
TEESlice: Slicing DNN Models for Secure and Efficient
Deployment

Ziqi Zhang∗
Peking University

China
ziqi_zhang@pku.edu.cn

Lucien K. L. Ng†
The Chinese University of Hong Kong

Hong Kong
luciengkl@ie.cuhk.edu.hk

Bingyan Liu∗
Peking University

China
lby_cs@pku.edu.cn

Yifeng Cai∗
Peking University

China
caiyifeng@pku.edu.cn

Ding Li∗
Peking University

China
ding_li@pku.edu.cn

Yao Guo∗
Peking University

China
yaoguo@pku.edu.cn

Xiangqun Chen∗
Peking University

China
cherry@sei.pku.edu.cn

ABSTRACT
Providing machine learning services is becoming profit business for
IT companies. It is estimated that the AI-related business will bring
trillions of dollars to the global economy. When selling machine
learning services, companies should consider two important as-
pects: the security of the DNNmodel and the inference latency. The
DNN models are expensive to train and represent precious intellec-
tual property. The inference latency is important because modern
DNN models are usually deployed to time-sensitive tasks and the
inference latency affects the user’s experience. Existing solutions
cannot achieve a good balance between these two factors. To solve
this problem, we propose TEESlice that provides a strong secu-
rity guarantee and low service latency at the same time. TEESlice
utilizes two kinds of specialized hardware: Trusted Execution Envi-
ronments (TEE) and existing AI accelerators. When the company
wants to deploy a private DNNmodel on the user’s device, TEESlice
can be used to extract the private information into model slices. The
slices are attached to a public privacy-excluded backbone to form a
hybrid model that has similar performance to the original model.
When deploying the hybrid model, the lightweight privacy-related
slice is secured by the TEE and the public backbone is put on the
AI accelerators. The TEE provides a strong security guarantee on
the model privacy and the accelerators reduce the computation
latency of the heavy model backbone. Experimental results show

∗Key Laboratory of High-Confidence Software Technologies (MOE), School of Com-
puter Science, Peking University
†Department of Information Engineering, The Chinese University of Hong Kong

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
AISTA ’22, July 18, 2022, Virtual, South Korea
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9387-4/22/07. . . $15.00
https://doi.org/10.1145/3536168.3543299

that TEESlice can achieve more than 10× throughput promotion
with the same level of strong security guarantee as putting the
whole model inside the TEE. If the model provider wants to further
verify the correctness of the accelerator’s computation, TEESlice
can still achieve 3-4× performance improvement.

CCS CONCEPTS
• Software and its engineering → Software safety; • Com-
puting methodologies → Neural networks; • Security and
privacy→ Trusted computing.

KEYWORDS
Neural networks, Model protection, TEE

ACM Reference Format:
Ziqi Zhang, Lucien K. L. Ng, Bingyan Liu, Yifeng Cai, Ding Li, Yao Guo,
and Xiangqun Chen. 2022. TEESlice: Slicing DNN Models for Secure and
Efficient Deployment. In Proceedings of the 2nd ACM International Workshop
on AI and Software Testing/Analysis (AISTA ’22), July 18, 2022, Virtual, South
Korea. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3536168.
3543299

1 INTRODUCTION
The advance in deep learning techniques has spawned enormous
new commercial services and products. The market size and the
revenues of AI technologies will sustainably grow. One popular
commercial model to provide deep learning services is MLaaS (Ma-
chine Learning as a Service). It is adopted by leading commercial
companies such as Google, Amazon, and Microsoft.

There are two important aspects of the MLaaS paradigm: the
security of the companies’ model and the inference latency. Pro-
tecting the model security is important because the DNN models
are precious intellectual property for the companies. Training DNN
models is expensive in terms of time, money, and human effort.
It is reported that a model trained by Google costs 61,000 USD
per training run [4]. The inference latency is important because

1

https://doi.org/10.1145/3536168.3543299
https://doi.org/10.1145/3536168.3543299
https://doi.org/10.1145/3536168.3543299
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3536168.3543299&domain=pdf&date_stamp=2022-07-18

AISTA ’22, July 18, 2022, Virtual, South Korea Ziqi Zhang, Lucien K. L. Ng, Bingyan Liu, Yifeng Cai, Ding Li, Yao Guo, and Xiangqun Chen

more and more DNN applications are deployed on mobile or embed-
ded devices. Such applications are sensitive to the inference time
because they are usually used for real-time tasks, such as speech
recognition and object detection in autonomous driving.

When providing deep learning services, there are three options
for the companies to choose from. However, none of the approaches
can achieve a perfect balance between the DNN model protection
and low latency. (1) The first approach is that the user uploads the
input data and the company’s cloud server returns the inference re-
sults. This approach suffers from large communication latency and
the user may not want to upload the private data. (2) The second
approach is that the user and the company collaboratively com-
pute the inference output via some cryptography-based techniques
(e.g. homomorphic encryption (HE) and multi-party computation
(MPC)). The drawback is that cryptography algorithms introduce
significant overhead and are orders of magnitude slower than state-
of-the-art other approaches [11]. (3) The third approach is that the
companies deploy the model on the users’ devices [7]. As illustrated
in Figure 1, with modern AI accelerators (e.g. GPU, NPU, and TPU),
this approach provides offline low-latency DNN inference service.
Given that inference time is an important factor for many modern
DNN applications, in this paper, we will focus on this approach.

However, sending the model to the user device may leak the
model information. For the companies, the DNN model is an ex-
pensive property and should be carefully protected. Besides, if the
model weights are leaked, an adversary may reverse-engineer the
training data and tampers with the data privacy. To solve this prob-
lem, Trusted Execution Environments (TEEs) can be used to deploy
the models [3]. TEEs use both hardware and software to guarantee
the confidentiality and security of the protected code. Popular TEEs
include Intel SGX and ARM TrustZone. But according to the prior
literature [11], TEEs are at least an order of magnitude less efficient
than the best available untrusted accelerators.

The reason for the high latency for the TEE-based solution is
that it puts the whole DNN model inside TEEs and treats different
model parts equally. In this paper, we argue that different model
parts should be treated differently. To reduce the inference latency,
only the important private model layers should be protected by
the inefficient TEEs. Shadownet [10] tried to only put the non-
linear layers inside the TEE. But Shadownet trades model security
for inference efficiency and the security level is weak. As we will
illustrate in Section 2.3, their defense can be cracked by carefully
designed attacks. In this paper, we propose TEESlice that only
protects the private model slices with TEEs to reduce inference
latency.

As Figure 1 shows, TEESlice is a hybrid solution. First, a public
DNN backbone is downloaded from the Internet. Instead of deploy-
ing the original private model, TEESlice extracts a privacy-related
model slice from the private model. The extracted slice is attached
to the privacy-excluded DNN backbone and the hybrid DNN model
has the same functionality and similar performance as the original
private model. The model slice has significantly smaller computa-
tion complexity than the original private model. On the user device,
the lightweight slices are deployed in the TEEs and the heavy back-
bone is put on the untrusted accelerators. In this way, the private
information in the slices is protected by the TEEs and the heavy
computation operations are performed by the accelerator. TEESlice

Trusted Execution Environment

Untrusted AI Accelerator

Private Model

Private Model

Privacy-related Slice

Privacy-excluded
Backbone

High Latency

Low Security Risk

TEE-based Solution

High Security Risk

Low Latency

Accelerator-based
Solution

Low Latency

Hybrid Solution

Low Security Risk

Figure 1: Illustration of security-performance trade-off of
different solutions.

enjoys both a low security risk and low inference latency at the
same time.

Specifically, TEESlice consists of two stages: private slice ex-
traction and hybrid model deployment. The first stage converts
a given private model to model slices with limited labeled data.
A generative network is trained simultaneously to supply more
training data. The slices are first densely attached to the model
backbone and gradually pruned during the training process. After
slice extraction, the hybrid model is deployed on the user device.
To reduce the swapping overhead of the TEE memory, TEESlice
uses the untrusted OS memory as an external cache. To provide
strong slice protection, all the input and output feature of the model
slices are encrypted. The model owner can also choose to verify
the correctness of the outsourced computation to provide a reliable
service.

We evaluated TEESlice with Intel SGX and modern commercial
GPUs. Experimental results show that TEESlice is up to 14.52×
faster than the baseline if the model owner only wants to protect
the model information. If the model owner wants to guarantee
the correctness of the inference result, TEESlice still achieves 3-4×
performance gain.

2 BACKGROUND
2.1 Trusted Execution Environments
A trusted execution environment ensures the protected coda and
data are isolated from all the programs on the same host. This
hardware guarantees the confidentiality and integrity of the pro-
tected software against strong adversaries such as a malicious OS.
However, TEE’s security guarantee comes with a significant per-
formance cost. The computation ability of TEEs remains a far cry
from untrusted devices. For example, the memory limitation of SGX
is 128MB and only about 93MB is available for user applications.
When the used memory exceeds the memory limitation, the TEE
will suffer from severe paging overheads. In Slalom [11], the au-
thor evaluated the performance gap between SGX and a high-end
GPU (Nvidia TITAN XP). For MobileNet, the throughput of SGX
is 16 images/sec while the value of GPU is 56× higher, up to 900
images/sec.

2.2 Deep Neural Networks
The architecture of DNN is composed of various basic layers each
layer performs one operation. The layers can be divided into two

2

TEESlice: Slicing DNN Models for Secure and Efficient Deployment AISTA ’22, July 18, 2022, Virtual, South Korea

categories: linear layers and non-linear layers. Linear layers include
convolutional layers, fully connected layers, and batch normaliza-
tion layers. Non-linear layers include ReLU layers and Sigmoid
layers. Traditional encryption techniques such as homomorphic
encryption can handle linear layers but can not deal with non-linear
layers. Linear layers occupy most of the computational costs due to
the complex matrix multiplication operations. According to prior
literature [11], 98.5% computation resource is spent on linear layers
for a VGG16 model. In software community, researchers tried to
analyze the DNN behavior with model-based techniques [6, 12, 13].

2.3 Limitation of Prior Work
Some recent work tried to outsource the heavy computation layers
from TEEs to co-located AI accelerators. Slalom [11] outsources
the linear layers to the GPU and keeps non-linear layers inside
TEEs. But Slalom can only protect input privacy rather than model
property. If a similar technology is applied to protect model weights,
the plain-text input and output easily leak the encrypted weights.
ShadowNet [10] obfuscate model weights via linear transformation
and outsource the transformed weights. The obfuscation of this
work is not built upon known encryption techniques and lacks a
strong security guarantee. The transformation technique is similar
to affine cipher which is considered highly insecure with respect to
a strong adversary.

As ShadowNet [10] is a recently proposed framework to obfus-
cate model weights on the user side, we depict two possible attacks
to reveal the potential threat. Assume a linear layer with 𝑛 neurons,
the weight is w = [w1,w2, . . . ,w𝑛]. ShadowNet obfuscates w with
linear transformation and permutation. The obfuscated weight ŵ
is computed as:

ŵ = [w1 · 𝜆1 + 𝑓1, w2 · 𝜆2 + 𝑓2, . . . , w𝑛 · 𝜆𝑛 + 𝑓𝑛] · 𝑃𝜋 , (1)

where 𝜆𝑖 and 𝑓𝑖 are random variables. 𝜋 is a random permutation
and 𝑃𝜋 is the corresponding permutation matrix, i.e. 𝑃𝜋 (𝑖, 𝑗) = 1
if 𝜋 (𝑖) = 𝑗 otherwise 0. ShadowNet sends ŵ and [𝑓1, 𝑓2, . . . , 𝑓𝑛] to
the untrusted accelerators.

One attack is that the shuffle permutation may be recovered by
an attacker because TEEs usually cannot hide the memory access
pattern [5]. Then the attacker can match the pair w𝑖 · 𝜆𝑖 + 𝑓𝑖 and 𝑓𝑖
to recover the weight ŵ𝑖 . Another attack is to utilize some public
knowledge of the model weights. For example, the attacker knows
the architecture of the victim model and can analyze the public
model that has the same architecture to extract a certain pattern of
the kernel weights. The attacker may exhaust all pairs (ŵ𝑖 , ŵ𝑗) and
compute ŵ𝑖 − ŵ𝑗 to see if the known pattern appears. For example,
some kernels of the public model may mainly contain zeros but
have a high magnitude on a few weights. The DNN model fine-
tuned from these public models or with the same architecture may
have similar characteristics. The attacker can find these kernels,
analyze the outsourced weights and find the weights that have lots
of similar values. These values should approximate 𝑓𝑖 because they
are generated by 0 ∗ 𝜆𝑖 + 𝑓𝑖 .

2.4 Goals and Challenges
We consider a two-party scenario between a model provider 𝑃 and a
model user𝑈 . 𝑃 provides the functionality of a trained DNN model

𝐹 (·) to the user𝑈 but does not want to reveal any more information.
The goals of this paper are summarized as follows:

• Data privacy: The model provider 𝑃 learns no information
about the user’s input data x.
• Model privacy: The user 𝑈 learns no more information
about 𝐹 than what is revealed by y = 𝐹 (x).
• 𝑡-Integrity: For a DNN 𝐹 and a user input x, the probability
that 𝐹 outputs an incorrect value ỹ ≠ 𝐹 (x) is less than 𝑡 .
• Efficiency: The inference time of the proposed technique
should be faster than the vanilla implementation that put
the whole model inside TEE.

To implement TEESlice, there are two major challenges. One
challenge is how to select a proper position to attach model slices
automatically. Normal DNN models have tens of layers. Achiev-
ing satisfactory accuracy requires various model slices attached
to different positions. Searching all the combinations of the slice
positions and training each combination to find the best model with
minimal computational cost inside TEEs are evenmore complex and
time-consuming. TEESlice aims to reduce the search complexity
and efficiently find the best slice positions.

Another challenge is how to extract the model slice at the post-
training stage in a data-limited scenario. We aim to design a general
framework that can protect all the existing DNNmodels at the post-
training stage. It means, given a trained model, we want to convert
it to the deployable architecture that a model slice is attached to a
public privacy-excluded model backbone. An important challenge
is the lack of large-scale training data at the post-training stage.
Given the same training dataset, it is easy to extract the model
slices. However, in recent years with the rise of privacy concerns
and the regulations (such as GDPR), the whole training dataset
is not controlled by the model providers. Modern AI companies
have turned to new training paradigms, such as federated learning
and continuous learning. In these cases, the model owner does not
have enough data to extract model slices and needs a data-limited
technique.

3 PROBLEM FORMULATION
Assumption.We consider an MLaaS framework where a model
provider deploys the model to the client’s device. All the compu-
tation is performed on the client’s device. The private user data
does not upload to the provider’s server thus the user privacy is
protected.

For the client’s device, the model owner can control how the
model is deployed on the client’s device, including which part
of the code and data are deployed inside TEEs and untrusted AI
accelerators. For TEEs, the secrecy of data and the integrity of
the code are guaranteed. We assume the host OS is malicious and
the model owner has no control of the data secrecy and program
correctness on the host OS. This challenging assumption is the
same as prior literature [11]. Note that the assumption of malicious
host OS does not hinder the integral deployment of TEE programs
because the remote model owner can attest to the code and data
of the enclave at the initialization stage [3]. We assume the user is
unable to infer any more information about the model than what
is intentionally exposed by the model owner.

3

AISTA ’22, July 18, 2022, Virtual, South Korea Ziqi Zhang, Lucien K. L. Ng, Bingyan Liu, Yifeng Cai, Ding Li, Yao Guo, and Xiangqun Chen

Defender’s Ability. We assume the model owner has a trained
model as the teacher𝑇 (·) and has white-box access to𝑇 (knows the
architecture and parameters). The defender can download any pub-
lic pre-trained model𝑀pub from the Internet. We also assume the
defender has a small amount of labeled data 𝐷label (e.g. validation
dataset or 10% of the training data) but does not have large-scale
training data.

Defender’s Goal. The defender here is the model owner who
wants to protect the confidentiality and intellectual property of the
model functionality. This functionality is decomposed into the func-
tion of the public model backbone and the function of private slices.
All the information of private slices should keep secret, including
the layer weights and the layer input/output.

4 APPROACH
4.1 Overview
The pipeline of TEESlice is depicted in Figure 2. The proposed
framework consists of two stages: private slice extraction and hy-
brid model deployment.

The private slice extraction stage converts the original private
model into model slices with limited labeled data. TEESlice needs to
download a public model that contains no private information from
the Internet. The model slice is attached to the public model to form
a hybrid model. During training, only the privacy-related model
slices are updated and the weights of the public model are kept
unchanged. To supplement the insufficient training data, we train
a generator from the original model. The generated data and the
labeled data are combined to train the model slices. In the training
process, the hybrid model acts as the student and the original model
is the teacher. To further reduce the inference cost of model slices,
TEESlice uses an iterative pruning technique that gradually filters
less-important slices. At the end of this stage, the hybrid model has
a similar performance to the original private model.

Then in the model deployment stage, the hybrid model is sent
to the client’s device to provide model inference service. The pub-
lic backbone is deployed on the untrusted AI accelerators and the
private slices are deployed inside TEEs. To reduce the paging over-
head when dealing with a large matrix, we implement a memory
manager that actively switches the data between TEE’s memory
and the untrusted rich memory. To prevent the leakage from layer
inputs/outputs, the feature map exchange between the TEEs and
accelerators is also encrypted. Besides, as the adversary may con-
taminate the client OS, the AI accelerator may produce incorrect
results. To guarantee the integrity of the inference results, TEESlice
takes the output of all the outsourced layer into TEEs and check
the correctness with little computation cost.

4.2 Private Slice Extraction
This section illustrates the pipeline of private slice extraction. TEESlice
uses the original private model to train a generative network to
supplement the training data. During the training process, the orig-
inal model is the teacher and the hybrid model acts as the student.
The hybrid model is first constructed by adding dense slices to
the public model to ensure enough model capacity to learn the
teacher’s knowledge. Then TEESlice performs an iterative pruning

algorithm to filter the less important slices with little accuracy sacri-
fice. Then we will introduce three modules in different subsections:
semi-supervised learning pipeline, densely sliced model training,
and iterative slice reduction.

4.2.1 Semi-supervised Learning Pipeline. We denote the labeled
dataset as𝐷label and the original privatemodel as the teacher𝑇 (·;𝜙).
The goal of this module is to train two models: a generative network
𝐺 and a student network 𝑆 . The generative network 𝐺 takes a
random vector 𝑧 as input and outputs synthetic samples that are
similar to the real training samples in 𝐷label. The structure of the
student network 𝑆 will be illustrated in the next subsection. In this
subsection, we treat the student 𝑆 (·;𝜃𝑆) as a black-box model with
forward and backward functions. This subsection focus on the data
generation and training framework.

The slice extraction framework ismotivated by the priorwork [1].
The goal of knowledge extraction is to train the student model to
have similar outputs as the teacher. The optimization goal can be
formulated as

𝐻 (𝑇, 𝑆) = E𝑥∼𝐷 | |𝑇 (𝑥 ;𝜃𝑇) − 𝑆 (𝑥 ;𝜃𝑆) | |1, (2)

i.e. to minimize the L1 norm between the teacher and the student.
In the data-free setting, the input samples are generated by𝐺 . Thus
the goal becomes

𝐻 (𝑇, 𝑆) = E𝑧∼𝑝𝑧 | |𝑇 (𝐺 (𝑧;𝜙);𝜃𝑇) − 𝑆 (𝐺 (𝑧;𝜙);𝜃𝑆) | |1, (3)

where 𝑧 is the random noise as the image generation seed.
The idea of semi-supervised learning is straightforward. The

optimization goal of the student 𝑆 is to output similar results as the
teacher network 𝑇 given any input. The goal of 𝐺 is to generate
difficult samples. The student’s predictions on such samples tend
to deviate from those produced from the teacher. The joint goal
formulation is as follows:

min
𝜃𝑆

max
𝜙
E𝑧∼𝑝𝑧 | |𝑇 (𝐺 (𝑧;𝜙);𝜃𝑇) − 𝑆 (𝐺 (𝑧;𝜙);𝜃𝑆) | |1, (4)

To optimize this equation, we adopt a two-stage framework:
knowledge extraction and sample generation. The knowledge ex-
traction stage fixes the generator’s parameters 𝜙 and optimizes
student model’s parameters so that the student has similar behav-
ior as the teacher. The workflow of the sample generation is the
opposite. The second stage fixes the student model and optimizes
the generator so that the generator produces hard samples that tend
to mislead the student. Learning such hard samples improves the
efficiency of the knowledge extraction process. The two stages are
executed alternately so that the student model and the generator
are optimized simultaneously.

4.2.2 Training of Densely Sliced Model. In this subsection, we will
introduce how to construct the densely sliced model. Motivated
by [8], the general idea of constructing the model is to augment the
existing public model with privacy-related slices. Such slices are
attached to the public model backbone and are placed parallel with
the main blocks. We take CNN as an example to illustrate how to
construct the model architecture, but the proposed technique can
be applied to other model architectures such as BERT.

Suppose a CNN model implements the function 𝑓 (𝑥 ;𝜃) and con-
sists of 𝐿 layers. The function of layer 𝑙 is 𝐵𝑙 and 𝑓 (𝑥 ;𝜃) can be

4

TEESlice: Slicing DNN Models for Secure and Efficient Deployment AISTA ’22, July 18, 2022, Virtual, South Korea

Limited Labeled
Data

G
AN

Generated Data

DNN Backbone

Public Model

Mixed Model

TrainingTr
ai
n
G
en

er
at
or

Private Model

Correctness Monitor

WW

Memory Manager

Trusted Execution Environment

Untrusted AI Accelerator
Untrusted Client OS

Private Slice Extraction Hybrid Model Deployment

Figure 2: The pipeline of TEESlice.

Algorithm 1: The pipeline of knowledge extraction.
Data: Teacher model 𝑇 , a little label data 𝐷label, an

initialized student model 𝑆 , training epochs 𝑒𝑝𝑜𝑐ℎ𝑠
1 Function KnowledgeExtraction(𝑇 , 𝑆 , 𝐷label):
2 for 𝑒 ← 1 to 𝑒𝑝𝑜𝑐ℎ𝑠 do

// Sample Generation

3 Fix the student network 𝑆 ;
4 Update the generator 𝐺 to maximize Equation 4 ;
5 Fix the generator 𝐺 ;
6 The generator 𝐺 produces synthetic dataset 𝐷syn ;

// Knowledge extraction.

7 Merge the dataset 𝐷train = 𝐷label ∪ 𝐷syn ;
8 Update the student network 𝑆 to minimize

Equation 4 with 𝐷train ;
9 end

10 return the trained student model 𝑆 ;

represented as

𝑓 (𝑥 ;𝜃) = (𝐵𝐿 ◦ 𝐵𝐿−1 ◦ · · · ◦ 𝐵1) (𝑥 ;𝜃) . (5)

In the assumption of this paper, all the blocks 𝐵𝑙 and their parame-
ters are adopted from a public-available pre-trained model. To learn
the knowledge of the private task, we augment each layer with
several proxy slices {𝐴𝑙

𝑝 (·)}. The proxy slice 𝐴𝑙
𝑝 connects layer 𝐵𝑝

with layer 𝐵𝑙 . The output of layer 𝐵𝑙 are summed by the outputs
of 𝐴𝑙

𝑝 (·) weighted by different scalar values. Let ℎ𝑙 represent the
weighted-summed output after layer 𝐵𝑙 , the computation process
can be formulated as

ℎ𝑙 = 𝐵𝐿 (ℎ𝑙−1) +
𝑙∑︁
𝑝

𝛼𝑙𝑝𝐴
𝑙
𝑝 (ℎ𝑝), (6)

where 𝛼𝑙𝑝 ∈ [0, 1] is scalar value to measure the importance of the
𝐴𝑙
𝑝 ’s output.
Note that the goal of TEESlice is to minimize the computational

cost inside TEEs, thus we need to carefully design the slice algo-
rithm. One important thing is that we constrain the number of
proxy slices for each backbone layer to 𝑘 , i.e. 𝑝 = 𝑙 − 𝑘 . Otherwise,
the number of proxy slices grows rapidly and exceeds the TEE

𝐵!

𝐵"

𝐵#

𝐵$

𝐵%

𝐴!"

𝐴#$

𝐵!

𝐵"

𝐵#

𝐵$

𝐵%

𝐴#!

𝐴!$

𝐴$"

𝐴#"

𝐴#$

𝐵!

𝐵"

𝐵#

𝐵$

𝐵%

𝐴$"

Densely Sliced
Model

Sparsely Sliced
Model

Public
Backbone

Figure 3: The pipeline of constructing the sliced model.

memory. Another elaborated design is that the complexity of the
proxy slices is much simpler than that of the backbone layers. Take
a ResNet18 model as an example, the backbone layers are mostly
convolution layers of kernel size 3 × 3. Following [8], we choose
the convolution kernel size of these proxy slices as 1 × 1. It means
for the same layer input, the computation cost of the proxy slice is
1
9 of the backbone layers. We limit both the number of proxy slices
and the computation complexity of each layer to alleviate the total
computational cost inside TEEs.

Figure 3 shows an example of a five-layer backbone model and
the number of proxy slices 𝑘 = 3. In the middle of Figure 3, we
can see that TEESlice attaches six proxy slices alongside the model
backbone. Note that although the number of proxy slices is larger
than the number of backbone layers, the TEESlice’s computation
cost is smaller than putting the backbone whole model inside TEE.
It is because the computation complexity of𝐴𝑙

𝑝 is much smaller than
𝐵𝑙 . Besides, the number of 𝐴𝑙

𝑝 will be reduced by a large margin in
the next step.

After constructing the densely sliced model, we use the knowl-
edge extraction pipeline in Algorithm 1 to train the model. The
constructed model acts as the student model in the learning pipeline.
To ensure that only the proxy slices learn the private knowledge, we
update proxy slices and fix the backbone layers. Besides optimizing
the parameters of 𝐴𝑙

𝑝 , we also optimize the scalar weights 𝛼𝑙𝑝 . In
this way, the model can automatically learn which slices are more
important. The trained model achieves high performance on the
private task and can be deployed across the TEEs and the untrusted
AI accelerators on the user’s device. However, the densely sliced

5

AISTA ’22, July 18, 2022, Virtual, South Korea Ziqi Zhang, Lucien K. L. Ng, Bingyan Liu, Yifeng Cai, Ding Li, Yao Guo, and Xiangqun Chen

model still requires plenty of proxy slices to reside inside TEE. To
further prune the TEE’s computation cost, we perform an iterative
slice reduction in the next step.

4.2.3 Iterative Slice Reduction. The goal of this stage is to reduce
the number of proxy slices of the hybrid model. This stage consists
of two steps: static slice pruning and iterative slice pruning. In the
first step, the densely sliced model prunes several slices that have
little contribution to the model output. Then the pruned model
is fine-tuned to recover model performance. In the second step,
TEESlice iteratively prunes the proxy slices for several rounds. In
each round, a few slice layers are pruned and the pruned model is
fine-tuned. In this way, the performance loss in each round is under
control and can be recovered by the fine-tuning stage. Figure 3
shows the pruned model. After several rounds of pruning-and-fine-
tuning, there are only two proxy slices remaining (𝐴3

1 and 𝐴
4
3).

The pruning criterion is the scalar weight 𝛼𝑙𝑝 . During the full
model training, the scalar weights 𝛼𝑙𝑝 are optimized with the layer
parameters. According to Equation 6, the layers with small 𝛼𝑙𝑝
contribute less to the feature output. The influence of pruning such
proxy slices is much smaller than pruning other layers.

The performance loss of pruning is controlled by a pre-defined
threshold 𝛿 (such as 1%). Let 𝑝ideal represent the performance of
the original model. The lower bound of the tolerable accuracy
is 𝑝tol = (1 − 𝛿) · 𝑝ideal and 𝑝tol can be determined before the
pruning stage. In each step, the slices are pruned as long as the
fine-tuned model performance is above the tolerable limit 𝑝tol. If
the performance of the pruned model can not recover to the 𝑝tol, it
means the pruned model needs more training time and TEESlice
will not prune new slices.

The pruning pipeline is depicted in Algorithm 2. The static slice
pruning needs a pre-defined threshold 𝛼static to filter out the proxy
slices. The slice layers with 𝛼𝑙𝑝 < 𝛼static are pruned. Heuristically
we set 𝛼static to be 0.1. The pruned model becomes the student
model and is re-trained by the semi-supervised learning frame-
work. The iterative slice pruning needs two hyper-parameters: the
number of the pruned layers in each round 𝑛 and the total num-
ber of pruning rounds 𝑟𝑜𝑢𝑛𝑑𝑠 . In each round, we first evaluate the
model performance 𝑝𝑟 . If the current model satisfies the perfor-
mance requirement (𝑝𝑟 > 𝑝tol), TEESlice selects 𝑛 proxy slices with
the smallest scalar weights 𝛼𝑙𝑝 and trains the pruned model. Other-
wise, TEESlice skips the pruning operation and continues to train
the insufficiently-performed model.

4.3 Secure Deployment
In this section, we will introduce how the hybrid model is deployed
and provide ML service without leaking private information. After
the model owner has trained the sparsely sliced model, she can
provide a machine learning service by sending the trained model to
the client’s device. The privacy-related slices are encrypted and the
public backbone is stored in plain text. When processing the user’s
input, the private-related slices are loaded inside TEEs’ memory
and the backbone is loaded to the untrusted AI accelerators. Note
that the privacy-related slices can only be decrypted inside TEEs
with the model-owner-provided keys. All the computations related

Algorithm 2: The static and iterative pruning pipeline.
Input: Teacher model 𝑇 , the public pre-trained model𝑀pub,

a little labeled data 𝐷label, validate dataset 𝐷val,
pruning hyper-parameters 𝛼static, 𝑛, and 𝑟𝑜𝑢𝑛𝑑𝑠

Output: The sparsely sliced model 𝑆sparse
1 Construct the densely sliced model 𝑆dense from𝑀pub;
2 Train the model 𝑆dense = KnowledgeExtraction(𝑇 , 𝑆dense,

𝐷label) ;
// Static slice pruning

3 Prune the model 𝑆dense by threshold 𝛼static and get 𝑆static ;
4 Train the model 𝑆1 = KnowledgeExtraction(𝑇 , 𝑆static,

𝐷label) ;
// Iterative slice pruning

5 for 𝑟 ← 1 to 𝑟𝑜𝑢𝑛𝑑𝑠 do
6 Compute the accuracy 𝑝𝑟 of 𝑆𝑟 on 𝐷val ;
7 if 𝑝𝑟 > 𝑝tol then
8 Store the model 𝑆sparse = 𝑆𝑟 ;
9 Select 𝑛 proxy slices with smallest 𝛼𝑙𝑝 ;

10 Prune the selected layers of 𝑆𝑟 ;
11 end
12 Train the student model 𝑆𝑟+1 =

KnowledgeExtraction(𝑇 , 𝑆𝑟 , 𝐷label) ;
13 end
14 return The sparsely sliced model 𝑆sparse

to the proxy slices are conducted inside TEEs. This scheme provides
a strong security guarantee on the private information of the slices.

However, the deployment of the sliced model is not easy and
there are three major challenges. (1) How to deal with the limited
memory size of TEEs and reduce the potential swapping overhead.
(2) How to eliminate the information leakage from the input/output
of the private proxy slices. (3) How to verify the correctness of the
outsourced DNN layers. For the first challenge, we implement a
memory manager that uses the untrusted OS’s memory as the TEEs’
cache. The manager actively switches memory chunks into and out
of the TEE memory. The memory chunks that are switched out of
TEEs are encrypted. To solve the second problem, we encrypt the
input and output features of the private slices. The encrypted input
can be fed into linear layers of the public backbone to produce
encrypted outputs. The output feature is then decrypted inside
the TEEs. As non-linear layers can not operate on the encrypted
features, we put such layers inside TEEs for a strong security guar-
antee. But putting all the non-linear layers into TEEs will cause a
severe switch overhead between TEEs and accelerators, we only put
the non-linear layers that are located behind the first private slice.
To solve the third challenge, we perform Freivalds’ algorithm inside
TEEs following [11] to verify the correctness of linear operations
with little computational cost. In the following subsections, we will
introduce each technique in detail.

4.3.1 Memory Management. Managing the secure memory is im-
portant when protecting the DNN inference with TEEs. It is because
the size of the TEEs’ secure memory is very limited but the com-
putation of DNN is memory-intensive. To solve this problem, we

6

TEESlice: Slicing DNN Models for Secure and Efficient Deployment AISTA ’22, July 18, 2022, Virtual, South Korea

𝐵!

A"! A!#

Encrypt

𝐵#

Decrypt Encrypt

𝐵$

Decrypt

Output

TEE

Untrusted AI Accelerator

Figure 4: An illustration of feature encryption.

implemented a memory manager that can actively switch memory
chunks into and out of TEEs. The memory manager first scans the
private slices, computes the total needed memory, and prepares the
needed memory chunks. When TEESlice needs more memory than
the memory limit, it encrypts the memory chunks and stores them
in the untrusted memory. The operations that need the same size
of memory share the same memory chunks. When TEESlice needs
the data in the untrusted memory, the encrypted chunks are loaded
into TEEs for decryption. In this way, the untrusted memory acts
as a cache of the TEEs’ memory. The overhead of memory switch
between TEEs’ memory and untrusted memory is less than the
overhead between TEEs’ memory and external disks. TEESlice can
achieve a better balance between the memory support and switch
overhead.

4.3.2 Encrypted Feature Computation. As the output of the pro-
tected slices may leak information about the slice weights, TEESlice
needs to encrypt the slice output before it is evicted to the un-
trusted environments. It means all the internal features that are
computed based on any slice output should be encrypted. In other
words, the internal features that lie after the first proxy slice must
be encrypted when they are transferred from TEEs to the untrusted
AI accelerators. The linear layers on the untrusted accelerators can
operate on the encrypted data and produce the encrypted output.
The output can be decrypted inside TEEs as if these layers directly
compute the plain-text data.

Figure 4 shows how the internal features are encrypted for the
sparsely sliced DNN in Figure 3. To make it easy to understand, we
assume all the layers are linear layers. The features prior to the layer
𝐴3
1 and 𝐵3 are not encrypted because they are not computed from

any proxy slice outputs. After layer 𝐴3
1 all the features should be

encrypted when transferred from TEEs to untrusted AI accelerators.
The input of layer 𝐵4 is encrypted because the feature is computed
by summing the outputs of 𝐴3

1 and 𝐵3. The output of layer 𝐵4 is
then decrypted inside the TEE. TEESlice does not encrypt the input
of 𝐴4

3 because this layer is inside TEEs. Similarly, the input and
output of 𝐵5 are encrypted. The final model output is decrypted by
the TEE and transferred to the outside environment.

Then we will illustrate the feature encryption mechanism and
why the linear layers can correctly handle such features. Let x rep-
resent the plain-text feature. We first quantize x to integer field and
then encrypt the quantized feature. We choose the 8-bit quantiza-
tion algorithm. Let 𝜁 and 𝛿 be the minimal and the maximal value
of x, respectively. A 8-bit integer can represent the value range
from [𝜁 , 𝛿] to [0, 28). The quantization scale factor is 𝑠 = 28−1

𝛿−𝜁 and
the bias factor is 𝑧 = −⌈𝜁 · 𝑠⌉ . The quantization function is

x̂ = clip(⌈𝑠 · x + 𝑧⌉), 0, 28 − 1) . (7)

Then we encrypt the quantized feature with a one-time-pad
mask. Let 𝑞 be a large prime number and r be a random mask with
the same size as x. Each value in r is a random number selected
from [0, 𝑞]. The encrypted feature is computed by

x𝑒 = (x̂ + r) % 𝑝. (8)

x𝑒 is sent to the untrusted accelerators and becomes the input of
the linear layers. Let linear(·) be the linear function. Note that here
the linear layers include both FC layers and convolutional layers.
The layer output on the encrypted data is linear(x𝑒). To decrypt the
layer output, TEESlice needs to pre-compute linear(r) following
the prior work [11]. In the TEE, the layer output linear(x̂) can be
recovered by linear(x𝑒) − linear(r) because:

linear(x𝑒) − linear(r) = linear((x̂ + r) % 𝑝) − linear(r % 𝑝)
= linear((x̂ + r) % 𝑝 − r % 𝑝) = linear((x̂ + r − r) % 𝑝)
= linear(x̂ % 𝑝) = linear(x̂)

(9)

The last equation holds as long as 𝑝 is larger than 28.
Note that following [11], the computation of linear(r) has two

choices. One choice is to compute linear(r) in an off-line phase in-
side the TEE and store the results. Another choice is that the model
owner computes linear(r) and sends the results to the clients along
with the private model. In both cases, the TEEs’ online computa-
tion workload is not increased. The only additional overhead is to
store/load the pre-computed results outside/into the TEE. With our
memory management mechanism, this overhead can be reduced
by a large margin.

4.3.3 Correctness Verification. One security concern of outsourc-
ing DNN computation is that the computation results may be wrong
and TEESlice should verify the correctness and raise the alarm as
soon as the outsourced results are wrong. This concern is realistic
as the user’s OS may be compromised by a third-party adversary.
The adversary may tamper with the GPU software and induce the
GPU to produce wrong results. The computation cost of correctness
verification should be much smaller than the cost of performing
the original computation inside the TEE.

Following [11], TEESlice adopts Freivald’s Algorithm [2] to verify
the correctness of linear layers. We will briefly introduce the mech-
anism to verify FC layers and convolutional layers. Let y be out-
sourced result and FC layers can be represented as y = 𝑓 𝑐 (x;𝑊) =
x⊤𝑊 . To verify FC layers, TEESlice first sample a random vector
u that has the same shape as x. Similar to the feature encryption,
TEESlice needs to pre-compute an intermediate result ũ =𝑊 u. In
the online phase, TEESlice compares y⊤u and x⊤ũ. If the two values
are equal, the outsourced result should be correct with high proba-
bility. Otherwise, TEESlice thinks the outsourced result is tampered
and raises alarms. The complexity to verify the results is |x| + |y|. It
is much smaller than the weight multiplication complexity |x| · |y|.

The algorithm to verify convolutional layers is similar but with
minor modification. Let 𝑐𝑖𝑛 and 𝑐𝑜𝑢𝑡 be the channel size of the
input feature and output feature. The size of u is 𝑐𝑜𝑢𝑡 and ũ is
computed by multiplying𝑊 and u along the output channel. The
two verification vectors y⊤u and x⊤ũ should be compared with
proper reshape. The verification complexity is |x| + |y| as well,
compared to the convolutional complexity |x| · 𝑘2 · 𝑐𝑜𝑢𝑡 (𝑘 is the
convolution kernel).

7

AISTA ’22, July 18, 2022, Virtual, South Korea Ziqi Zhang, Lucien K. L. Ng, Bingyan Liu, Yifeng Cai, Ding Li, Yao Guo, and Xiangqun Chen

Table 1: The system throughput for different solutions. The
performance promote over the SGX baseline is displayed in
brackets.

ResNet18 ResNet50 ResNet101

SGX 31.79 7.48 4.82
GPU 969.69 (30.5 ×) 300.46 (40.16 ×) 164.52 (34.13 ×)

TEESlice
w/o verify 301.88 (9.49 ×) 108.65 (14.52 ×) 43.74 (9.07 ×)
w/ verify 125.49 (3.94 ×) 27.11 (3.62 ×) 15.14 (3.14 ×)

5 EXPERIMENTS
5.1 Experiment setting
We implemented TEESlice with Python and C++. The slice extrac-
tion part is written with Pytorch 1.5 and the model deployment
part is implemented with Intel SGX SDK 2.15. We reused some code
from Goten [9]. We reimplemented the basic deep learning opera-
tions (such as convolution operations and matrix multiplication)
with SGX SDK. It is because the memory size of the TEE is too
small for even one layer of the DNN models. The required memory
size for one layer of a ResNet18 model may easily exceed the TEE
limitation. Existing implementations of deep learning operations do
not consider this problem and can not be used in our scenario. To
solve this problem, we reimplemented a memory-aware version of
the basic DNN operations. In our implementation, the input/output
features and layer weights are split into small chunks which are
managed by the memory manager. These chunks are loaded into
the TEE memory in turn to perform certain computations.

We use the popular image classification task to evaluate TEESlice.
The dataset is CIFAR10 and the model includes ResNet18, ResNet50,
and ResNet101. We conduct the experiments on a desktop computer
with a CPU Intel(R) Core(TM) i7-8700 CPU and a GPU GeForce
GTX 1080. The evaluation metric is throughput (images/second).

5.2 Inference Efficiency
In this section, we will display the results of the efficiency com-
parison. We compare TEESlice with two baselines: deploying the
model in the SGX (TEE-based solution) and deploying the model on
the GPU (accelerator-based solution). The results are displayed in
Table 1. The throughput of the SGX baseline is pretty low, ranging
from 4.82 to 31.79. It means for the most simple image classification
task, the TEE-based solution can not handle large complex models.
The throughput of GPU is orders of the throughput of SGX baseline.

For the performance of TEESlice, we evaluated two settings:
without correctness verification and with correctness verification.
The first setting is reasonable because a correctness guarantee is a
less important requirement for the model owner. The first setting
evaluates the upper bound of TEESlice under the most basic re-
quirement. When TEESlice does not need to verify the correctness
of outsourced computation, TEESlice can achieve about 10× higher
throughput than SGX baseline. The most remarkable improvement
is ResNet50. TEESlice can process 108.65 images per second and
is 14.52× faster than the TEE-based solution. If the model owner
has the stronger requirement to verify the computation correct-
ness, TEESlice is still 3-4× faster than the baseline. The throughput
improvement demonstrates the effectiveness of TEESlice.

6 CONCLUSION
In this paper, we implemented a novel DNN deployment framework,
TEESlice, that utilizes TEEs and GPUs to provide a strong security
guarantee on the property of DNN models and minimizing the
inference overhead. TEESlice consists of two stages: private slice
extraction and hybrid model deployment. The first stage extracts
private model slices from the original model in a semi-supervised
manner. The slices are attached to a public model to form a hybrid
model that has the same functionality as the original model. In the
second stage, the private slices are deployed inside the TEE and the
public backbone is put on the GPUs. The TEE protects the slices’
private information and GPUs conduct the heavy computation of
the model backbone. Experiments show that TEESlice can achieve
up to 14.52× performance speedup to protect the model secrecy.
If the model owner requires to guarantee the correctness of the
inference result, TEESlice still achieves 3-4× performance speedup.

ACKNOWLEDGMENTS
We would like to thank the anonymous AISTA reviewers for their
valuable feedback. This work was partly supported by the National
Natural Science Foundation of China (62141208, 62172009).

REFERENCES
[1] Gongfan Fang, Jie Song, Chengchao Shen, Xinchao Wang, Da Chen, and Mingli

Song. 2019. Data-free adversarial distillation. arXiv preprint arXiv:1912.11006
(2019).

[2] Rusins Freivalds. 1977. Probabilistic Machines Can Use Less Running Time.. In
IFIP congress, Vol. 839. 842.

[3] LucjanHanzlik, Yang Zhang, Kathrin Grosse, Ahmed Salem,Maximilian Augustin,
Michael Backes, and Mario Fritz. 2021. Mlcapsule: Guarded offline deployment
of machine learning as a service. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 3300–3309.

[4] Matthew Jagielski, Nicholas Carlini, David Berthelot, Alex Kurakin, and Nicolas
Papernot. 2020. High accuracy and high fidelity extraction of neural networks.
In 29th USENIX Security Symposium (USENIX Security 20). 1345–1362.

[5] Ben Lapid and Avishai Wool. 2018. Cache-attacks on the ARM TrustZone imple-
mentations of AES-256 and AES-256-GCM via GPU-based analysis. In Interna-
tional Conference on Selected Areas in Cryptography. Springer, 235–256.

[6] Yuanchun Li, Ziqi Zhang, Bingyan Liu, Ziyue Yang, and Yunxin Liu. 2021. Mod-
elDiff: testing-based DNN similarity comparison for model reuse detection. In
Proceedings of the 30th ACM SIGSOFT International Symposium on Software Testing
and Analysis. 139–151.

[7] Bingyan Liu, Yao Guo, and Xiangqun Chen. 2021. PFA: Privacy-preserving
Federated Adaptation for Effective Model Personalization. In Proceedings of the
Web Conference 2021. 923–934.

[8] Pedro Morgado and Nuno Vasconcelos. 2019. Nettailor: Tuning the architecture,
not just the weights. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 3044–3054.

[9] Lucien KL Ng, Sherman SM Chow, Anna PYWoo, Donald PHWong, and Yongjun
Zhao. 2021. Goten: Gpu-outsourcing trusted execution of neural network training.
In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35. 14876–
14883.

[10] Zhichuang Sun, Ruimin Sun, Changming Liu, Amrita Roy Chowdhury, Somesh
Jha, and Long Lu. 2020. ShadowNet: A secure and efficient system for on-device
model inference. arXiv preprint arXiv:2011.05905 (2020).

[11] Florian Tramer and Dan Boneh. 2018. Slalom: Fast, verifiable and private exe-
cution of neural networks in trusted hardware. arXiv preprint arXiv:1806.03287
(2018).

[12] Ziqi Zhang, Yuanchun Li, Yao Guo, Xiangqun Chen, and Yunxin Liu. 2020. Dy-
namic slicing for deep neural networks. In Proceedings of the 28th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. 838–850.

[13] Ziqi Zhang, Yuanchun Li, Jindong Wang, Bingyan Liu, Ding Li, Yao Guo, Xi-
angqun Chen, and Yunxin Liu. 2022. ReMoS: Reducing Defect Inheritance in
Transfer Learning via Relevant Model Slicing. In 2022 IEEE/ACM 43rd Interna-
tional Conference on Software Engineering (ICSE).

8

	Abstract
	1 Introduction
	2 Background
	2.1 Trusted Execution Environments
	2.2 Deep Neural Networks
	2.3 Limitation of Prior Work
	2.4 Goals and Challenges

	3 Problem Formulation
	4 Approach
	4.1 Overview
	4.2 Private Slice Extraction
	4.3 Secure Deployment

	5 Experiments
	5.1 Experiment setting
	5.2 Inference Efficiency

	6 Conclusion
	Acknowledgments
	References

