 71.83 79.04 59.28 71.23 72.14 60.50 71.19
DenseNet [26] 77.13 73.46 66.55 75.42 77.39 64.16 75.22 75.37 65.33 75.29

Our proposed model DependEX 92.12 93.20 81.96 90.98 85.82 93.24 91.94 89.36 87.24 91.29

(a) Test loss values with different

numbers of transformer encoder

layers (lower is better).

(b) Performance with different values

of μ in the joint loss function (higher
is better).

(c) Performance with different

embedding size (higher is better).

Fig. 4: The results of sensitivity analysis.

Fig. 5: One failure example in both RS and SCD. Here, the

red box indicates the input element Is.

and F1-score, but not in terms of the average precision and

recall. The results also indicate that it is noteworthy that our

model can perform well under all metrics.

C. Sensitivity Analysis

In the first experiment, we investigate the parameter sen-

sitivity of N , the number of transformer encoder layers, on

the overall performance of DependEX. Fig. 4 (a) shows the

test loss curves of DependEX under different quantities of

transformer encoder layers (1 to 6). We can see that DependEX

achieves convergence when the number of epochs is about

25. Moreover, DependEX performs differently for varying

numbers of encoder layers. In particular, DependEX yields

the lowest test error when N is equal to 2.
We also evaluate the effect of the hyperparameter μ in the

joint loss function on model performance. Fig. 4 (b) shows the

overall accuracy of DependEX using the joint loss function

with μ set to 0, 0.1, 0.5, 1.0, 5.0, and 10. In particular,

μ = 0 indicates that the objective function is equivalent

to the categorical cross-entropy. For visualization purposes,

we perform smoothing operations3 on these accuracy curves.

We can see that the joint loss function enables a higher

classification accuracy than the cross-entropy loss function,

which implies the effectiveness of the center loss in modeling

dependencies between UI elements. Besides, among a set of

different parameter values, DependEX with μ = 1.0 performs

the best, which yields an accuracy of 92.12%.
The last experiment is to explore how the embedding size

affects the performance of DependEX. Fig. 4 (c) illustrates

the quantitative results of DependEX with varying embedding

3Smoothing is widely used in the ML community to avoid showing the
extreme values in a dataset.

145

size. The figure shows that the accuracy first rises and then

falls with the increase of the embedding size. We observe that

our model exhibits the best performance with an embedding

size of 240. When the size exceeds more than 240, the

accuracy reveals a decreasing trend overall. One potential

reason is that as the model complexity increases, it is more

likely to fall into a local optimum during the training stage.

D. Case Studies
In this section, we evaluate the usefulness of our approach

in two case studies: automatic form filling and test generation
from NL instructions.

The dataset for quantitative evaluation contains a total of

30 form entries, which are randomly sampled from invisible-

web.net. The website includes about 1,000 deep Web sources

across 18 top-level domains. We choose this dataset based on

the following reasons: 1) The dataset is publicly available. 2)

It has been used in previous research studies. For instance,

Zhang et al. [30] proposed a hybrid model that integrates a

2P grammar and a global mechanism to capture the hidden

syntax of forms using this dataset.
Automatic form filling. It helps reduce the repetitive be-

havior of end-users, thereby increasing work productivity. To

evaluate the usefulness of our approach in automatic form fill-

ing, we conduct a comparison with the Autofill Form plugin of

Mozilla Firefox4, which serves as a baseline method. Specifi-

cally, the key-value pairs predefined in the plugin are used as

input. The experiment is carried out according to the following

steps. First, we employ DependEX to identify descriptive

labels associated with input elements. Second, there are two

different strategies for selecting default values based on labels:

semantics similarity5 or fuzzy matching, which correspond to

DependEX-S and DependEX-E in Table II, respectively. Note

that the plugin also adopts a fuzzy matching strategy. Third, we

enter the identified values into the corresponding form fields.

Fourth, we use the Firefox browser to open the same page and

the plugin to fill out forms automatically. Last, we calculate

the precision and recall of our approach and the plugin using

the following equations.

precision =
|Correct filled input fields|

|Filled input fields| (22)

recall =
|Correct filled input fields|
|Input fields need to be filled| (23)

The experimental results show that our approach using a

fuzzy matching strategy outperforms than the Firefox plugin

in automatic form filling. More specifically, DependEX-E

achieves average precision and recall of 90.32% and 69.14%,

respectively, while the plugin yields that of 83.33% and

37.04%, respectively. The main reason is the lack of descrip-

tive annotations or incorrect attributes in form elements due

to poor development behaviors. For this case, the plugin will

completely fail in form filling. Therefore, it is not feasible to

rely solely on attribute matching like plugins.

4https://addons.mozilla.org/en-US/firefox/addon/
autofill-forms-webextension

5https://github.com/JennaBellassai/phrase-similarity

Fig. 6: One failure example of the form filling plugin.

TABLE II: Comparison of our approach comparing with the

corresponding baselines in two case studies: automatic form

filling and test generation from NL instructions.

Task Method Metric

Automatic form filling

Firefox plugin
precision 83.33%
recall 37.04%

DependEX-E
precision 90.32%
recall 69.14%

DependEX-S
precision 94.59%
recall 86.42%

Test generation from
NL instructions

LRTB pass rate 86.67%

DependEX pass rate 93.33%

Fig. 6 illustrates one representative failure of the form filling

plugin. By default, the plugin uses a fuzzy matching strategy

to map the name attribute value of input elements to keywords

in the predefined user profile. However, in this example,

the name attribute is completely absent in input elements.

In contrast, DependEX-E identifies corresponding semantic

descriptions by modeling the dependencies between elements,

thereby filling in input fields correctly. The results demonstrate

that DependEX is useful for automatic form filling.

Another important observation is that the semantic similarity

strategy performs better than fuzzy matching. Specifically, the

precision and recall values of DependEX-S are 94.59% and

86.42%, which are 4.36% and 17.28% higher than that of

DependEX-E, respectively. The reason is that input fields,

corresponding to some labels with at least one match based on

semantic similarity and no matches based on fuzzy search, can

be correctly filled in. For instance, a predefined user profile

contains the ‘lastname’ keyword, while the description of input

elements is ‘surname’. In this scenario, DependEX-S exhibits

better performance than DependEX-E.

Test generation from NL instructions. It refers to vali-

dating the software based on NL instructions provided by a

group of freelance testers in a real-world user environment.

Compared with traditional methods, it can detect software

defects more quickly and affordably. Next, we investigate

the validity of our approach in test generation based on test

reports, which involve a set of natural language instructions.

Note that here we focus primarily on mobile Web forms.

For evaluation, we define a baseline model called LRTB to

146

Fig. 7: The description of test instructions.

compare with our approach, which processes instructions in

sequence, tests form elements from left to right and top to

bottom, and randomly chooses an action for interaction. Our

goal is to quantitatively assess the pass rate of given test

reports for our method and LRTB.

The experiments involve five main steps. In the first step,

we recruit undergraduate students to provide test instructions

for a given UI. The second step is to convert instructions

into key-value pairs using natural language processing (NLP)

techniques (stop words removal, part-of-speech tagging, etc.).

The third step is to test form elements whose labels are

semantically similar to a given key and choose an action for

interaction based on DependEX. The fourth step is to operate

under the rules defined by LRTB. In the last step, we compute

the pass rate of test reports for DependEX and LRTB using

the following formula.

pass rate =
|Passed test reports|

|Test reports need to be executed| (24)

Fig. 7 shows an example of manually written test instruc-

tions. First, the recruited students provide the corresponding

NL instructions for the ‘Username’, ‘Password’, and ‘Email’

input fields. Next, we extract the phrase pairs that describe

each operation from the instructions, which includes its object

and arguments (lower right of Fig. 7). Finally, we identify

the form elements to be tested under the rules of Depen-

dEX or LRTB based on the UI tree and screenshots and

use Appium [31] to enter the extracted pairs into the input

elements and submit the form. In this case, there is a test

failure for LRTB because it fills ‘Jackson’, ‘1q2w3e4r5t6y’,

and ‘xxx@gmail.com’ into the ‘Search’, ‘Username’, and

‘Password’ textboxes, respectively.

The experimental results indicate that our model outper-

forms LRTB in this application. Specifically, the overall pass

rate of DependEX is 93.33%, while LRTB is 86.67%. With

careful examination, we find that this can be attributed to the

following reasons: 1) LRTB cannot locate the tested input

elements correctly due to the presence of multiple forms. 2)

There are multiple actions in a form, which may make LRTB

unavailable for identifying the action that leads to a valid form

submission. 3) The UI layout changes caused by the diversity

of mobile devices may invalidate the rule-based LRTB method.

V. DISCUSSIONS

A. Threats to Validity

Internal Threats. Hyperparameters settings are the main

internal threat for all models except for RS and GP, which

can affect the classification performance to a certain degree.

In order to reduce the impact on the results, all parameters

are set to the default values whenever possible. For cases

where default configurations are not available, we select the

best result in a small-scale setting for evaluation, in order to

minimize this threat.

External Threats. In the second case study, we only

recruited two undergraduate students to provide test reports

of given forms. However, in real situations, there are a large

number of freelance testers with various instruction styles.

There may exist a performance bias in converting test in-

structions into key-value pairs. Indeed, NLP techniques have

been developed for many years. We only need to select the

appropriate processing steps and technology. Therefore, this

threat can be significantly reduced.

B. Limitations

As mentioned in Section 4, our approach is a promising

technique with outstanding performance compared with other

competitive baselines. However, it also has several unresolved

limitations, such as it may involve a relatively time-consuming

process. For instance, given a form input, unlike recognition

methods that can directly output the corresponding label, our

method needs to match it against all candidate descriptions. We

will consider designing a recognition-based model to capture

dependencies between UI elements in our future work.

C. Performance Considerations

An important consideration is the computational complexity

and the memory overhead of DependEX. In terms of GPU

memory, main memory, and time, the training phase takes

2.58 GB, 2.64 GB, and 98 minutes, respectively, while the

inference phase requires 2.43 GB, 2.0 GB, and 0.1658 seconds,

respectively. We can see that the fast inference time could meet

the real-time deployment requirements.

D. Other Potential Application Scenarios

Besides the two cases presented in this work, we expect

DependEX can be applied in many a wide range of scenarios.

We observe that mobile Web designs typically follow certain

common patterns. For example, UI elements are arranged

according to specific rules, such as from top to bottom and

left to right. Due to the characteristics of these patterns, we

believe DependEX can also be applied in many other cases

such as:

Reference games. In this scenario, the system needs to

select the corresponding reference object for a given utterance.

Most existing methods [9] determine objects based on the

semantic similarity of utterances and attributes. However,

such attributes are not available in many objects due to the

poor development behavior of programmers. This has been

confirmed by more recent studies [8], [9]. It is necessary to

147

identify descriptive labels associated with objects, which can

be extended easily based on DependEX.

Building task-oriented bots from mobile apps. The core

idea of building bots is to transform the logic of user tasks

into a conversation. Prior work [6] has explored the question-

answer interface generation using a hybrid model, which

integrates rule-based and neural network methods. However,

they adopted a method of aggregating user interaction traces

collected by app developers to understand the form elements

during the question generation process. This is undoubtedly an

expensive procedure that can be optimized with our proposed

method, as our experiments indicate that DependEX performs

well in identifying dependencies between UI elements.

VI. RELATED WORK

Form understanding has been investigated extensively for

many years [9], [10], [13], [30]. A variety of methods have

been proposed to unlock the hidden contents of mobile

applications [3], [5], [7]. Khare et al. [14] systematically

reviewed existing methods, which fall into two general cat-

egories: rule and heuristic approaches and machine-learning-

based approaches.

A. Rule-based and Heuristic Approaches

Many work have attempted to understand dependencies in

forms based on a bundle of rules, including GUI design rules,

hand-crafted rules, and heuristic rules [9], [32], [33]. For

instance, Becce et al. [32] proposed to identify the descriptive

information of widgets based on Gestalt principles (prox-

imity, homogeneity, and closure). Besides these principles,

Wanwarang et al. [7] also added an enclosure metric on the

Android view hierarchy, which means that form inputs can

provide a brief description of themselves, thereby visually

increasing the richness of GUI. However, they are all based

on the assumption that GUI designs follow a hidden pattern,

which implies that all descriptions appear at the top/left of

form inputs.

Moreover, a series of methods based on hand-crafted rules

have been developed to understand web query interfaces [4],

[10], [30], [33]–[35]. For example, He et al. [33] proposed

a two-step method to perform interface extraction: First,

the interface expression, which includes multiple basic items

(elements, labels, row delimiters, etc.), was extracted from the

form layout. In the second step, elements and labels were

grouped into logic attributes based on expressions. Besides,

Zhang et al. [30] formalized interface understanding as a

parsing problem. More specifically, a 2P grammar, which in-

corporates several production rules, was developed to capture

common design patterns. A global parsing mechanism was

proposed to understand the semantics of interfaces systemati-

cally.

There are also some studies based on heuristic rules to inter-

pret forms [9]–[11], [36]. Pasupat et al. [9] proposed to employ

an embedding-based model that incorporates spatial context to

understand web elements such as text boxes. More specifically,

one sample was randomly selected from all neighboring label

texts of the element as its semantics. Experimental results

demonstrate that this strategy is not suitable for identifying

associated labels of elements. Raghavan et al. [11] developed

an application-specific crawler called HiWE, which combines

visual layouts and heuristic rules, to extract content from the

hidden web. The HiWE first computes the pixel distances

between the form field and candidate text pieces. Then, a series

of heuristic rules based on multiple factors (font size, direction,

etc.) are employed to select one of these candidate labels.

However, these approaches showed limited effectiveness in

capturing dependencies between elements and descriptions.

B. Machine-Learning-based Approaches

In contrast to the methods mentioned above, the traditional

machine learning methods can adaptively model the rela-

tionship between features hand-designed by domain experts

[5], [12]–[14], [37], [38]. Several researchers attempted to

employ Naı̈ve Bayes and Decision Tree classifiers to learn

dependencies between form elements and labels. For instance,

Nguyen et al. [5] proposed a novel hierarchical classifier

called LABELEX to extract form layout patterns. The LA-

BELEX combines different kinds of features, including the

string similarity between candidate descriptions and elements,

spatial features, etc. However, they did not take field groups

into account. In addition, Santiago et al. [12] developed a

hybrid approach to extract implicit form constraints. More

specifically, several techniques, including machine learning

and natural language processing, were exploited to extract

the semantics of web forms (element types and constraints).

Based on the extracted semantics with constraint information,

constraint solvers that combine boundary value analysis and

equivalence class partitioning algorithms were applied to gen-

erate test inputs. However, the small sample size limits the

scalability of these methods.

VII. CONCLUDING REMARKS

In this paper, we propose DependEX, a deep-learning-based

approach to identify dependencies between UI elements within

forms. Inspired by recent developments in deep learning, we

design CNN-based models to extract semantic features from

UI images and apply a multilayer transformer encoder module

that incorporates relative positions of elements to capture

contextual patterns. Moreover, two fully connected layers are

employed to learn discriminative features to identify depen-

dencies between UI elements. Extensive experiments show that

our approach offers promising performance compared with

other competitive models.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their

valuable feedback. This work was supported in part by the

National Key Research and Development Program under Grant

2017YFB1001904 and in part by the National Natural Science

Foundation of China under Grant 61772042.

148

REFERENCES

[1] Z. Bar-Yossef and M. Gurevich, “Random sampling from a search
engine’s index,” Journal of the ACM (JACM), vol. 55, no. 5, pp. 1–
74, 2008.

[2] W. Su, H. Wu, Y. Li, J. Zhao, F. H. Lochovsky, H. Cai, and T. Huang,
“Understanding query interfaces by statistical parsing,” ACM Transac-
tions on the Web (TWEB), vol. 7, no. 2, pp. 1–22, 2013.

[3] S. Raghavan and H. Garcia-Molina, “Crawling the hidden web,” in
VLDB, 2001, pp. 129–138.

[4] O. Kaljuvee, O. Buyukkokten, H. Garcia-Molina, and A. Paepcke, “Effi-
cient web form entry on pdas,” in Proceedings of the 10th international
conference on World Wide Web, 2001, pp. 663–672.

[5] H. Nguyen, T. Nguyen, and J. Freire, “Learning to extract form labels,”
Proceedings of the VLDB Endowment, vol. 1, no. 1, pp. 684–694, 2008.

[6] T. J.-J. Li and O. Riva, “Kite: Building conversational bots from mobile
apps,” in Proceedings of the 16th Annual International Conference on
Mobile Systems, Applications, and Services, 2018, pp. 96–109.

[7] T. Wanwarang, N. P. Borges Jr, L. Bettscheider, and A. Zeller, “Testing
apps with real-world inputs,” in Proceedings of the IEEE/ACM 1st
International Conference on Automation of Software Test, 2020, pp. 1–
10.

[8] J. Chen, C. Chen, Z. Xing, X. Xu, L. Zhu, G. Li, and J. Wang, “Unblind
your apps: Predicting natural-language labels for mobile gui components
by deep learning,” arXiv preprint arXiv:2003.00380, 2020.

[9] P. Pasupat, T.-S. Jiang, E. Z. Liu, K. Guu, and P. Liang, “Mapping natural
language commands to web elements,” arXiv preprint arXiv:1808.09132,
2018.

[10] W. Wu, A. Doan, C. Yu, and W. Meng, “Modeling and extracting
deep-web query interfaces,” in Advances in Information and Intelligent
Systems. Springer, 2009, pp. 65–90.

[11] S. Raghavan and H. Garcia-Molina, “Crawling the hidden web,” Stan-
ford, Tech. Rep., 2000.

[12] D. Santiago, J. Phillips, P. Alt, B. Muras, T. M. King, and P. J. Clarke,
“Machine learning and constraint solving for automated form testing,”
in 2019 IEEE 30th International Symposium on Software Reliability
Engineering (ISSRE). IEEE, 2019, pp. 217–227.

[13] T. Furche, G. Gottlob, G. Grasso, X. Guo, G. Orsi, and C. Schallhart,
“Opal: automated form understanding for the deep web,” in Proceedings
of the 21st international conference on World Wide Web, 2012, pp. 829–
838.

[14] R. Khare, Y. An, and I.-Y. Song, “Understanding deep web search
interfaces: A survey,” ACM SIGMOD Record, vol. 39, no. 1, pp. 33–40,
2010.

[15] M. Jain, J. C. Van Gemert, and C. G. Snoek, “What do 15,000
object categories tell us about classifying and localizing actions?” in
Proceedings of the IEEE conference on computer vision and pattern
recognition, 2015, pp. 46–55.

[16] G. Papandreou, T. Zhu, N. Kanazawa, A. Toshev, J. Tompson, C. Bregler,
and K. Murphy, “Towards accurate multi-person pose estimation in the
wild,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2017, pp. 4903–4911.

[17] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille,
“Deeplab: Semantic image segmentation with deep convolutional nets,
atrous convolution, and fully connected crfs,” IEEE transactions on
pattern analysis and machine intelligence, vol. 40, no. 4, pp. 834–848,
2017.

[18] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature
hierarchies for accurate object detection and semantic segmentation,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2014, pp. 580–587.

[19] K. He, X. Zhang, S. Ren, and J. Sun, “Identity mappings in deep residual
networks,” in European conference on computer vision. Springer, 2016,
pp. 630–645.

[20] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time
object detection with region proposal networks,” in Advances in neural
information processing systems, 2015, pp. 91–99.

[21] Y. LeCun, Y. Bengio et al., “Convolutional networks for images, speech,
and time series,” The handbook of brain theory and neural networks,
vol. 3361, no. 10, p. 1995, 1995.

[22] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in neural information processing systems, 2017, pp. 5998–6008.

[23] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[24] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[25] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2015, pp. 1–9.

[26] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, 2017, pp. 4700–4708.

[27] A. Zeggada, F. Melgani, and Y. Bazi, “A deep learning approach to uav
image multilabeling,” IEEE Geoscience and Remote Sensing Letters,
vol. 14, no. 5, pp. 694–698, 2017.

[28] M. Niepert, M. Ahmed, and K. Kutzkov, “Learning convolutional neural
networks for graphs,” in International conference on machine learning.
PMLR, 2016, pp. 2014–2023.

[29] N. Parmar, A. Vaswani, J. Uszkoreit, L. Kaiser, N. Shazeer, A. Ku, and
D. Tran, “Image transformer,” in International Conference on Machine
Learning. PMLR, 2018, pp. 4055–4064.

[30] Z. Zhang, B. He, and K. C.-C. Chang, “Understanding web query
interfaces: Best-effort parsing with hidden syntax,” in Proceedings of
the 2004 ACM SIGMOD international conference on Management of
data, 2004, pp. 107–118.

[31] Appium, “Project homepage,” 2016. [Online]. Available: http://appium.
io/

[32] G. Becce, L. Mariani, O. Riganelli, and M. Santoro, “Extracting widget
descriptions from guis,” in International Conference on Fundamental
Approaches to Software Engineering. Springer, 2012, pp. 347–361.

[33] H. He, W. Meng, C. Yu, and Z. Wu, “Automatic extraction of web search
interfaces for interface schema integration,” in Proceedings of the 13th
international World Wide Web conference on Alternate track papers &
posters, 2004, pp. 414–415.

[34] S. M. Benslimane, M. Malki, M. K. Rahmouni, and D. Benslimane,
“Extracting personalised ontology from data-intensive web application:
an html forms-based reverse engineering approach,” Informatica, vol. 18,
no. 4, pp. 511–534, 2007.

[35] H. He, W. Meng, Y. Lu, C. Yu, and Z. Wu, “Towards deeper under-
standing of the search interfaces of the deep web,” World Wide Web,
vol. 10, no. 2, pp. 133–155, 2007.

[36] E. C. Dragut, T. Kabisch, C. Yu, and U. Leser, “A hierarchical approach
to model web query interfaces for web source integration,” Proceedings
of the VLDB Endowment, vol. 2, no. 1, pp. 325–336, 2009.

[37] R. Khare and Y. An, “An empirical study on using hidden markov model
for search interface segmentation,” in Proceedings of the 18th ACM
conference on Information and knowledge management, 2009, pp. 17–
26.

[38] W. Wu, C. Yu, A. Doan, and W. Meng, “An interactive clustering-based
approach to integrating source query interfaces on the deep web,” in
Proceedings of the 2004 ACM SIGMOD international conference on
Management of data, 2004, pp. 95–106.

149

