
Dynamic Slicing for Deep Neural Networks

Ziqi Zhang∗

Key Laboratory of High-Confidence
Software Technologies (MOE),
Dept of Computer Science,

Peking University
Beijing, China

ziqi_zhang@pku.edu.cn

Yuanchun Li∗2

Microsoft Research
Beijing, China

Yuanchun.Li@microsoft.com

Yao Guo2

Key Laboratory of High-Confidence
Software Technologies (MOE),
Dept of Computer Science,

Peking University
Beijing, China

yaoguo@pku.edu.cn

Xiangqun Chen
Key Laboratory of High-Confidence

Software Technologies (MOE),
Dept of Computer Science,

Peking University
Beijing, China

cherry@pku.edu.cn

Yunxin Liu
Microsoft Research

Beijing, China
Yunxin.Liu@microsoft.com

ABSTRACT

Program slicing has been widely applied in a variety of software en-

gineering tasks. However, existing program slicing techniques only

deal with traditional programs that are constructed with instruc-

tions and variables, rather than neural networks that are composed

of neurons and synapses. In this paper, we propose NNSlicer, the

first approach for slicing deep neural networks based on data flow

analysis. Our method understands the reaction of each neuron to

an input based on the difference between its behavior activated by

the input and the average behavior over the whole dataset. Then

we quantify the neuron contributions to the slicing criterion by

recursively backtracking from the output neurons, and calculate the

slice as the neurons and the synapses with larger contributions. We

demonstrate the usefulness and effectiveness of NNSlicer with three

applications, including adversarial input detection, model pruning,

and selective model protection. In all applications, NNSlicer signif-

icantly outperforms other baselines that do not rely on data flow

analysis.

CCS CONCEPTS

· Computing methodologies→ Neural networks; · Software

and its engineering→ Dynamic analysis.

∗The first two authors contributed equally. This work is partly done while Ziqi Zhang
was an intern at Microsoft Research. † Correspondence to: Yuanchun Li, Yao Guo.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ESEC/FSE ’20, November 8ś13, 2020, Virtual Event, USA

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7043-1/20/11. . . $15.00
https://doi.org/10.1145/3368089.3409676

KEYWORDS

Program slicing, deep neural networks, dynamic slicing, data flow

analysis

ACM Reference Format:

Ziqi Zhang, Yuanchun Li, Yao Guo, Xiangqun Chen, and Yunxin Liu. 2020.

Dynamic Slicing for Deep Neural Networks. In Proceedings of the 28th

ACM Joint European Software Engineering Conference and Symposium on the

Foundations of Software Engineering (ESEC/FSE ’20), November 8ś13, 2020,

Virtual Event, USA. ACM, New York, NY, USA, 13 pages. https://doi.org/10.

1145/3368089.3409676

1 INTRODUCTION

Program slicing [74] is widely used in software engineering for

various tasks such as debugging [1], testing [3], and verification

[14]. It aims to compute a set of statements (named program slice)

that may affect the values at some points of interest (named slicing

criterion). For example, by setting the slicing criterion to a specific

output that generates an error, one can get a program slice that may

be relevant to the error but much smaller in size than the whole

program, thus much easier to analyze.

Existing program slicing techniques are mainly designed for tra-

ditional programs that are constructed with human-defined func-

tions and instructions. Deep Neural Networks (DNNs), which have

achieved remarkable success in many data-processing applications

in recent years, can also be viewed as a special type of programs

constructed with artificial neurons (a neuron is a mathematical

function that receives one or more inputs and computes an output,

such as the weighted sum or the maximum.) and synapses (the

connections between neurons). However, the weights of synapses

are learned by the machine and are usually hard for a human to

understand. To the best of our knowledge, it has not been studied

on whether and how a DNN can be analyzed meaningfully using

program slicing techniques.

We apply the concept of program slicing to the area of DNNs and

define DNN slicing as computing a subset of neurons and synapses

that may significantly affect the values of certain interested neurons.

838

https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3368089.3409676
https://doi.org/10.1145/3368089.3409676
https://doi.org/10.1145/3368089.3409676

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Ziqi Zhang, Yuanchun Li, Yao Guo, Xiangqun Chen, and Yunxin Liu

Slicing a DNN is interesting for a number of reasons. First, it is a

widely-concerned problem that the decisions made by DNNs are

difficult to explain or debug. Program slicing, hopefully, can be

used to extract the operations that lead to a decision, making it

easier to interpret. Second, the size of DNN is growing rapidly in

recent years, with more than 25 million parameters (180 MB in size)

in a state-of-the-art computer vision model [65] and 110 million

parameters (340 MB in size) in a state-of-the-art natural language

understanding model [18]. How to improve the model efficiency

has become an important research problem. To this end, we believe

program slicing has the potential to help reduce the model size sig-

nificantly. Last but not least, partitioning the model into important

slices and less-important slices can also benefit model protection,

as one can prioritize the important slices if protecting the whole

model is difficult or impossible.

DNN slicing introduces several new challenges as compared

with traditional program slicing. First, unlike the instructions and

variables in traditional programs that are themselves meaningful,

a neuron in a DNN is usually a meaningless mathematical oper-

ator, whose behavior is determined by its learned weights and

connections with other neurons. Thus, it is a challenging problem

to understand the behavior of each neuron based on its connections

and weights. Second, each output value of a DNN is affected by

almost all neurons in the model. To generate a meaningful and

concise slice, we must differentiate and characterize the neurons

based on their contributions to the slicing criterion. Finally, the

data flow graphs in traditional programs are usually sparse and

small-scale, while the data flow graphs of a DNN may contain mil-

lions of neurons densely connected with each other. Analyzing a

graph in such a large scale poses a much higher requirement on

system efficiency.

In this paper, we present NNSlicer, a dynamic slicing technique

for DNNs based on data flow analysis on neural networks. The

slicing criterion is defined as a set of neurons with special meanings

(such as the neurons in the last layer of an image-classification

model whose outputs represent the probabilities of categories),

while a neural network slice is defined as a subset of neurons in the

neural network that exhibit larger effects to the slicing criterion.

NNSlicer focuses on dynamic slicing in which a slice is correspond-

ing to a set of input samples, rather than static slicing, which is

input-independent.

NNSlicer consists of three phases: a profiling phase, a forward

analysis phase, and a backward analysis phase. The profiling phase

aims to model the average behavior of each neuron. The behavior

of a neuron can be characterized by its activation values, which

changes by feeding different data samples into the model. We feed

all training data into the model and compute the average activation

value of each neuron . These average values are used as the baseline

to understand the reaction of each neuron to specific data samples.

The forward analysis feeds the interested data samples (the sam-

ples we want to compute slice with) into the model and records

the activation value of each neuron. The difference between the

recorded value and the average activation value computed in the

profiling phase represents the neuron reaction to the data samples.

The magnitude of the value difference indicates the sensitivity of

the neuron with regard to the data samples.

However, the neurons with higher sensitivity are not necessar-

ily more important for the slicing criterion, since the effect of the

neuron may be eliminated or redirected to other outputs by its

subsequent neurons. Thus, we further perform a backward analysis

that backtracks the data flow from the output neurons to understand

the contribution of each neuron. Specifically, the slice is initialized

with the output neurons specified in the slicing criterion. We then

iteratively analyze each neuron in the slice by calculating the con-

tributions of its preceding neurons. The preceding neurons with

higher contributions are added into the slice for further backward

analysis.

We implement NNSlicer in TensorFlow through instrumenta-

tion and support the common operators in convolutional neural

networks (CNNs). Our implementation is able to deal with large

state-of-the-art CNN models, such as ResNet [34]. The time spent

by NNSlicer to compute a slice for a data sample is around 40 sec-

onds on ResNet10 and 550 seconds on ResNet18. Computing slices

for batch input is much faster (about 3s and 40s per sample on

ResNet10 and ResNet18).

To demonstrate the usefulness and effectiveness of NNSlicer, we

further build three applications for adversarial defense, model prun-

ing and model protection, respectively. First, we show that NNSlicer

can be used to effectively detect adversarial samples. Specifically,

we show that the slice computed for a data sample reflects how

the prediction decision is made by the model, and the slices com-

puted from adversarial samples significantly differ from the slices

computed from normal samples. On average, the adversarial input

detector implemented based on NNSlicer achieves a high precision

of 0.83 and a perfect recall of 1.0. Second, we show that NNSlicer

can be used to customize DNN models for a certain label space.

Given a subset of model outputs, NNSlicer computes a slice for

the outputs and generates a smaller model that is composed of the

neurons and synapses in the slice. We show that the sliced model

significantly outperforms other model-pruning methods. Notably,

the sliced model can achieve high accuracy (above 80%) even with-

out fine-tuning. Finally, NNSlicer can also be used to improve model

protection. Specifically, we can selectively protect the important

slices rather than the whole model, in order to reduce the protec-

tion overhead. We show that by hiding 50% parameters selected

by NNSlicer, the exposed part can be nearly immune to model

extraction attacks [53].

This paper makes the following contributions:

(1) To the best of our knowledge, this is the first paper to system-

atically explore and study the idea of dynamic DNN slicing.

(2) We implement a tool, NNSlicer, for dynamic DNN slicing on

the popular deep learning framework TensorFlow. Our tool

is scalable and efficient.

(3) We develop three interesting applications using DNN-slicing

techniques and demonstrate the effectiveness of NNSlicer.

2 BACKGROUND AND RELATED WORK

2.1 Deep Neural Networks

Deep neural networks (DNNs) are inspired by the biological neural

networks that constitute animal brains. A neural network is based

on a collection of connected mathematical operation units called

artificial neurons. Each connection (synapse) between neurons can

839

Dynamic Slicing for Deep Neural Networks ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

transmit a signal from one neuron to another. The receiving neu-

ron can process the signal(s) and then signal downstream neurons

connected to it. Typically, neurons are organized in layers. Differ-

ent layers may perform different kinds of transformations on their

inputs. For a certain kind of neuron, how it processes the signal

is determined by its weights, which are learned by considering

examples. For example, in image recognition, the neural network

learns from example images that have been manually labeled as

"cat" or "no cat" and uses the learned knowledge to identify cats

in other images. Neural networks are good at capturing complex

mapping relations between inputs and outputs that are difficult

to express with a traditional rule-based program. Today, DNNs

have been used on a variety of tasks, including computer vision

[13], natural language processing [25], recommendation systems

[20], and various software engineering tasks [30, 45], where they

have produced results comparable to and in some cases superior to

human experts.

A simple neural network is shown in Figure 1 (a). The neural

network contains 9 neurons (2 input neurons, 2 output neurons

and 5 intermediate neurons organized in 2 hidden layers) and 16

synapses. The first hidden layer contains 3 neurons that receive sig-

nals from the input neurons and send signals to the second hidden

layer, which contains 2 neurons that further process the signals and

forward to the output neurons. In this example, each neuron (ex-

cept the input neurons) performs a weighted sum operation, which

multiplies each received signal with a learned weight (marked on

the synapses) and computes the sum as the neuron’s value. Such

weighted sum operations are common in today’s neural networks,

while usually accompanied by other operations such as rectifier,

maximum, etc. The example neural network is for illustration pur-

pose only and does not producemeaningful output. Real-world deep

neural networks typically have millions of neurons and synapses

[18, 34, 63].

2.2 Program Slicing

Program slicing is a fundamental technique to support various soft-

ware engineering tasks in traditional programs, such as debugging,

testing, optimization, and protection. It was originally introduced

byMarkWeiser in 1981 [74] for imperative, procedureless programs.

It aims to compute a program slice S that consists of all statements

in program P that may affect the value of variable v in a statement

x . The slice is defined for a slicing criterion C = (x,v) where x is

a statement in program P and v is variable in x . The slicing crite-

rion represents an analysis demand relevant to an application, e.g. ,

in debugging, the criterion could be the instruction that causes a

crash.

At first, only static program slicing was discussed, which ana-

lyzes the source code to find the statements that can affect the value

of variable v at statement x for any possible input. Korel and Laski

[42] introduced the idea of dynamic program slicing, which tries to

find the statements that actually affect the value of a variablev for a

particular execution of the program rather than all statements that

may have affected v for any arbitrary execution of the program.

Program slicing techniques have been seeing a rapid develop-

ment since its original definition. Various approaches are proposed

to improve the slicing algorithms [36, 81], introduce other forms of

slicing [10, 33] and extending slicing ability to more programming

languages and platforms [4, 5, 14, 69]. Meanwhile, many applica-

tions of program slicing techniques are proposed. Today, program

slicing is widely used in various software engineering tasks includ-

ing debugging [1], testing [3], software verification [14], software

maintenance [23], and privacy analysis [44]. There are many com-

prehensive surveys [6, 62, 67] that summarize the advances in this

area.

In this paper, we try to implement program slicing for deep

neural networks, a completely different type of program that con-

sists of mathematical operations with learned weights, rather than

developer-written statements or variables.

2.3 Program Analysis for Neural Networks

Prior to ours, researchers had already attempted to analyze neural

networks by applying or borrowing ideas from traditional program

analysis techniques.

One of the most widely discussed applications of neural network

analysis is to test the robustness of neural networks against ad-

versarial attacks [43, 64, 78], which add small perturbation to the

input to fool the DNN models. DeepXplore [56] proposed to use

neuron coverage (the number of activated neurons) to measure the

parts of a deep learning system exercised by a set of test inputs, and

higher coverage usually means higher robustness. Since then, sev-

eral new coverage metrics were introduced and various approaches

were proposed to generate test inputs that maximize the coverage

[19, 66, 75]. Training the model with the generated test inputs can

improve its robustness and accuracy.

In addition to testing, many studies have attempted to detect

adversarial inputs based on the internal behavior of neural networks.

For example, Gopinath et al. [28] and Ma et al. [47] attempted to

extract properties or invariants from the neuron activation state

and use them to detect adversarial inputs. Wang et al. [70] borrowed

the idea of mutation testing and found that adversarial samples

are usually more sensitive to model mutations. Qiu et al. [57] and

Wang et al. [73] extracted a path from the neural network that is the

most critical for a sample, which can be used to distinguish normal

and adversarial samples. The slice computed in our approach can

also be viewed as the decision logic of the neural network and used

to identify adversarial samples (discussed in Section 6.1).

As neural networks are inherently vulnerable and imprecise,

researchers had also tried to provide a formal guarantee of secu-

rity and correctness with the help of program analysis techniques,

such as constraint solving [40], interval analysis [71, 72], symbolic

execution [29], and abstract interpretation [24]. While promising,

these techniques usually suffer from poor scalability - most of them

cannot be applied to today’s large neural networks.

There are also some existing work incorporating the idea of

łslicingž to neural networks. Shen et al. [61] proposed slicing CNN

feature maps to understand the appearance and dynamic features

in the videos. Cai et al. [9] proposed to slice a DNN into different

groups that can be assembled elastically to support dynamic work-

load. However, these approaches are not related to program slicing

that aims to understand the internal logic of a program. Instead,

they focused on training or assembling different parts of a DNN.

840

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Ziqi Zhang, Yuanchun Li, Yao Guo, Xiangqun Chen, and Yunxin Liu

Qiu et al. ’s work [57] is the closest to ours. Given an image

classification model, they compute an effective path for each class,

which contains the neurons and synapses that positively affect the

prediction result. However, with regard to the slicing criterion, their

effective paths may be incomplete (i.e. , missing important neurons

and synapses such as the ones with negative contributions) and

imprecise (i.e. , including less important neurons and synapses such

as the ones yielding a large value for any input). Such shortcomings

make their method less useful on applications other than adversarial

defense (details in Section 6).

3 MOTIVATION AND GOAL

3.1 Motivation

Similar to traditional programs, we argue that slicing a DNN is also

meaningful and useful for many important software engineering

tasks, as illustrated below.

First, a DNN is a black box whose decisions are hard to interpret

[80]. As a result, it is usually hard or even impossible for develop-

ers to understand when and why a DNN makes mistakes. As in

traditional programs, the input would take a different control flow

or data flow if it leads to failures. It would be potentially beneficial

if there is a technique to automatically analyze the decision logic

in DNNs.

Second, the size of state-of-the-art DNNs and their required com-

puting power have been growing rapidly in recent years, thus it is

highly desirable to reduce the size of DNNs to improve efficiency

without sacrificing too much accuracy. Model pruning (removing

some neurons and synapses) is one of the most widely-used tech-

niques [32]. However, how to prune the model (i.e. which neurons

and synapses to remove) is a key question, as we do not want to

remove the critical structures that may lead to severe performance

degradation. Deciding which neurons and synapses to prune is

quite similar to computing a program slice.

Third, model protection, i.e. preventing the model from getting

stolen, is on increasing demand as models are traded and shared

across different organizations. Various techniques such as homo-

morphic encryption [12] and hardware enclave [68] can be used to

protect models, but protection often brings performance degrada-

tion. A practical solution is to protect a part of the model instead

of the whole model [68]. Thus, partitioning the neural network

to important and unimportant slices may be beneficial as we can

assign limited protection resources to more important slices.

The similarity between these tasks is the demand to find a subset

of neurons and synapses that are more important in the decision-

making process, which is the goal of this paper.

3.2 Problem Formulation

This section defines the concepts and symbols that will be used in

this paper and formulates the goal of DNN slicing.

We first formulate the definition of neuron and synapse, two key

concepts used throughout this paper. A neuron n in a neural net-

work is a mathematical operator that takes one or more numerical

inputs and yields one numerical output. n is said to be activated

if its mathematical operation is executed, and the operation re-

sult y is called the activation value. A neuron n has one or more

synapses s1, s2, ..., sk , weighted with w1,w2, ...,wk , respectively.

Table 1: Definition of symbols commonly used in this paper.

Symbol Meaning

M = (N, S) Model M with neuron set N and synapse set S

n, y Neuron n and its activation value y

s , x ,w Synapse s , its input value x and weight w

I, ξ Input dataset I and an input sample ξ ∈ I

O, o Output neuron set O and an output neuron o ∈ O

C, MC Slicing criterion C and its corresponding slice

CONTRIB
Cumulative contribution of a neuron or a synapse

i.e. the contribution to the slicing criterion

contr ib
Local contribution of a neuron or a synapse

i.e. the contribution generated in an operation

θ Hyperparameter to control the slice quality

Each synapse si scales the activation value of another preceding

neuron xi withwi and passes the scaled value to the neuron n as

input. Similarly, the activation value of neuron n is also passed to

other succeeding neurons by other synapses. The very last neurons

that do not have succeeding neurons are the output neurons, whose

activation values are the output of the neural network model.

Any modern DNN architecture can be viewed as a combination

of such neurons and synapses. For example, a fully connected layer

that maps 20 inputs to 10 outputs can be seen as a combination

of 10 neurons, each of which computes the sum of values from 20

weighted synapses. A 16 × 3 × 3 × 32 filter in a convolutional layer

can be viewed as 32 neurons, each of which computes the sum

over 144 weighed synapses. A Rectified Linear Unit (ReLU) can be

viewed as a neuron with only one synapse. Note that a neuron may

be activated several times with different input values during the

inference pass of a sample, such as the neurons in convolutional

layers.

Based on the concept of neurons and synapses, we further define

the symbols that will be commonly used later, as shown in Table 1.

The formal definition of neural network slicing is given as follows:

Definition 1. (Neural network slicing) LetM = (N,S) rep-

resents a neural network and C = (I,O) is a slicing criterion. I =

ξ1, ξ2, . . . , ξn is a set of model input samples of interest and O =

o1,o2, . . . ,ok is a set ofM’s output neurons of interest. The goal of

slicing is to compute subsets NC ⊂ N and SC ⊂ S with respect to

C, denoted as MC = (NC,SC), that significantly (above a predeter-

mined threshold) contributes to the value of any output o ∈ O for any

input sample ξ ∈ I.

3.3 Challenges

There are three main challenges to slice a neural network.

(1) Understanding the behavior of each neuron. Unlike an

instruction or a function in traditional programs, a neuron

is typically a simple mathematical operation that does not

have any high-level semantic meaning. The weights of all

neurons in a model are learned as a whole to fit the train-

ing data, while each neuron is just a small building block

whose functionality is vague. However, to compute a slice,

we must first be able to differentiate the neurons based on

their behavior.

841

Dynamic Slicing for Deep Neural Networks ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

(2) Quantifying the contribution of each neuron. In tradi-

tional program slicing, each instruction’s contribution to the

slicing criterion is binary: an instruction either affects or is

irrelevant to the values of the criterion. In neural network

slicing, almost all neurons are connected to the output neu-

rons in the slicing criterion and contribute to the outputs

more or less. It is difficult to quantify the contribution of

each neuron to extract the most important neurons.

(3) Dealing with large models. Today’s state-of-the-art neu-

ral networks typically contain millions of neurons that are

densely connected. Analyzing a network on such a scale

poses a higher demand for efficiency. How to design algo-

rithms that can leverage existing computing resources to

speed up the analysis is also a challenging problem.

4 OUR APPROACH: NNSLICER

We introduce NNSlicer to address the above challenges. Section 4.1

presents an overview of our approach. Section 4.2 describes how

we understand neuron behaviors through differential analysis. Sec-

tion 4.3 introduces our backward data flow analysis technique that

quantifies the contribution of each neuron to the slicing criterion.

Finally, Section 4.4 briefs how the computation power of GPUs

and multi-core CPUs are utilized to improve the efficiency of our

method.

4.1 Approach Overview

The overview of our approach is illustrated in Figure 1. The pro-

gram under analysis in our system is a pretrained neural network

model, whose weights are already learned to fit a training dataset.

In Figure 1(a), the weight values are labeled on the corresponding

synapses in the network. Our approach mainly consists of three

phases, including a profiling phase, a forward analysis phase, and a

backward analysis phase.

In the profiling phase, all samples in the training dataset are

fed into the model, each sample produces an activation value at

each neuron. We log the activation values of each neuron for all

input samples and compute the mean activation value, which is

the output of the profiling phase (as labeled on each neuron in

Figure 1(b)). The mean activation values can be viewed as the be-

havioral standard of a neuron. Then, in the forward analysis phase,

each interested sample in the slice criterion is fed into the model.

We record the activation value of each neuron and compute its dif-

ference with the mean activation value obtained through profiling

(as labeled on each neuron in Figure 1(c)). Such relative activation

values represent the neuron reaction to the input sample. Finally,

in the backward analysis phase, we start from the output neurons

defined in the slicing criterion and iteratively compute the contribu-

tions of preceding synapses and neurons. The synapses and neurons

with larger contributions are the slices computed for the slicing

criterion. Each step is detailed and formulated in the following

sections.

4.2 Profiling and Forward Analysis

The behavior of a neuron during an inference pass is represented

as an activation value (or a list of activation values if the neuron

was activated several times). The activation values are arbitrary

numbers produced by simple mathematical operations. We first

need to make sense of the activation values. Specifically, does the

neuron react positively or negatively, and how much?

Our method is inspired by the work on differential power anal-

ysis [41], which decodes the power consumption measurements

of a circuit by testing the circuit with different inputs. The power

consumption difference can be used to infer the input and program

logic. In our case, the activation value of a neuron is like the power

consumption measurement that barely makes sense by itself, but

the difference between the activation values for different input

samples can reveal how the neurons react to each sample.

Specifically, we use the difference between the neuron behavior

for an input sample and its average behavior for all training samples

to understand the neuron reaction to the input. Suppose ξ is an

input sample and n is a neuron of model M. By feeding ξ into M,

we would observe an activation value yn (ξ) at neuron n. yn (ξ) =

meanmi=1y
n
i (ξ) if n is activated multiple times, where yni (ξ) is the

i-th activation value andm is the total number of activations of n

(e.g.m = 1 if n is a neuron in a fully connected layer, andm equals

to the number of convolution operations performed by the filter if

n is in a convolutional layer). The average neuron activation value

over the whole training dataset D is calculated by:

yn (D) =

∑
ξ ∈D yn (ξ)

|D|
(1)

Such average activation values can be viewed as the behavioral

standard of the neurons, which can be used as the baseline to

measure a neuron’s reaction to a specific data sample. Since yn is

not dependant on any specific input or output, it only needs to be

computed once and can be used for different slicing goals.

In the forward analysis phase, we quantify the reaction of the

neuron n for a specific data sample ξ as its relative activation value:

∆yn (ξ) = yn (ξ) − yn (D) (2)

A positive ∆yn (ξ) means that neuron n reacts more positively

to the sample ξ than most other samples, and vice versa. The mag-

nitude of |∆yn (ξ)| represents the sensitivity of n with regard to ξ .

As an example, the output neuron of an image classification model

that is trained to detect cats would be more sensitive and positively

react to an image of a cat, as compared with an image of a truck.

4.3 Backward Analysis and Slice Extraction

The backward analysis aims to compute the contribution of each

neuron and each synapse to the interested outputs in the slicing

criterion. Note that the neuron’s reaction to an input sample com-

puted through the profiling and forward analysis is not equivalent

to its contribution. For example, in an image classifier, a neuron

that reacts sensitively to cat images may not have any contribu-

tion if our interested output is the łtruckž label. To compute the

contribution, we introduce a backward data flow analysis method.

In traditional programs, extracting the instructions and variables

that contribute to a certain output is easy based on the data flow

graph (DFG), which defines the data dependencies between the

instructions and variables. A neural network can also be viewed as

a data flow graph, but the graph is densely connected. For modern

DNNs that are organized layer by layer, almost every neuron in one

layer is connected to all neurons in the previous layer (as shown in

842

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Ziqi Zhang, Yuanchun Li, Yao Guo, Xiangqun Chen, and Yunxin Liu

1

-1

2

Output 1

Output 2

Input 1

Input 2

2

1

1

3

0

-2

1

2

0

3

-2

1

3

1

2

5

2

2

9

-3

15

0

1

-1

2

Output 1

Output 2

Input 1

Input 2

2

1

1

3

0

-2

1

2

0

3

-2

1

3

0

0

0

0

0

0

0

0

0

1

-1

2

Output 1

Output 2

Input 1

Input 2

2

1

1

3

0

-2

1

2

0

3

-2

1

3

Profiling

Feed all training

samples to the model

Forward analysis

Feed the interested

samples to the model

Pretrained model Each neuron’s average activation value

In this example, all average values are set to 0 for simplicity

Each neuron’s reaction to input (1,2)

i.e. difference between the activation value and the average

1

2

5

2

2

9

-3

15

0

1

-1

2

Output 1

Output 2

Input 1

Input 2

2

1

1

3

0

-2

1

2

0

3

-2

1

3

The slice for output 1 and input (1,2)

Backward analysis

Backtrack from the slicing

criterion neuron

Figure 1: The overview of our approach.

Figure 1). Thus, we need to further analyze the data flow graph to

measure the contribution of each neuron.

The contribution of a neuron or synapse is quantified as an

integer in NNSlicer, denoted as CONTRIB. n is a critical neuron if

CONTRIBn , 0, and a critical neuron may contribute positively

(CONTRIBn > 0) or negatively (CONTRIBn < 0) to the slicing

criterion. The same for the synapses.

Our method to compute CONTRIB is to recursively compute

the contributions of preceding neurons and synapses from back to

front. Given a neural network and a list of target neurons, we first

consider the neurons that are directly connected to the interested

neurons, whose contribution can be extracted with their activation

values (in detail later). Then we remove the target neurons from

the network and set the neurons with non-zero contribution as

the target neurons. We repeat the process until the target neurons

do not have any neighboring neurons. The algorithm is described

in Algorithm 1. Note that in practice neurons are organized as

partially ordered layers, thus each iteration of Algorithm 1 deals

with a single layer.

Algorithm 1 simplifies the problem of computing cumulative

contributions of all neurons and synapses in the whole network to

computing local contributions of preceding neurons and synapses in

an operation (line 5). Local contributions mean the contributions

generated solely by the operation. We use the weighted sum opera-

tor (a common operator in neural networks) to illustrate how we

compute the contributions of preceding neurons and synapses.

In theweighted sumoperator, the central neuronn hask synapses

(si , s2, ..., sk) that connect k preceding neurons (n1,n2, ...,nk) to n.

The activation value of n is computed as y =
∑k
i=1wixi , where

Algorithm 1 ComputeContrib: Computing the contributions of

neurons and synapses to a list of target neurons for an input sample

Require: A neural network modelM = (N,S), an input sample

ξ and a list of target neurons O. A global table CONTRIB that

stores the cumulative contribution of each neuron and synapse

during the inference pass of ξ , initialized to 0.

1: Terminate if O is empty

2: Initialize O′
= ∅

3: for each neuron o ∈ O do

4: Find o’s preceding neurons and synapses (N ′
, S ′)

5: Compute local contributions of N ′ and S ′ as contrib

6: Update CONTRIB with contrib

7: end for

8: for each neuron n ∈ N do

9: Add n to O′ if n is a predecessor of O and CONTRIBn , 0

10: end for

11: Obtain N ′ by removing neurons in O from N

12: Call ComputeContrib by setting O = O′ and N = N ′

13: return The global cumulative contribution table CONTRIB

wi is the weight of synapse si and xi is the activation value of ni .

Suppose the cumulative contribution of n is CONTRIBn , the local

contribution contribi of ni and si is computed as:

contribi = CONTRIBn × ∆yn ×wi∆xi (3)

in which ∆yn is the relative activation value of the central neuron

given by Equation 2 and ∆xi is the relative activation value of the

neuron ni (i.e. ∆y
ni). The product of ∆yn and wi∆xi represents

843

Dynamic Slicing for Deep Neural Networks ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

the impact that ni and si may have on the global contribution

CONTRIBn . For example, if∆yn is negative andwi∆xi is positive, it

means that ni enlarges the negativity of n, yielding an contribution

that is opposite to CONTRIBn .

The weighted sum operators take the vast majority in today’s

DNNs, but there are also other types of operators. In this paper, we

focus on convolutional neural networks (CNNs). Table 2 shows five

common operators that are enough to handle most existing CNN

models. To support other architectures one only needs to define

the method to compute local contributions for new operators, as

shown in Table 2.

The cumulative contributionCONTRIB of neuronni and synapse

si in the operation is updated by their local contribution:

CONTRIBni+ = siдn(contribi)

CONTRIBsi+ = siдn(contribi)
(4)

We only keep the sign of the local contribution, as different opera-

tions may have different scales of local contributions.

However, updating the cumulative contribution for all neurons

and synapses is time-consuming (a neuron with non-zero cumu-

lative contribution introduces a new branch during backtracking)

and may accumulate contributions from unimportant neurons and

synapses. Thus, we limit the number of local contributions used

to update CONTRIB. The importance of a local contribution is

represented by its magnitude, and those with smaller magnitude

can be excluded when updating CONTRIB. Specifically, we first

sort the local contributions in ascending order of their magnitudes.

The preceding neurons are sorted as n1,n2, ...,nk . Then we try to

find a maximum index j so that n1, ...,nj can be excluded while the

influence on the activation value of n is below the threshold θ . For

example, in a weighted sum operation, the influence of excluding

n1, ...,nj is |
∑k
i=j wi∆xi/y |. θ controls the amount of excluded local

contributions with minimal influence on the functionality of an

operation, and thus the generated slice can be directly used to make

predictions without retraining (evaluated in Section 6.2). The value

of the threshold θ can be set by different applications to control the

size of the resulting slice.

So far the cumulative contribution CONTRIB captures the con-

tribution of neurons/synapses during the inference of a single input

sample. For a slicing criterion C = (I,O) that may contain mul-

tiple interested samples, the final cumulative contribution is the

sum of the contribution for each sample ξ ∈ I. A slice for C is

MC
= (NC

,SC) whereNC and SC are the neurons and synapses

with non-zero contributions. One can also control the size of slice

based on the contributions (as in ğ6.2).

4.4 GPU and Multi-thread Acceleration

NNSlicer takes a forward analysis pass and a backward analysis

pass for each data sample ξ ∈ I when computing the slices. It

might be very time-consuming if |I | is large. Since the process

of computing slice for a data sample is independent of each other,

we can take advantage of the parallel characteristic of GPU and

multi-threading to accelerate the overall slicing process.

Specifically, for a large set of data samples |I |, we first run the

profiling and forward analysis phases on GPU using large batches,

as these two phases only involve forward computation. Then a

large batch is separated into several small batches. The backward

analysis of each small batch runs on the CPU as a separate thread.

Finally, the batches are merged together to generate the slicing

result.

5 IMPLEMENTATION & OVERHEAD

We implemented NNSlicer in Python with TensorFlow. The profil-

ing and forward analysis are implemented based on TensorFlow’s

instrumentation mechanism. The multi-thread computing is imple-

mented by the distributed python library Ray (https://ray.io).

We evaluated the time overhead of NNSlicer on a server that has

2 GeForce GTX 1080Ti GPUs, 2 Intel Xeon CPUs with 16 cores, and

64GB memory. Table 3 reports the slice time and the architecture

complexity of three models. The time spent by NNSlicer to com-

pute slice for a data sample is roughly 4s, 39s, and 553s for LeNet,

ResNet10, and ResNet18 respectively. When computing slice for a

batch of inputs, the speed is much faster, which is about 0.6s, 3.4s,

and 45.2s per data sample for the three models respectively. Note

that the profiling phase is not included when computing the slicing

speed as it only needs to run once for a model.

6 APPLICATIONS

In this section, we describe three applications to demonstrate the

usefulness and the effectiveness of NNSlicer, including adversarial

defense, model pruning, and model protection. In each application,

we describe why the application is meaningful, how NNSlicer can

help, and how NNSlicer performs compared with other methods.

The main method which we compare NNSlicer against is the

state-of-the-art work by Qiu et al. [57] (denoted as EffectivePath

below). We also include some other baselines for more comparisons.

6.1 Adversarial Defense

Adversarial examples [64] are carefully-crafted inputs that may

lead to wrong predictions. They are usually generated by adding

small permutation to a benign input, which is barely noticeable

by a human. Adversarial attacks may cause severe consequences,

especially in safety- and security-critical scenarios.

As a result, adversarial defense became a hot research topic in

both AI and SE communities. Many approaches tried to make the

DNNs more robust through training [49, 77] or adding advanced ar-

chitectures [51, 60], but it is still hard to obtain a 100% robust model.

Instead, some researchers opted to take another direction: adver-

sarial input detection [47, 57, 70], with which, the deep learning

system can raise warnings or stop serving once suspicious inputs

are detected. Thus, severe attacks can be avoided. In this section,

we discuss how NNSlicer can be used to detect adversarial inputs.

6.1.1 Method. Our insight is that the slice computed by NNSlicer

can be viewed as an abstraction of the decision process, and the de-

cision processes of normal examples and adversarial examples are

intuitively different. As shown in Figure 2, although the normal im-

age and the adversarial one are indistinguishable for a human, their

slices are different. Thus, by learning from the slices of large-scale

normal examples, we can understand the normal decision process

of the DNN. Therefore, given a new input, if its slice is distinctly

different from the normal slices, it is very likely an adversarial

input.

844

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Ziqi Zhang, Yuanchun Li, Yao Guo, Xiangqun Chen, and Yunxin Liu

Table 2: Neuron operations considered in NNSlicer.

Operation Usage Math form Local contribution of i-th input

Weighted sum Convolutional layers and

fully connected layers, etc.

y =
k∑

i=1
wixi CONTRIBn × ∆y ×wi∆xi

Average Average-pooling layers. y = 1
k

k∑

i=1
xi CONTRIBn × ∆y × ∆xi

Maximum Max-pooling layers. y = maxki=1 xi CONTRIBn × ∆y × ∆xi i f xi = y else 0

Rectify ReLU activation. y = x if x > 0 else 0 CONTRIBn × ∆y × ∆x i f x > 0 else 0

Scale Batch normalization. y =
x−µ
σ CONTRIBn × ∆y × ∆x

Table 3: The time spent to process an input sample in each

phase. The profiling and forward analysis phases take the

same amount of time as they both only require an inference

pass.

Model #Params
Profiling/Forward Backward

Single Batch Single Batch

LeNet 42784 3.0s 0.3s 0.5s 0.3s

ResNet10 300K 8.9s 0.4s 30.1s 3.0s

ResNet18 11M 9.6s 0.8s 543.0s 40.4s

Normal example

(predicted as dog)

Normal example

(predicted as airplane)

Adversarial example

(predicted as dog)

Figure 2: Normal and adversarial examples (top) and their vi-

sualized slices (bottom). Each pixel in the visualization rep-

resents a neuron from a random convolutional layer (sep-

arated to two rows). The neurons with non-zero contribu-

tions are colored (blue for neurons with positive contribu-

tions and red for those with negative contributions).

Specifically, supposeM is the DNN model that may accept ad-

versarial inputs, ξ is an input sample and M(ξ) is the label of ξ

predicted byM. Using NNSlicer, we can compute a sliceMξ for

each input ξ by setting the slicing criterion as C = (ξ ,M(ξ)). We

build a slice classifier F that predicts the label of an input ξ based

on the slice computed for the inputMξ . By training F with a large

number of normal samples, it can capture the mapping pattern be-

tween the slice shape and the corresponding output category. With

the trained slice classifier F , an input ξ is identified as adversarial

if F (Mξ) ,M(ξ), i.e. the prediction made by the slice classifier is

different from the prediction of the original DNN model.

The input of the slice classifier, i.e. a sliceMξ , is represented as a

vector vecξ . Each element in vecξ corresponds to a synapse and its

value is the contribution of the synapse (as described in Section 4.3).

For the simplicity of the input and output representations, many

classification algorithms may be used to build the slice classifier.

We chose to use the decision tree [7] as it is easy to implement and

debug.

Applying NNSlicer to adversarial-input detection has three ad-

vantages: (1) NNSlicer does not require modifying or retraining the

original model, and thus NNSlicer can support any DNN models.

(2) NNSlicer can scale up to support large state-of-the-art DNN

models, while existing methods like ones by Ma et al. [47] and

Gopinath et al. [28] can only support small models. (3) NNSlicer

requires only the normal samples to build the defense, but existing

methods [22, 48, 57, 73] need to train a detector with both normal

and adversarial examples. As the attackers can always use new

adversarial examples, NNSlicer is a much more realistic solution

than those existing methods.

6.1.2 Evaluation. We compare our detection method with two

baselines. For a fair comparison, the baseline methods use the same

classifier to identify adversarial inputs as ours, while the inputs

of the classifier are different. FeatureMap is a naive baseline that

uses the feature maps of convolutional layers as the inputs of the

classifier. EffectivePath is a more advanced baseline that uses the

effective path generated by Qiu et al. [57] to train the classifier.

The experiments were conducted on ResNet10 and the CIFAR-10

dataset (image size 32×32). All the classifiers were trained with

10,000 normal samples, using their respective feature extraction

methods.

We tested NNSlicer and the two baselines on 17 attacks, covering

gradient-based attacks, score-based attacks, and decision-based

attacks. These attacks include FGSM [27] with per-pixel maximum

modification of 2, 4 and 8 (relative to 256 and referred to as FGSM_2,

FGSM_4 and FGSM_8, respectively), Deepfool [50] with constrain

norm L2 and L∞ (referred to as DeepfoolL2 and DeepfoolLinf),

JSMA [55] attack, PGD [49] attack with random start and per-

pixel maximum modification of 2, 4 and 8 (referred to as RPGD_2,

RPGD_4 and RPGD_8), the L2 version of CW attack [11] (CWL2),

ADef attack [2], an attack that just perturbs a pixel (SinglePixel), a

greedy local-search attack [52] (LocalSearch), a boundary attack [8]

(Boundary), an attack of spatial transformation [21] (Spatial), an

845

Dynamic Slicing for Deep Neural Networks ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

attack that performs binary search between a normal sample and

its adversarial instance (Pointwise), and an attack that blurs the

input until it is misclassified (GaussianBlur). All the attacks are

implemented with Foolbox [58].

For each attack method, we generate adversarial examples from

500 randomly picked normal examples. The examples that success-

fully mislead the model are fed to the detector with their normal

examples. We compute the precision, recall and F1 score of each

detector on each attack, as shown in Table 4.

According to the experiment result, NNSlicer is very effective

in detecting adversarial inputs with an average recall of 100% and

an average precision of 83%, which means that NNSlicer is able to

correctly identify all the adversarial examples generated with these

attack methods (no false negative). Meanwhile, most of the inputs

identified by NNSlicer are indeed adversarial inputs, while only a

few normal samples are misidentified (false positives). Although

EffectivePath also achieves a perfect recall, its precision is much

lower, meaning that the detector may easily misclassify normal

samples as adversarial inputs. The average recall of 63% in Fea-

tureMap represents the feature maps between normal examples and

the adversarial examples are barely discriminative. This phenome-

non indicates the demand for NNSlicer to explore the mechanism

of neural networks.

6.2 Network Simplification and Pruning

The size and complexity of DNN models grow rapidly. Although

these hugemodels achieve high scores on complicated datasets, they

are cumbersome and slow in real-world, task-specific applications.

How to reduce the model size and speed up the computation is

crucial to the DNN applications.

One acceleration technique is to prune trivial synapses of a large

model to generate a light-weight one. With redundant weights

trimmed off, the computation of executing the model may be re-

duced. Existing network-pruning methods focus on reducing the

network architecture of models for all the output classes [46]. With

DNN slicing, NNSlicer enables more flexible network simplification

and pruning by focusing on a targeted subset of output classes. That

is, for a subset of the original output classes of a model, NNSlicer

can decide the proper model slices for the targeted output classes.

Thus, NNSlicer can generate a smaller model for the targeted output

classes with higher model accuracy. This advantage of NNSlicer is

highly desirable in real-world applications that usually deal with

a small set of output classes (e.g., classifying only different dogs

rather than 1,000 types of animals).

6.2.1 Method. NNSlicer can pick out neurons and synapses critical

to a slice criterion C = (I,O). By setting O to the set of interested

target classes, NNSlicer can compute CONTRIBs for each synapse

s , which represents the synapse’s importance to the target classes.

We can trim out the less important synapses and get a model that

still functions on the target classes.

Specifically, suppose we want to prune M for target classes OT

with prune ratio r . Let IT be the set of data samples belonging

to the interested classes. CONTRIBT is the cumulative contribu-

tions computed by NNSlicer, and CONTRIBTs is the contribution

of synapse s . For each layer l , we sort all synapses in the layer Sl
by the ascending order of their contributions magnitudes. The first

Figure 3: Accuracy of the pruned models without fine-

tuning.

r × |Sl | synapses are pruned, and a neuron is also pruned if its

synapses are all pruned.

6.2.2 Evaluation. To evaluate the ability of NNSlicer to targeted

pruning, each of 210 subsets of CIFAR10’s 10 output classes is

used as the target classes OT . NNSlicer (targeted) represents to

prune synapses according to the contributions computed for the

target classes OT . NNSlicer (all) represents to prune according to

the contributions computed for all output classes O. The compar-

ison between NNSlicer (targeted) and NNSlicer (all) demonstrates

NNSlicer’s ability in target classes. We also compare it with sev-

eral baselines. EffectivePath represents pruning synapses based

on the feature computed in [57]. Weight is based on the absolute

synapse weights, where the synapses with the smallest weights

are trimmed [31]. Similarly, Channel represents to prune the least

important neurons by the average connected weight value [35].

BothWeight and Channel are widely used techniques in the field

of network pruning.

Figure 3 shows the average accuracy over possible target classes.

The accuracy of NNSlicer (targeted) is always high and is around

80% when 55% of weights are pruned. The accuracy of EffectivePath

and Channel are both low in the figure. The accuracy of NNSlicer

(all) andWeight is high only when the prune ratio is below 45%. The

comparison between NNSlicer (targeted) and NNSlicer (all) demon-

strates the ability of NNSlicer to prune for specific classes. The

large gap between NNSlicer (targeted) and EffectivePath indicates

the advantage of NNSlicer to the feature computed by [57].

When the prune ratio becomes larger, we further evaluate the

performance with fine-tuning. To do it, the pruned models are re-

trained on 10k samples for 1 epoch. Figure 4 shows the performance

of the fine-tuned models on two sets of target classes. The fine-

tuned model of NNSlicer is noticeably higher than other methods.

It shows that NNSlicer (targeted) preserves the model’s capability

on targets even when a large portion of weights is trimmed. A short

fine-tuning (1 epoch in this case) is enough for the model to achieve

high accuracy.

One possible reason for NNSlicer’s good performance is that it

preserves the model’s ability to target classes at the cost of other

non-target classes. In an extra experiment, the performance of

NNSlicer (targeted) on non-target classes is remarkably lower than

target classes. On the other hand, the difference of Weight is small.

It means NNSlicer can decompose the model over classes and make

846

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Ziqi Zhang, Yuanchun Li, Yao Guo, Xiangqun Chen, and Yunxin Liu

Table 4: Adversarial input detection accuracy for different attack methods.

Attack Method
EffectivePath FeatureMap NNSlicer

F1 precision recall F1 precision recall F1 precision recall

Gradient-based

FGSM_2 0.82 0.69 1.00 0.55 0.58 0.53 0.90 0.82 1.00

FGSM_4 0.71 0.56 1.00 0.55 0.60 0.52 0.91 0.84 1.00

FGSM_8 0.88 0.79 1.00 0.58 0.62 0.55 0.92 0.84 1.00

DeepFoolLinf 0.78 0.64 1.00 0.68 0.68 0.68 0.92 0.85 1.00

DeepFoolL2 0.78 0.64 1.00 0.66 0.68 0.66 0.92 0.85 1.00

JSMA 0.82 0.69 1.00 0.66 0.67 0.66 0.92 0.85 1.00

RPGD_2 0.78 0.64 1.00 0.59 0.63 0.56 0.91 0.84 1.00

RPGD_4 0.82 0.69 1.00 0.55 0.62 0.50 0.92 0.85 1.00

RPGD_8 0.75 0.60 1.00 0.55 0.62 0.50 0.92 0.85 1.00

CWL2 0.78 0.64 1.00 0.66 0.68 0.66 0.92 0.85 1.00

ADef 0.85 0.73 1.00 0.66 0.67 0.66 0.91 0.84 1.00

Score-based
SinglePixel 0.67 0.50 1.00 0.52 0.44 0.64 0.79 0.65 1.00

LocalSearch 0.83 0.71 1.00 0.67 0.67 0.68 0.92 0.84 1.00

Decision-based

Boundary 0.82 0.69 1.00 0.69 0.69 0.70 0.92 0.85 1.00

Spatial 0.78 0.64 1.00 0.59 0.56 0.64 0.87 0.77 1.00

Pointwise 0.87 0.76 1.00 0.68 0.69 0.69 0.92 0.85 1.00

GaussianBlur 0.87 0.76 1.00 0.68 0.68 0.70 0.92 0.85 1.00

Average 0.80 0.67 1.00 0.62 0.63 0.62 0.91 0.83 1.00

Figure 4: Accuracy of the pruned models after fine-tuning

for one epoch.

a trade-off to conserve the ability on target classes. A similar phe-

nomenon is observed in model protection and will be discussed in

Section 6.3.

6.3 Model Protection

DNN models are becoming valuable assets due to the high cost of

the training process, including collecting a large amount of data,

expensive GPU usage, and enormous power consumption. However,

an attacker may retain (or steal) the functionality of a model at a

comparatively low cost [15, 37, 38, 53, 59]. How to protect models

from being stolen is becoming an increasingly important problem,

particularly in the emerging edge computing where models are

deployed to edge servers or even end devices.

Existing solutions of model protection usually leverage encryp-

tion, using homomorphic encryption [12, 26, 79] or zero knowledge

proof [76], or running a model inside trusted execution environ-

ments [16, 17, 68]. All sensitive computation is conducted in the

encrypted mode. However, the cost of these protected computations

is high. For example, CryptoNets [26] takes around 300s to execute

a model on the small MNIST dataset. To reduce the cost of model

protection, one approach is to secure the important computation

only, where NNSlicer may help.

6.3.1 Method. The existing model protection work is constrained

to protecting the model w.r.t. the whole label space [39, 54]. But

the importance of outputs may vary. For some outputs, the data

is more difficult to collect, or the annotation is particularly more

expensive. Because NNSlicer can slice model for certain classes, it

can help to find significant components for the expensive classes

and protect them. We propose to incorporate targeted protection

in this scenario. Compared to existing work, our method is more

flexible and can customize the protection target. NNSlicer selects

synapses from a model and protects their weights. The way to

select synapses is similar to Section 6.2 but NNSlicer selects the

most crucial synapses for the target classes. The selected synapses

are protected from attackers who have to recover the protected

synapses through retraining to obtain the whole model.

6.3.2 Evaluation. In the experiment, we assume a strong attacker

who has a training dataset. The attacker’s dataset size is called the

budget [53]. As NNSlicer protects a limited ratio of synapses, we

use the metric of the accuracy of protected classes after re-training

for 5 epochs. A lower accuracy stands for better protection. We

compare with three baselines: EffectivePath,Weight, and Random.

EffectivePath and Weight are the same methods used in Section 6.2.

Random is to randomly select synapses.

Figure 5 shows the accuracy of the protected classes (Target

classes, the left figure) and the accuracy of all classes (All classes,

the right figure). It can be observed that, after guarded by NNSlicer,

847

Dynamic Slicing for Deep Neural Networks ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

Figure 5: The accuracy achieved by retraining the models

for 5 epochs. 50% of the parameters (selected with different

methods) in the model are hidden, and the attacker tries to

recover them through retraining. The x-axis is the attacker’s

budget (i.e. number of samples used to retrain). A lower accu-

racy achieved with a fixed budget means better protection.

the retrained accuracy on target classes is below 10%, even when the

budget (i.e. number of samples) achieves 50k. The small accuracy

stands for strong protection. On the contrary, the accuracy of other

methods is all above 30%. For EffectivePath, the accuracy achieves

90%, which means it can not protect target classes at all.

The right figure of Figure 5 illustrates why NNSlicer achieves

better protection. Compared toWeight, although the accuracy of

NNSlicer on target classes is obviously lower, the accuracy over

the whole dataset is higher. It means the accuracy of non-target

classes is very high and NNSlicer do not protect them. This trade-

off between target classes and non-target classes is similar to the

finding in Section 6.2 and may be valuable for applications that

desire to protect a small set of target classes.

7 LIMITATIONS AND DISCUSSION

This section highlights some of the limitations of NNSlicer and

discusses possible future directions.

DNN architectures. We only considered five common opera-

tions that are commonly used in CNN models, while some opera-

tions used in other architectures are not included, such as recurrent

neural networks (RNNs) and graph convolutional networks (GCN).

These architectures should be easy to support in the future by

adding backtracking rules for new operators.

Scalability. In this paper, we did not conduct experiments on

very large models and datasets due to limited time. For large DNN

models with millions of weights, NNSlicer takes about 10 minutes

to compute the slice for an input sample (as shown in Table 3).

Building an adversarial defense (as in Section 6.1) for such a large

model may take several days on a single machine. Although the

process is slow, especially for in-lab experiments, we think it is

acceptable in practice considering the fact that companies usually

train a model on large clusters for several weeks.

Slicing criterion.We mainly discuss the slicing criterion con-

cerning only output neurons, but slicing for an intermediate neuron

may also be interesting (similar to inspecting an intermediate vari-

able in traditional programs). Such a flexible criterion definition

may enable new applications, e.g. interpreting or debugging the

neural network in finer granularity.

More applications. Beside the three applications discussed in

this paper, there are many other applications that are interesting to

consider. For example, is it possible to compose different slices to a

new model? If it is the case, the way of training networks might

be changed. Besides, is it possible to slice certain attributes from

a trained model, such as a discriminatory attribute (race, gender,

etc.) which we want to exclude from consideration when making

decisions? Last but not least, how can NNSlicer be used to debug

model and diagnose fragile weights? Section 6.1 has proved its

ability to detect adversarial examples, a step forward is to find the

deviant neurons or synapses that are critical for errors. Masking

them out or adjusting their value may improve the model accuracy.

Other slicing techniques. NNSlicer relies on a set of inputs to

compute the slice (i.e. dynamic slicing). There are various other

slicing techniques that may be interesting to be applied to neural

networks. For example, static slicing might be used to compute

input-independent slices (as in Section 6.2) much faster as each

input doesn’t need to be processed separately. Conditioned slicing

[10] may help the developers to understand the conditions (e.g. illu-

mination, viewpoint, etc.) under which the DNN is more vulnerable.

Amorphous slicing may be used to merge neurons and synapses

inside the network and slim the network structure [33].

8 CONCLUDING REMARKS

This paper proposes the idea of dynamic slicing on deep neural net-

works and implements a tool named NNSlicer to compute slices for

convolutional neural networks. The working process of NNSlicer

consists of a profiling phase, a forward analysis phase, and a back-

ward analysis phase. The profiling and forward analysis phases

model the reaction of each neuron based on its activation values.

The backward phase traces the data flow recursively from back to

front and computes the contributions of each neuron and synapse,

which are used to calculate the slice. The usefulness and effec-

tiveness of NNSlicer are demonstrated with three applications on

adversarial input detection, targeted model pruning, and selective

model protection. The code and data of NNSlicer and all applica-

tions will be made available to the community.

ACKNOWLEDGMENTS

We would like to thank the anonymous ESEC/FSE reviewers for

their valuable feedback of this paper. We thank Yuxian Qiu and Trib-

huvanesh Orekondy for sharing their code. This work was partly

supported by the National Key Research and Development Program

(2017YFB1001904) and the National Natural Science Foundation of

China (61772042).

REFERENCES
[1] Hiralal Agrawal, Richard A DeMillo, and Eugene H Spafford. 1993. Debugging

with dynamic slicing and backtracking. Software: Practice and Experience 23, 6
(1993), 589ś616.

[2] Rima Alaifari, Giovanni S Alberti, and Tandri Gauksson. 2018. ADef: an iterative
algorithm to construct adversarial deformations. arXiv preprint arXiv:1804.07729
(2018).

848

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Ziqi Zhang, Yuanchun Li, Yao Guo, Xiangqun Chen, and Yunxin Liu

[3] Stephan Arlt, Andreas Podelski, and Martin Wehrle. 2014. Reducing GUI test
suites via program slicing. In Proceedings of the 2014 International Symposium on
Software Testing and Analysis. ACM, 270ś281.

[4] Tanzirul Azim, Arash Alavi, Iulian Neamtiu, and Rajiv Gupta. 2019. Dynamic
slicing for android. In 2019 IEEE/ACM 41st International Conference on Software
Engineering (ICSE). IEEE, 1154ś1164.

[5] David Binkley, Nicolas Gold, Mark Harman, Syed Islam, Jens Krinke, and Shin
Yoo. 2014. ORBS: Language-independent program slicing. In 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering. ACM, 109ś120.

[6] David W Binkley and Mark Harman. 2004. A survey of empirical results on
program slicing. Adv. Comput. 62, 105178 (2004), 105ś178.

[7] Leo Breiman. 2017. Classification and regression trees. Routledge.
[8] Wieland Brendel, Jonas Rauber, and Matthias Bethge. 2017. Decision-based

adversarial attacks: Reliable attacks against black-box machine learning models.
arXiv preprint arXiv:1712.04248 (2017).

[9] Shaofeng Cai, Gang Chen, Beng Chin Ooi, and Jinyang Gao. 2019. Model slic-
ing for supporting complex analytics with elastic inference cost and resource
constraints. VLDB Endowment 13, 2 (2019), 86ś99.

[10] Gerardo Canfora, Aniello Cimitile, and Andrea De Lucia. 1998. Conditioned
program slicing. Information and Software Technology 40, 11-12 (1998), 595ś607.

[11] Nicholas Carlini and David Wagner. 2017. Towards evaluating the robustness
of neural networks. In 2017 IEEE Symposium on Security and Privacy (SP). IEEE,
39ś57.

[12] Edward Chou, Josh Beal, Daniel Levy, Serena Yeung, Albert Haque, and Li Fei-Fei.
2018. Faster cryptonets: Leveraging sparsity for real-world encrypted inference.
arXiv preprint arXiv:1811.09953 (2018).

[13] Dan CireşAn, Ueli Meier, Jonathan Masci, and Jürgen Schmidhuber. 2012. Multi-
column deep neural network for traffic sign classification. Neural networks 32
(2012), 333ś338.

[14] Edmund M Clarke, Masahiro Fujita, Sreeranga P Rajan, T Reps, Subash Shankar,
and Tim Teitelbaum. 1999. Program slicing of hardware description languages.
In Advanced Research Working Conference on Correct Hardware Design and Verifi-
cation Methods. Springer, 298ś313.

[15] Jacson Rodrigues Correia-Silva, Rodrigo F Berriel, Claudine Badue, Alberto F de
Souza, and Thiago Oliveira-Santos. 2018. Copycat CNN: Stealing knowledge by
persuading confession with random non-labeled data. In 2018 International Joint
Conference on Neural Networks (IJCNN). IEEE, 1ś8.

[16] Victor Costan and Srinivas Devadas. 2016. Intel SGX Explained. IACR Cryptology
ePrint Archive 2016, 086 (2016), 1ś118.

[17] Victor Costan, Ilia Lebedev, and Srinivas Devadas. 2016. Sanctum: Minimal hard-
ware extensions for strong software isolation. In 25th USENIX Security Symposium
(USENIX Security 16). 857ś874.

[18] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
(2019).

[19] Xiaoning Du, Xiaofei Xie, Yi Li, Lei Ma, Yang Liu, and Jianjun Zhao. 2019. Deep-
stellar: model-based quantitative analysis of stateful deep learning systems. In
27th ACM Joint Meeting on European Software Engineering Conference and Sym-
posium on the Foundations of Software Engineering. 477ś487.

[20] Ali Mamdouh Elkahky, Yang Song, and Xiaodong He. 2015. A multi-view deep
learning approach for cross domain user modeling in recommendation systems.
In 24th International Conference on World Wide Web. 278ś288.

[21] Logan Engstrom, Dimitris Tsipras, Ludwig Schmidt, and Aleksander Madry. 2017.
A rotation and a translation suffice: Fooling cnns with simple transformations.
arXiv preprint arXiv:1712.02779 1, 2 (2017), 3.

[22] Gil Fidel, Ron Bitton, and Asaf Shabtai. 2019. When Explainability Meets Adver-
sarial Learning: Detecting Adversarial Examples using SHAP Signatures. arXiv
preprint arXiv:1909.03418 (2019).

[23] Keith Brian Gallagher and James R Lyle. 1991. Using program slicing in software
maintenance. IEEE transactions on software engineering 8 (1991), 751ś761.

[24] Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat
Chaudhuri, and Martin Vechev. 2018. AI2: Safety and robustness certification of
neural networks with abstract interpretation. In 2018 IEEE Symposium on Security
and Privacy (SP). IEEE, 3ś18.

[25] Felix A Gers and E Schmidhuber. 2001. LSTM recurrent networks learn sim-
ple context-free and context-sensitive languages. IEEE Transactions on Neural
Networks 12, 6 (2001), 1333ś1340.

[26] Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin Lauter, Michael Naehrig,
and John Wernsing. 2016. Cryptonets: Applying neural networks to encrypted
data with high throughput and accuracy. In International Conference on Machine
Learning. 201ś210.

[27] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. 2014. Explaining and
harnessing adversarial examples. arXiv preprint arXiv:1412.6572 (2014).

[28] Divya Gopinath, Hayes Converse, Corina Pasareanu, and Ankur Taly. 2019.
Property inference for deep neural networks. In 34th IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 797ś809.

[29] Divya Gopinath, KaiyuanWang, Mengshi Zhang, Corina S Pasareanu, and Sarfraz
Khurshid. 2018. Symbolic execution for deep neural networks. arXiv preprint

arXiv:1807.10439 (2018).
[30] Xiaodong Gu, Hongyu Zhang, Dongmei Zhang, and Sunghun Kim. 2016. Deep

API learning. In 24th ACM SIGSOFT International Symposium on Foundations of
Software Engineering. 631ś642.

[31] Song Han, Huizi Mao, and William J Dally. 2016. Deep compression: compressing
deep neural networks with pruning, trained quantization and huffman coding.
In 4th International Conference on Learning Representations, ICLR.

[32] Song Han, Jeff Pool, John Tran, and William Dally. 2015. Learning both weights
and connections for efficient neural network. In Advances in neural information
processing systems. 1135ś1143.

[33] Mark Harman, David Binkley, and Sebastian Danicic. 2003. Amorphous program
slicing. Journal of Systems and Software 68, 1 (2003), 45ś64.

[34] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In IEEE conference on computer vision and pattern
recognition (CVPR). 770ś778.

[35] Yihui He, Xiangyu Zhang, and Jian Sun. 2017. Channel pruning for accelerating
very deep neural networks. In IEEE International Conference on Computer Vision
(CVPR). 1389ś1397.

[36] Susan Horwitz, Thomas Reps, and David Binkley. 1990. Interprocedural slicing
using dependence graphs. ACM Transactions on Programming Languages and
Systems (TOPLAS) 12, 1 (1990), 26ś60.

[37] Xing Hu, Ling Liang, Lei Deng, Shuangchen Li, Xinfeng Xie, Yu Ji, Yufei Ding,
Chang Liu, Timothy Sherwood, and Yuan Xie. 2019. Neural network model
extraction attacks in edge devices by hearing architectural hints. arXiv preprint
arXiv:1903.03916 (2019).

[38] Matthew Jagielski, Nicholas Carlini, David Berthelot, Alex Kurakin, and Nicolas
Papernot. 2019. High-fidelity extraction of neural network models. arXiv preprint
arXiv:1909.01838 (2019).

[39] Mika Juuti, Sebastian Szyller, Samuel Marchal, and N Asokan. 2019. PRADA:
protecting against DNN model stealing attacks. In IEEE European Symposium on
Security and Privacy (EuroS&P). 512ś527.

[40] Guy Katz, Clark Barrett, David L Dill, Kyle Julian, and Mykel J Kochenderfer.
2017. Reluplex: An efficient SMT solver for verifying deep neural networks. In
International Conference on Computer Aided Verification. Springer, 97ś117.

[41] Paul Kocher, Joshua Jaffe, and Benjamin Jun. 1999. Differential power analysis.
In Annual International Cryptology Conference. Springer, 388ś397.

[42] Bogdan Korel and Janusz Laski. 1988. Dynamic program slicing. Inform. Process.
Lett. 29, 3 (1988), 155ś163.

[43] Yingwei Li, Song Bai, Yuyin Zhou, Cihang Xie, Zhishuai Zhang, and Alan Yuille.
2020. Learning Transferable Adversarial Examples via Ghost Networks. In AAAI
Conference on Artificial Intelligence, Vol. 34.

[44] Yuanchun Li, Fanglin Chen, Toby Jia-Jun Li, Yao Guo, Gang Huang, Matthew
Fredrikson, Yuvraj Agarwal, and Jason I Hong. 2017. Privacystreams: Enabling
transparency in personal data processing for mobile apps. ACM on Interactive,
Mobile, Wearable and Ubiquitous Technologies 1, 3 (2017), 1ś26.

[45] Yuanchun Li, Ziyue Yang, Yao Guo, and Xiangqun Chen. 2019. Humanoid: a
deep learning-based approach to automated black-box Android app testing. In
2019 34th IEEE/ACM International Conference on Automated Software Engineering
(ASE). IEEE, 1070ś1073.

[46] Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and Trevor Darrell. 2018.
Rethinking the value of network pruning. arXiv preprint arXiv:1810.05270 (2018).

[47] Shiqing Ma and Yingqi Liu. 2019. NIC: Detecting adversarial samples with neural
network invariant checking. In 26th Network and Distributed System Security
Symposium (NDSS).

[48] Xingjun Ma, Bo Li, Yisen Wang, Sarah M Erfani, Sudanthi Wijewickrema, Grant
Schoenebeck, Dawn Song, Michael E Houle, and James Bailey. 2018. Character-
izing adversarial subspaces using local intrinsic dimensionality. arXiv preprint
arXiv:1801.02613 (2018).

[49] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and
Adrian Vladu. 2017. Towards deep learningmodels resistant to adversarial attacks.
arXiv preprint arXiv:1706.06083 (2017).

[50] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. 2016.
Deepfool: a simple and accurate method to fool deep neural networks. In IEEE
conference on computer vision and pattern recognition. 2574ś2582.

[51] Aamir Mustafa, Salman Khan, Munawar Hayat, Roland Goecke, Jianbing Shen,
and Ling Shao. 2019. Adversarial defense by restricting the hidden space of deep
neural networks. In IEEE International Conference on Computer Vision (CVPR).
3385ś3394.

[52] Nina Narodytska and Shiva Prasad Kasiviswanathan. 2016. Simple black-box
adversarial perturbations for deep networks. arXiv preprint arXiv:1612.06299
(2016).

[53] Tribhuvanesh Orekondy, Bernt Schiele, and Mario Fritz. 2019. Knockoff nets:
Stealing functionality of black-box models. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). 4954ś4963.

[54] Tribhuvanesh Orekondy, Bernt Schiele, and Mario Fritz. 2019. Prediction poison-
ing: Utility-constrained defenses against model stealing attacks. arXiv preprint
arXiv:1906.10908 (2019).

849

Dynamic Slicing for Deep Neural Networks ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

[55] Nicolas Papernot, PatrickMcDaniel, Somesh Jha, Matt Fredrikson, Z Berkay Celik,
and Ananthram Swami. 2016. The limitations of deep learning in adversarial
settings. In IEEE European symposium on security and privacy (EuroS&P). IEEE,
372ś387.

[56] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. 2017. DeepXplore: Auto-
mated whitebox testing of deep learning systems. In 26th Symposium on Operating
Systems Principles. 1ś18.

[57] Yuxian Qiu, Jingwen Leng, Cong Guo, Quan Chen, Chao Li, Minyi Guo, and
Yuhao Zhu. 2019. Adversarial Defense Through Network Profiling Based Path
Extraction. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
4777ś4786.

[58] Jonas Rauber, Wieland Brendel, and Matthias Bethge. 2017. Foolbox: A python
toolbox to benchmark the robustness of machine learning models. arXiv preprint
arXiv:1707.04131 (2017).

[59] Robert Nikolai Reith, Thomas Schneider, and Oleksandr Tkachenko. 2019. Ef-
ficiently Stealing your Machine Learning Models. In 18th ACM Workshop on
Privacy in the Electronic Society. 198ś210.

[60] Andrew Slavin Ross and Finale Doshi-Velez. 2018. Improving the adversarial
robustness and interpretability of deep neural networks by regularizing their
input gradients. In Thirty-second AAAI conference on artificial intelligence.

[61] Jing Shao, Chen-Change Loy, Kai Kang, and Xiaogang Wang. 2016. Slicing
convolutional neural network for crowd video understanding. In IEEE Conference
on Computer Vision and Pattern Recognition. 5620ś5628.

[62] Josep Silva. 2012. A vocabulary of program slicing-based techniques. ACM
Computing Surveys (CSUR) 44, 3 (2012), 1ś41.

[63] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. 2015.
Going deeper with convolutions. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). 1ś9.

[64] Christian Szegedy,Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,
Ian Goodfellow, and Rob Fergus. 2013. Intriguing properties of neural networks.
arXiv preprint arXiv:1312.6199 (2013).

[65] Mingxing Tan and Quoc V Le. 2019. Efficientnet: Rethinking model scaling for
convolutional neural networks. arXiv preprint arXiv:1905.11946 (2019).

[66] Yuchi Tian, Kexin Pei, Suman Jana, and Baishakhi Ray. 2018. DeepTest: Automated
testing of deep-neural-network-driven autonomous cars. In 40th International
Conference on Software Engineering (ICSE). 303ś314.

[67] Frank Tip. 1994. A survey of program slicing techniques. Centrum voor Wiskunde
en Informatica Amsterdam.

[68] Florian Tramer and Dan Boneh. 2018. Slalom: Fast, verifiable and private exe-
cution of neural networks in trusted hardware. arXiv preprint arXiv:1806.03287

(2018).
[69] Engin Uzuncaova and Sarfraz Khurshid. 2007. Kato: A program slicing tool for

declarative specifications. In 29th International Conference on Software Engineering
(ICSE). IEEE, 767ś770.

[70] Jingyi Wang, Guoliang Dong, Jun Sun, Xinyu Wang, and Peixin Zhang. 2019.
Adversarial sample detection for deep neural network through model mutation
testing. In 41st International Conference on Software Engineering (ICSE). 1245ś
1256.

[71] Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, and Suman Jana. 2018.
Efficient formal safety analysis of neural networks. In Advances in Neural Infor-
mation Processing Systems (NeurIPS). 6367ś6377.

[72] Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, and Suman Jana. 2018.
Formal security analysis of neural networks using symbolic intervals. In 27th
USENIX Security Symposium (USENIX Security 18). 1599ś1614.

[73] Yulong Wang, Hang Su, Bo Zhang, and Xiaolin Hu. 2018. Interpret neural net-
works by identifying critical data routing paths. In IEEE Conference on Computer
Vision and Pattern Recognition. 8906ś8914.

[74] Mark Weiser. 1981. Program slicing. In Proceedings of the 5th International
Conference on Software Engineering. IEEE Press, 439ś449.

[75] Xiaofei Xie, Lei Ma, Felix Juefei-Xu, Minhui Xue, Hongxu Chen, Yang Liu, Jianjun
Zhao, Bo Li, Jianxiong Yin, and Simon See. 2019. DeepHunter: a coverage-
guided fuzz testing framework for deep neural networks. In 28th ACM SIGSOFT
International Symposium on Software Testing and Analysis. 146ś157.

[76] Roman V Yampolskiy. 2011. AI-complete CAPTCHAs as zero knowledge proofs
of access to an artificially intelligent system. ISRN Artificial Intelligence 2012
(2011).

[77] Dinghuai Zhang, Tianyuan Zhang, Yiping Lu, Zhanxing Zhu, and Bin Dong. 2019.
You only propagate once: Accelerating adversarial training via maximal principle.
In Advances in Neural Information Processing Systems. 227ś238.

[78] Jie M Zhang, Mark Harman, Lei Ma, and Yang Liu. 2020. Machine learning testing:
Survey, landscapes and horizons. IEEE Transactions on Software Engineering
(2020).

[79] Qiao Zhang, Cong Wang, Chunsheng Xin, and Hongyi Wu. 2019. CHEETAH: An
Ultra-Fast, Approximation-Free, and Privacy-Preserved Neural Network Frame-
work based on Joint Obscure Linear and Nonlinear Computations. arXiv preprint
arXiv:1911.05184 (2019).

[80] Quan-shi Zhang and Song-Chun Zhu. 2018. Visual interpretability for deep
learning: a survey. Frontiers of Information Technology & Electronic Engineering
19, 1 (2018), 27ś39.

[81] Xiangyu Zhang, Rajiv Gupta, and Youtao Zhang. 2003. Precise dynamic slicing
algorithms. In 25th International Conference on Software Engineering (ICSE). 319ś
329.

850

	Abstract
	1 Introduction
	2 Background and related work
	2.1 Deep Neural Networks
	2.2 Program Slicing
	2.3 Program Analysis for Neural Networks

	3 Motivation and goal
	3.1 Motivation
	3.2 Problem Formulation
	3.3 Challenges

	4 Our approach: NNSlicer
	4.1 Approach Overview
	4.2 Profiling and Forward Analysis
	4.3 Backward Analysis and Slice Extraction
	4.4 GPU and Multi-thread Acceleration

	5 Implementation & overhead
	6 Applications
	6.1 Adversarial Defense
	6.2 Network Simplification and Pruning
	6.3 Model Protection

	7 Limitations and discussion
	8 Concluding remarks
	Acknowledgments
	References

