
Device-Specific Linux Kernel Optimization for Android Smartphones

Pengfei Yuan, Yao Guo, Xiangqun Chen, and Hong Mei
Key Laboratory of High-Confidence Software Technologies (Ministry of Education)

School of Electronics Engineering and Computer Science, Peking University, Beijing, China, 100871
Email: {yuanpf12, yaoguo, cherry, meih}@sei.pku.edu.cn

Abstract—To make smartphones more powerful, researchers
have proposed many techniques to improve the performance
of mobile systems and applications. As the most popular
mobile operating system, Android is based on the Linux kernel.
Therefore optimizing kernel performance can potentially
accelerate Android smartphones.

In this paper, we propose a compiler-based approach
to constructing device-specific optimized Linux kernels for
Android smartphones. By utilizing runtime feedback from
the device, we can instruct the compiler to perform profile-
guided optimization (PGO) and produce a Linux kernel image
optimized specifically for the device, which can be shipped
together with the device when it is manufactured, or released
later in an update of the whole system. To the best of our
knowledge, this paper is the first work that successfully applies
PGO to the Linux kernel on Android smartphones to gain
performance improvement.

We conduct experiments on three different Android
smartphones, namely Nexus 5X, Nexus 6 and Nexus 5. Results
show that system performance improves by 11.1%, 4.1%
and 9.3% on average, respectively. Specifically, we measure
performance improvements of key Android system components
such as multithreading and task scheduling, Binder, and
storage and file systems.

Index Terms—Android operating system, Linux kernel,
performance, profile-guided optimization.

1. Introduction

The rapid spread of smartphones makes mobile
computing prosperous. Due to device size and battery
constraints, the computational power of smartphones is still
limited when compared to desktops and servers. To support
more sophisticated applications, mobile cloud computing
(MCC) techniques such as COMET [1] and Uniport [2]
have been proposed to incorporate the more powerful
cloud computing infrastructure into mobile devices. On the
other hand, many research work have explored performance
optimizations for mobile systems and applications. For
example, F2FS [3] improves file system performance for
flash storage. SmartIO [4] reduces iowait delay on
smartphones. PerfChecker [5] detects performance bugs in
smartphone applications.

As the mobile operating system (OS) which has the
highest market share, Android is based on the Linux kernel.
Since kernel performance is critical to the efficiency of the
whole system, optimizing performance for the Linux kernel
can accelerate Android apps running on top of it. In this
paper, we adopt a compiler-based approach, namely profile-
guided optimization (PGO), to construct device-specific
optimized Linux kernels for Android mobile devices. Using
the optimized kernel, we can improve performance for
critical Android system components such as multithreading
and task scheduling, Binder inter-process communication
(IPC), and storage and file system.

Our previous work [6] has demonstrated that using the
PGO technique to optimize the Linux kernel for a specific
application is feasible on x86-based machines. In this paper,
we successfully apply the PGO technique to the Linux
kernel on Android smartphones. Unlike application-specific
kernel optimization performed on x86-based machines,
we aim to achieve device-specific kernel optimization for
Android smartphones.

The device-specific optimized Linux kernel can be
optimized for each new or existing device. For a new
device, it can be shipped together with the device when it
is manufactured. For an existing device, it can be installed
during a system update. By running an instrumented Linux
kernel on the mobile device and collecting appropriate
profile feedback, we can instruct the compiler, namely GCC,
to perform advanced optimizations and generate a Linux
kernel image optimized specifically for a particular device.

We make the following main contributions in this paper:

• We propose a compiler-based approach to
constructing device-specific optimized Linux
kernels for Android smartphones. During the actual
optimization process, users do not need to make
any manual modifications to the Linux kernel.

• We have implemented the proposed optimization
and selected benchmarks for Android kernel
performance measurements. Based on our
experiments on three different Android smartphones,
compared to the default -O2 optimization, our
approach improves system performance by 4.1–
11.1%.

• To the best of our knowledge, this paper is the first
work that successfully applies the PGO technique to

65

2018 6th IEEE International Conference on Mobile Cloud Computing, Services, and Engineering

2573-7562/18/$31.00 ©2018 IEEE
DOI 10.1109/MobileCloud.2018.00018

the Linux kernel on Android smartphones to gain
performance speedup. Since it is a compiler-based
approach, other Android system improvements
can employ this technique to achieve additional
performance speedup.

The rest of this paper is organized as follows. Section 2
gives the background knowledge on PGO and GCC
optimizations for the Linux kernel. Section 3 presents
the detailed design and implementation of our proposed
approach in device-specific optimization of the Linux kernel
for Android smartphones. Section 4 presents benchmarks
and experimental environments, as well as the experimental
results on different smartphones. Section 5 discusses related
work, while Section 6 concludes our work.

2. Background

2.1. Profile-Guided Optimization

Profile-guided optimization (PGO) has been well studied
in the compiler community [7]. By using feedback
information such as control flow graph and expression
value profiles, which are collected in one or more previous
program runs, the compiler focuses its optimization efforts
on the frequently executed portions of the program. PGO
has been applied to large open source projects such as
Firefox [8], Chrome [9] and GCC itself [10], and achieved
5–17% speedup.

A typical PGO process consists of the following phases:

• Instrumentation. The compiler instruments the
target program during compilation in order to collect
profile information that will be used for later
optimizations. The profile information consists of
control flow traces, value and address profiles, etc.

• Profile collection. The instrumented target program
is executed to collect profile information. The
execution process should reflect real-world runtime
scenarios.

• Optimization. The compiler uses the profile
information collected in the previous phase to
optimize the target program. The profile information
helps the compiler make better decisions on branch
prediction, basic block reordering, function inlining,
loop unrolling, etc.

Recent GCC versions support sampling-based
AutoFDO [11], which does not need program
instrumentation. It requires last branch record support
from Intel processors. However, most Android smartphones
use ARM processors. So we do not adopt AutoFDO in this
paper.

2.2. PGO in the Linux Kernel

We have shown that PGO is applicable to the Linux
kernel on x86-based machines (such as desktops and
servers) in previous work [6], the goal of which is to

construct application-specific optimized Linux kernels. By
collecting feedback information from the instrumented
Linux kernel when running the target application, and
using the feedback information in compiler optimization
of the kernel, we can build an optimized kernel image
which provides relatively optimal performance for the target
application.

To enable the PGO technique in the Linux kernel, we
have overcome the following challenges:

• Enabling kernel instrumentation. We have added
kernel instrumentation support to the Linux kernel
and GCC, and enabled the instrumented kernel to
boot on x86-based machines.

• Collecting kernel profile feedback. We have
implemented tools to collect and process kernel
profile feedback. By specifying appropriate start
and end of profile collection, we can collect kernel
feedback information that is application-specific.

• Choosing correct optimization. We have chosen
compiler optimization options that are suitable
for kernel optimization, which can improve
performance, reduce code size, and ensure
correctness.

3. Design and Implementation

3.1. Challenges

While using PGO in user applications is as simple as
enabling a few compiler options and applying PGO to
the Linux kernel on x86-based machines is implemented
in our previous work, adopting PGO to construct device-
specific optimized kernels for Android smartphones faces
the following new technical challenges:

• Kernel instrumentation. Android smartphones
generally use legacy Linux versions. Therefore, we
need to backport kernel instrumentation support and
add support for ARM and ARM64 processors, which
are used in Android smartphones.

• Booting the instrumented kernel. Since the
booting procedure of Android devices is complex
and the Android bootloader is proprietary, we need
to perform black-box testing and reverse engineering
to solve booting issues of the instrumented kernel.

• Device-specific optimization. To achieve device-
specific kernel optimization, we should first collect
device-specific kernel feedback information. Then
we should choose compiler optimization options that
are suitable for optimizing the Linux kernels of
Android smartphones.

3.2. Design Overview

In previous work [6], we have successfully applied
PGO to the Linux kernel on x86-based machines. To apply
PGO to the Linux kernel on ARM/ARM64-based Android

66

� Compile with -fprofile-
generate to build

instrumented program

� Run the instrumented

program to collect feedback

� Recompile with -fprofile-
use to build optimized

program

� Add kernel instrumentation

support

� Build instrumented kernel

� Collect and process

application-specific kernel

feedback

� Build optimized kernel with

appropriate optimization

options

� Backport kernel
instrumentation support

� Build instrumented kernel

� Boot the instrumented
kernel

� Collect and process device-
specific kernel feedback

� Build optimized kernel
with options suitable for
Android smartphones

User applications Linux kernel for �86 Linux kernel for Android

Instrumentation

Profile collection

Optimization

Figure 1. Comparison of applying PGO to user applications, the Linux kernel on x86-based machines and ARM/ARM64-based Android smartphones.

smartphones, we propose an approach illustrated in Figure 1,
in comparison with applying PGO to user applications and
the kernel for x86 machines.

For kernel instrumentation on Android smartphones, we
need to backport relevant kernel modifications to legacy
Linux versions and build instrumented kernel images for
different devices. For kernel profile feedback collection, we
need to boot the instrumented kernel on the device and
use appropriate tools to collect and process device-specific
feedback information. For kernel optimization, we need to
choose compiler optimization options suitable for the Linux
kernel of the Android system.

3.3. Kernel Instrumentation

Backporting of kernel instrumentation support to legacy
Linux versions consists of the following aspects:

• Update of the Linux gcov subsystem. The
gcov subsystem provides support of control flow
instrumentation, which is required by the PGO
technique in GCC. However, legacy Linux versions
only support GCC 4.6, which was released in 2011,
and earlier versions. We backport related kernel
patches [12], [13] and update the gcov subsystem
to support the latest GCC versions.

• Support of ARM and ARM64 architectures.
We modify the kernel build system to support
instrumenting the kernel on ARM and ARM64
architectures, which are typically used in Android
smartphones.

• Support of data flow instrumentation. Besides
control flow instrumentation, the PGO technique in
GCC also requires data flow instrumentation of the
target program, namely the Linux kernel. We have
discussed this part of implementation in our previous
work [6].

TABLE 1. SUMMARY OF BACKPORTING KERNEL INSTRUMENTATION

SUPPORT FOR ANDROID SMARTPHONES.

Category Lines of code
Update of the Linux gcov subsystem 907
Support of ARM and ARM64 architectures 17
Support of data flow instrumentation 999
Fixing compilation errors 62

Total 1,985

• Fixing compilation errors. Since the Linux
versions of Android smartphones are typically older,
there are compilation errors when building the
kernel. For ARM, we may encounter errors about the
inline keyword. For ARM64, we may encounter
errors about GCC’s built-in functions. We modify
the kernel source code to fix these compilation
errors.

As a summary of our backporting work, Table 1 shows
the lines of kernel source code we have modified.

3.4. Booting the Instrumented Kernel for Profile
Collection

To collect kernel feedback information from Android
smartphones, we must first boot and run the instrumented
kernel. The booting process of ARM/ARM64-based
Android devices can be summarized as follows [14]:

1) The processor powers on and executes the primary
bootloader stored in BootROM.

2) Since the space in BootROM is limited, a secondary
bootloader stored in eMMC Flash is loaded and
executed, which initializes ARM TrustZone [15].

3) The actual Android bootloader is loaded and
executed, which provides the fastboot [16] feature.

67

TABLE 2. ANDROID BOOTING PARAMETERS.

Name Description
base Base address of physical memory

kernel-offset Offset of kernel image
tags-offset Offset of kernel parameters

ramdisk-offset Offset of init ramdisk
page-size Page size of the eMMC Flash storage

4) The Linux kernel image and init ramdisk are loaded
and the Android system starts up.

To ensure secure booting, each step verifies the digital
signature of the loaded content in the next step [17]. In
order to boot the instrumented kernel, we need to deal
with the Android bootloader, which is responsible for
loading the kernel image. By executing the “fastboot oem
unlock” command, we can unlock the Android bootloader
and disable its signature verification. Then we can boot
customized kernel images on the device.

We can use the “fastboot boot” command to boot
customized kernel images. Table 2 lists the parameters we
must set when using that command. We can get the default
values of these parameters by extracting the official boot.img
file.

However, the instrumented kernel usually fails to boot
with the default parameters, because its image size is much
larger than normal kernel images compiled with -O2 or
-Os. We need to adjust the parameters and determine their
appropriate values through trial and error.

To assist the black-box testing process, we can perform
reverse engineering analysis on the Android bootloader,
which can be extracted from the aboot partition of the
device using the dd command [14]. To simplify reverse
engineering analysis, we can refer to the source code of
LittleKernel [18], which most Android bootloaders are based
on.

For some devices, the parameter values are built into the
Android bootloader and cannot be specified via command-
line. In this case, we need to reduce the image size of
the instrumented kernel so as to boot it on the device.
Specifically, we adopt selective kernel instrumentation. By
instrumenting only the key components of the Linux kernel,
such as task scheduler, memory management, file system
and Binder, we can greatly reduce the image size.

After solving the booting issues, we can run the
instrumented kernel on the device and collect feedback
information. The profile collection tool is implemented as a
shell script. To execute the script on Android smartphones,
we employ the busybox-static [19] package from Debian,
which provides statically-linked ARM and ARM64 binaries
that can directly run on Android smartphones and support
the execution of shell scripts.

To collect device-specific profile feedback for kernel
optimization, we need to run a set of Android apps that
can reflect real-world runtime scenarios on top of the
instrumented kernel. Specifically, we can choose the most
popular apps from Google Play or other local app stores.

3.5. Device-Specific Optimizations

For devices that use selective kernel instrumentation,
the collected feedback information is incomplete. For
kernel source code that the feedback information does
not cover, we need to disable optimization options that
only benefit if there is profile feedback. Specifically,
we can replace the -fprofile-use option with
-fbranch-probabilities [20].

Our compiler-based approach of kernel optimization is
device-specific in the following aspects:

• Different devices use different Linux versions and
build configurations.

• Different devices may use different GCC versions
for kernel optimization.

• The feedback information collected during profiling
is device-specific. These feedback information will
be used in profile-guided kernel optimization.

• Detailed compiler options used in kernel
optimization is device-specific.

4. Evaluation

4.1. Benchmarks

To evaluate system performance of Android
smartphones, we should use benchmarks that are system
intensive, which invoke OS features intensively. Popular
benchmarks like GeekBench and AnTuTu are computational
intensive, thus unsuitable for our evaluation. Therefore,
we have implemented and collected a set of benchmarks
suitable for Android kernel performance measurement,
which measure performance of key Android system
components such as multithreading and task scheduling,
Binder, and storage and file system.

Previous work [21] has shown that correctly
benchmarking performance of Android smartphones is
challenging. To ensure that the performance results are
valid and stable, we set the CPU scaling governor to
performance, use the taskset command to set the CPU
affinity of the benchmarks, and stop performance throttling
services like thermal-engine and mpdecision.

4.1.1. Multithreading and Task Scheduling. Android
apps generally use multiple threads. The main thread
is responsible for user interface (UI) and interaction.
Executing time-consuming tasks in the main thread will
freeze the whole application. Therefore, Android apps make
use of APIs like AsyncTask, HandlerThread and
ThreadPoolExecutor to execute time-consuming tasks
in background threads.

To measure multithreading and task scheduling
performance of the Android system, we implement a
benchmark application, which repeatedly executes the
following operations and measures throughput:

1) Creating a set of java.lang.Thread instances
according to the benchmarking concurrency.

68

2) Invoking the start method of the Thread
instances.

3) Invoking the join method of the Thread
instances to wait for completion.

During its lifetime, each created thread executes the
following operations:

• Invoking the setThreadPriority method
of class android.os.Process to set the
scheduling priority of the current thread to the
background level.

• Invoking the Thread.yield method a few times
to explicitly release CPU and trigger task scheduling
in the kernel.

4.1.2. Binder IPC. Binder is a key component of the
Android system. It is used for nearly everything that
happens across processes in the core platform [22]. System
services like ActivityManger, WindowManger,
PackageManager and inter-component communication
in Android apps all use Binder IPC, which is supported by
a kernel module.

To measure Binder IPC performance, we implement two
benchmark apps. One runs a background service, which
is based on class android.app.IntentService
and declared in AndroidManifest.xml. The other runs
in foreground to show benchmarking results. The two
apps communicate with each other via Binder IPC. The
performance measurement procedure is as follows:

1) The foreground application responds to the
onClick event of its UI button. It puts the
android.os.Messenger instance of the
current process in android.content.Intent,
and invokes the startService method of class
android.content.Context to start the
background service.

2) The background service responds to
the onHandleIntent event of class
IntentService and sends the Messenger
instance of the current process to the foreground
application via invoking the send method of the
foreground application’s Messenger instance.

3) The foreground application responds to
the handleMessage event of class
android.os.Handler which binds to its
Messenger instance, and communicates with the
background service with the latter’s Messenger
instance. It sends multiple messages simultaneously
according to the benchmarking concurrency.

4) The background service responds to the
handleMessage event of class Handler
which binds to its Messenger instance, and
communicates with the foreground application
with the latter’s Messenger instance.

5) The previous two steps are repeatedly executed.
The foreground application is responsible for
calculating Binder IPC throughput and showing the
result.

4.1.3. Storage and File System. Storage and file system is a
very important OS component. To measure its performance,
we choose SQLite, which is an embedded database widely
used in Android apps, as the benchmark. The application
we use is speedtest1 [23], which is an official benchmark
application of SQLite. We cross-compile it to ARM and
ARM64 versions so as to run it on Android smartphones.
The test load parameter --size is set to 20 and the test
database file is put in the data partition.

4.2. Devices and Experimental Setup

The Android smartphones used in our experiments are
Nexus 5X, Nexus 6 and Nexus 5, which are officially
released by Google. Table 3 lists their specifications.

The Qualcomm Snapdragon 808 processor used in
Nexus 5X adopts the ARMv8-A 64-bit instruction set
architecture. The processor has six cores, two of which
are based on Cortex-A57 with 1.82GHz peak frequency,
four of which are based on Cortex-A53 with 1.44GHz peak
frequency. The compiler we use for Nexus 5X is GCC 6.4
ARM64 cross-compiler. Since the frequencies of Cortex-
A57 and Cortex-A53 cores differ significantly, we specify
the benchmarks to run on the same type of cores when
setting CPU affinity with the taskset command.

The Qualcomm Snapdragon 805 processor used in
Nexus 6 adopts the ARMv7-A 32-bit instruction set
architecture. The processor has four Krait 450 cores with
2.7GHz peak frequency. The compiler we use for Nexus 6
is GCC 5.4 ARM cross-compiler because the Linux kernel
compiled with GCC 6.4 and -O3 does not boot on Nexus
6.

The Qualcomm Snapdragon 800 processor used in
Nexus 5 also adopts the ARMv7-A 32-bit instruction set
architecture. It has four Krait 400 cores with 2.26GHz peak
frequency. The compiler we use for Nexus 5 is also GCC
5.4 ARM cross-compiler because the Linux kernel compiled
with GCC 6.4 and -Os does not boot on Nexus 5.

The three phones run LineageOS 14.1 [24], which
is based on Android 7.1.2 and a continuation of the
famous CyanogenMod project. To install LineageOS, we
unlock bootloaders for the phones and flash the TWRP
recovery [25] into them. In order to facilitate performance
evaluation, we install the su addon of LineageOS on the
phones to acquire root permission.

The Linux kernel versions of the three phones are
outdated. Linux 3.10 used in Nexus 5X and Nexus 6 is
released in 2013 while Linux 3.4 used in Nexus 5 is released
in 2012. This is a common issue for Android smartphones.
Because some device drivers of the phones are closed-source
binaries, we cannot manually upgrade the kernels. The
kernel build configurations we used are the defaults provided
by LineageOS, which are lineageos bullhead defconfig,
shamu defconfig and lineageos hammerhead defconfig for
Nexus 5X, Nexus 6 and Nexus 5, correspondingly.

For Nexus 5X, we need to adjust booting parameters
kernel-offset, tags-offset and ramdisk-offset to avoid
overlapping of kernel image and init ramdisk in physical

69

TABLE 3. SPECIFICATIONS OF THE ANDROID SMARTPHONES USED FOR EVALUATION.

Device Nexus 5X Nexus 6 Nexus 5
Manufacturer LG Motorola LG

Codename Bullhead Shamu Hammerhead
Release date Sep. 2015 Oct. 2014 Oct. 2013

Processor Qualcomm Snapdragon 808 Qualcomm Snapdragon 805 Qualcomm Snapdragon 800
RAM 2GB LPDDR3 3GB LPDDR3 2GB LPDDR3

Storage eMMC Flash
Operating system LineageOS 14.1

Kernel version 3.10.73 3.10.40 3.4.0
File system Ext4

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

Thread-1 Thread-4 IPC-1 IPC-4 SQLite Average

-O2 -Os -O3 PGO

Figure 2. Performance comparison of different optimization configurations
for Nexus 5X. (All numbers are are normalized to -O2. Higher is better.)

memory space and boot the instrumented kernel on the
phone.

For Nexus 6, we find that its booting parameters are built
into the Android bootloader. Therefore, we use selective
instrumentation to build the instrumented kernel and choose
compiler options to build the optimized kernel accordingly.

For Nexus 5, we only need to increase the parameter
values of tags-offset and ramdisk-offset to boot the
instrumented kernel on the phone.

4.3. Results and Analysis

We have run different benchmarks on each phone
with kernels compiled with different GCC optimization
configurations, including -O2, -Os, -O3 and PGO. Because
-O2 has been used as the default optimization configuration,
we show relative performance numbers that are normalized
to the performance results of -O2. All “average” numbers
are calculated as geometric means.

4.3.1. Nexus 5X. Figure 2 shows the experimental results
on Nexus 5X. In the figure, Thread-1 and Thread-4 represent
the multithreading and task scheduling benchmark with
concurrency set to 1 and 4, respectively. The same rule
applies to IPC-1 and IPC-4 for the Binder IPC benchmark.

We can see that PGO greatly improves Binder IPC,
multithreading and task scheduling performance. It also
improves SQLite performance, which represents storage and
file system performance. For the Thread-1 benchmark, the
speedup is over 17%. On average, which is calculated as

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

Thread-1 Thread-4 IPC-1 IPC-4 SQLite Average

-O2 -Os -O3 PGO

Figure 3. Performance comparison of different optimization configurations
for Nexus 6. (All numbers are are normalized to -O2. Higher is better.)

geometric mean, system performance of Nexus 5X improves
by 11.1%.

Besides PGO, we also compare performance results of
kernel compiled with -Os and -O3. Compared with -O2,
-Os degrades system performance on all benchmarks, while
-O3 improves performance. On average, the degradation of
-Os is 5% and the improvement of -O3 is 2.5%.

4.3.2. Nexus 6. Figure 3 shows the experimental results
on Nexus 6. We can see that PGO greatly improves
multithreading and task scheduling performance. It also
improves Binder IPC and SQLite performance. On average,
system performance of Nexus 6 improves by 4.1%. The
speedup of Nexus 6 is substantially lower than Nexus
5X, because we employ selective instrumentation and
optimization of the kernel on this device.

Compared with -O2, -Os and -O3 improve
performance for some benchmarks, while degrade
performance for other benchmarks. It shows that all
the three optimization options are suboptimal for Nexus 6.

4.3.3. Nexus 5. Figure 4 shows the experimental results
on Nexus 5. We can see that PGO greatly improves Binder
IPC, multithreading and task scheduling performance. It also
improves SQLite performance. For the Thread-4 benchmark,
the speedup is nearly 20%. The speedup of SQLite is lower
mainly because the I/O operations of the eMMC Flash
storage are not accelerable. On average, system performance
of Nexus 5 improves by 9.3%, which is comparable to Nexus
5X and much higher than Nexus 6.

70

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

Thread-1 Thread-4 IPC-1 IPC-4 SQLite Average

-O2 -Os -O3 PGO

Figure 4. Performance comparison of different optimization configurations
for Nexus 5. (All numbers are are normalized to -O2. Higher is better.)

Compared with -O2, -Os degrades system performance
by 1.5% on average, while -O3 improves performance
by 0.8%. For specific benchmarks, different optimization
options may perform better. However, PGO always
generates the best performance.

4.4. Discussions

Compared to our previous work on application-specific
Linux kernel optimization [6], this work have been able
to achieve device-specific kernel optimization for mobile
devices such as smartphones. Specifically, the proposed
approach has the following benefits:

• The optimization is device-specific in the sense
that we collect feedback information through
instrumentation-based profiling while running a
set of system-intensive applications on a specific
device. Because the general principle of PGO is
optimization based on profiles, thus the resulting
kernel is optimized by the profiles collected from
each device.

• The optimization itself is generic because the PGO
technique itself is a relatively generic optimization
mechanism. With application-specific profiles, it
will generate application-specific optimized kernels.
While with device-specific profiles, it can then
generate device-specific optimized kernels.

• The optimization can be applied in a semi-automated
process. We have constructed a tool chain to
enable automated kernel patching and profiling, as
well as automated GCC optimization. The only
stage needing human intervention during the whole
process is during the profile collection phase, when
human needs to be involved in rebooting the device
and running specific benchmarks.

Our work also faces some limitations:

• In order to generate kernels optimized for each
device, we need to run appropriate benchmarks
during the profile collection stage. However, there
does not exist a suitable benchmark suite with
Android apps. In fact, there are no widely-used

Android benchmark suites of any kinds. We have
chosen to implement and collect our own benchmark
apps due to this reason. However, we cannot
guarantee that the apps used are representative
benchmarks. If we can find a better benchmark
suite, it may potentially generate more representative
profiles, and which in turn will help generate better
optimized kernels.

• In order to perform PGO, the Linux kernel needs
to be patched first. Although we have implemented
automated kernel patching, some companies we
have contacted are still concerned with how to
maintain the consistency between the patched kernel
and the mainline kernel. Although we have already
attempted to incorporate our modification to the
mainline Linux kernel, it will be a lengthy process
that does not have any guarantees.

• The Linux kernel has been typically compiled using
-O2 and -Os. Although we have shown that it
is possible to create a stable kernel with more
aggressive optimizations such as using -O3 [26],
it has not been widely adopted and tested in real
world. As PGO has applied some of the aggressive
optimizations used by -O3, it is also one of the main
concerns in whether it will generate a robust kernel.
We will try to investigate this further in our future
work.

5. Related Work

To augment the computational power of mobile devices,
many research works study MCC techniques. MCC
frameworks like Uniport [2] require modification and
even reimplementation of mobile applications, while MCC
systems like COMET [1] require extensive modification
and implementation in the runtime environment such as
the Dalvik virtual machine. Our compiler-based approach
directly optimizes the OS kernel to improve system
performance of mobile devices. We only need to replace
the factory kernel image with the device-specific optimized
kernel image. Mobile applications on the device will then
have relatively optimal performance.

There are other research works that explore performance
optimizations for mobile systems and applications. For
example, F2FS [3] is a new file system that improves
performance for Flash storage. SmartIO [4] is a system that
reduces iowait delay on smartphones. PerfChecker [5]
is a tool that detects performance bugs in smartphone
applications. These works require modification and
implementation in OS or applications, while our compiler-
based approach does not need any source code modification
when constructing the optimized kernel.

While our previous work [6] mainly focused on
application-specific kernel optimization for x86-based
machines, this paper focuses on device-specific kernel
optimization for Android smartphones. We overcome
several technical challenges to successfully apply the PGO
technique to the Linux kernel of the Android system.

71

6. Conclusion

We have presented a compiler-based approach that
takes advantage of profile-guided optimization (PGO)
to construct device-specific optimized Linux kernels
for Android smartphones. Specifically, we have solved
problems with kernel instrumentation, booting of the
instrumented kernel and device-specific kernel optimization.
For performance evaluation, we have implemented and
collected benchmarks for key Android system components
such as multithreading and task scheduling, Binder, and
storage and file system. Experimental results show that the
average system performance speedups of Nexus 5X, Nexus
6 and Nexus 5 smartphones are 11.1%, 4.1% and 9.3%,
respectively.

Acknowledgments

This work was partly supported by the National
Key Research and Development Program (No.
2017YFB1001904) and the National Natural Science
Foundation of China (No. 61772042). Yao Guo (email:
yaoguo@pku.edu.cn) is the corresponding author.

References

[1] M. S. Gordon, D. A. Jamshidi, S. Mahlke, Z. M. Mao, and X. Chen,
“COMET: Code offload by migrating execution transparently,” in
Presented as part of the 10th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 12). Hollywood, CA:
USENIX, 2012, pp. 93–106.

[2] P. Yuan, Y. Guo, and X. Chen, “Uniport: A uniform programming
support framework for mobile cloud computing,” in 2015 3rd IEEE
International Conference on Mobile Cloud Computing, Services, and
Engineering, March 2015, pp. 71–80.

[3] C. Lee, D. Sim, J. Hwang, and S. Cho, “F2FS: A new file system
for Flash storage,” in 13th USENIX Conference on File and Storage
Technologies (FAST 15), Santa Clara, CA, Feb. 2015, C, pp. 273–286.

[4] D. T. Nguyen, G. Zhou, G. Xing, X. Qi, Z. Hao, G. Peng,
and Q. Yang, “Reducing smartphone application delay through
read/write isolation,” in Proceedings of the 13th Annual International
Conference on Mobile Systems, Applications, and Services, ser.
MobiSys ’15, 2015, C, pp. 287–300.

[5] Y. Liu, C. Xu, and S.-C. Cheung, “Characterizing and detecting
performance bugs for smartphone applications,” in Proceedings of
the 36th International Conference on Software Engineering, ser. ICSE
2014. ACM, 2014, pp. 1013–1024.

[6] P. Yuan, Y. Guo, and X. Chen, “Experiences in profile-guided
operating system kernel optimization,” in Proceedings of 5th Asia-
Pacific Workshop on Systems, ser. APSys ’14, 2014, C, pp. 4:1–4:6.

[7] R. Gupta, E. Mehofer, and Y. Zhang, “Profile guided code
optimizations,” in The Compiler Design Handbook, Y. N. Srikant and
P. Shankar, Eds. CRC Press, 2002.

[8] T. Mielczarek, “Speed++.” [Online]. Available: https://blog.mozilla.
org/ted/2008/02/29/speed/

[9] S. Marchand, “Making Chrome on Windows faster with PGO.”
[Online]. Available: https://blog.chromium.org/2016/10/making-
chrome-on-windows-faster-with-pgo.html

[10] Free Software Foundation, “Installing GCC: Building.” [Online].
Available: https://gcc.gnu.org/install/build.html

[11] D. Chen, N. Vachharajani, R. Hundt, S.-w. Liao, V. Ramasamy,
P. Yuan, W. Chen, and W. Zheng, “Taming hardware event samples
for FDO compilation,” in Proceedings of the 8th Annual IEEE/ACM
International Symposium on Code Generation and Optimization, ser.
CGO ’10, 2010, C, pp. 42–52.

[12] F. Hrbata, “gcov: add support for gcc 4.7 gcov format.”
[Online]. Available: https://git.kernel.org/pub/scm/linux/kernel/git/
torvalds/linux.git/commit/?id=5f41ea0386a5

[13] ——, “kernel: add support for init array constructors.” [Online].
Available: https://lkml.org/lkml/2013/9/4/463

[14] J. Levin, “Reverse engineering Android’s aboot.” [Online]. Available:
http://newandroidbook.com/Articles/aboot.html

[15] ARM Ltd., “ARM TrustZone.” [Online]. Available: https://www.arm.
com/products/security-on-arm/trustzone

[16] T. Bird, “Android fastboot.” [Online]. Available: http://elinux.org/
Android Fastboot

[17] Android Open Source Project, “Verifying boot.” [Online]. Available:
https://source.android.com/security/verifiedboot/verified-boot.html

[18] T. Geiselbrecht, Google Inc., and The Linux Foundation, “LK
bootloader.” [Online]. Available: https://source.codeaurora.org/quic/
la/kernel/lk/

[19] Debian Install System Team, B. Blank, and M. Tokarev, “Standalone
rescue shell with tons of builtin utilities.” [Online]. Available:
https://packages.debian.org/sid/busybox-static

[20] Free Software Foundation, “Options that control optimization.”
[Online]. Available: https://gcc.gnu.org/onlinedocs/gcc/Optimize-
Options.html

[21] Y. Guo, Y. Xu, and X. Chen, “Freeze it if you can: Challenges
and future directions in benchmarking smartphone performance,”
in Proceedings of the 18th International Workshop on Mobile
Computing Systems and Applications, ser. HotMobile ’17. ACM,
2017, pp. 25–30.

[22] D. Hackborn, “Re: staging: android: binder: Remove some funny
&& usage.” [Online]. Available: https://lkml.org/lkml/2009/6/25/3

[23] D. R. Hipp, “A program for performance testing.” [Online].
Available: http://www.sqlite.org/src/artifact/7b1ab42b097b484c

[24] The LineageOS Project, “LineageOS Android distribution.” [Online].
Available: https://lineageos.org/

[25] Team Win LLC, “TeamWin - TWRP.” [Online]. Available:
https://twrp.me/

[26] P. Yuan, Y. Guo, and X. Chen, “Rethinking compiler optimizations
for the linux kernel: An explorative study,” in Proceedings of the
6th Asia-Pacific Workshop on Systems, ser. APSys ’15, 2015, C, pp.
2:1–2:7.

72

