
Uniport: A Uniform Programming Support
Framework for Mobile Cloud Computing

Pengfei Yuan, Yao Guo, Xiangqun Chen
Key Laboratory of High-Confidence Software Technologies (Ministry of Education)

School of Electronics Engineering and Computer Science, Peking University

{yuanpf12, yaoguo, cherry}@sei.pku.edu.cn

Abstract—Personal mobile devices (PMDs) have become the
most used computing devices for many people. With the in-
troduction of mobile cloud computing, we can augment the
storage and computing capabilities of PMDs via cloud support.
However, there are many challenges in developing mobile cloud
applications (MCAs) that incorporate cloud computing efficiently,
especially for developers targeting multiple mobile platforms.

This paper presents Uniport, a uniform framework for devel-
oping MCAs. We introduce a uniform architecture for MCAs
based on the Model-View-Controller (MVC) pattern and a set
of programming primitives and runtime libraries. Not only
can Uniport support the creation of new MCAs, it can also
help transform existing mobile applications to MCAs efficiently.
We demonstrate the applicability and flexibility of Uniport in
a case study to transform three existing mobile applications
on iOS, Android and Windows Phone, to their mobile cloud
versions respectively. Evaluation results show that, with very few
modifications, we can easily transform mobile applications to
MCAs that can exploit the cloud support to improve performance
by 3–7x and save more than half of their energy consumption.

I. INTRODUCTION

Personal mobile devices (PMDs) including smartphones

and tablet computers are continuously gaining popularity

worldwide. Thanks to the sophisticated operating systems,

middleware and programming languages equipped in mobile

platforms, we have abundant mobile applications to choose

from. Although we are getting richer and richer experience

from mobile applications on high-end PMDs, their storage

and computing abilities are still one of the most important

limiting factors, especially when energy consumption and

limited battery capacity are taken into consideration.

Recent years have seen the trend of incorporating cloud

computing support to mobile applications. Siri, Instagram,

Snapchat and Google Now are just a subset of products on

mobile platforms that benefit from cloud computing and enrich

user experience of PMDs.

Compared with the cloud, both computing capability and

storage capacity of PMDs are extremely limited because

their major design goal is energy efficiency. PMDs will be

greatly enhanced if we equip them with cloud computing

support. Expanded storage capacity and augmented computing

capability are only part of the advantages we gain; PMDs may

also save energy via offloading computation to the cloud [1].

Many solutions have been proposed to explore the pos-

sibilities of uniting mobile platforms and cloud computing

services, such as COMET [2], CloneCloud [3], Cuckoo [4]

and Paranoid Android [5] for Android, and MAUI [6] for

Windows Mobile. Most of these solutions are attempting to

offload or migrate some computation-intensive tasks to the

cloud, in order to improve performance and reduce energy

consumption on PMDs. To the best of our knowledge, all

the existing work on mobile cloud computing are platform-

dependent, providing mostly ad-hoc solutions at the system

level.
With the rapid evolution of both PMDs and cloud computing

technologies [7, 8], we can see a trend of mobile cloud

computing in the near future. So it is very important to provide

solutions to the development of mobile cloud applications

(MCAs), which can incorporate cloud computing and storage

services efficiently into normal mobile applications, especially

for developers targeting multiple mobile platforms, such as the

most popular iOS, Android and Windows Phone platforms.
Although development support for mobile applications are

well-studied and many commercial and open-source tools

are available, they can not be directly applied to MCAs.

Most popular mobile applications support multiple mobile

platforms, and a few cross-platform solutions to mobile ap-

plication development have been proposed, such as Mobl [9]

and PhoneGap [10]. However, these solutions do not support

mobile cloud computing.
Developing MCAs is hard because it is difficult to identify

the computation-intensive tasks that can be offloaded to

execute in the cloud. For example, most device-dependent

tasks related to user interactions and display can only be

executed on the devices. Moreover, developing MCAs requires

the knowledge of many low-level details such as data serial-

ization, network communication and cloud computing service

invocation, which becomes even harder when providing cross

platform support for MCAs.
In order to overcome the above challenges, we present

Uniport, a uniform programming support framework for mo-

bile cloud computing, which includes the following key

components:

• A uniform architecture for cross-platform MCAs, which is

derived from the Model-View-Controller (MVC) pattern

that can be applied to a wide range of applications on

multiple mobile platforms.

• A set of mobile cloud computing primitives, which pro-

vide programming interfaces for mobile cloud comput-

ing. These primitives are platform and programming

2015 3rd IEEE International Conference on Mobile Cloud Computing, Services, and Engineering

978-1-4799-8977-5/15 $31.00 © 2015 IEEE

DOI 10.1109/MobileCloud.2015.10

71



language-independent, such that developers are able to

design and implement MCAs for multiple platforms in a

uniform way.

• A set of runtime libraries implementing the mobile cloud

computing primitives, which provide the runtime support-

ing framework for MCA execution. We have implemented

the runtime libraries on three popular mobile platforms

including iOS, Android and Windows Phone.

• A set of development tools including a code generator,

which can be used to generate code skeletons for different

mobile platforms, and a static analyzer that analyzes

existing mobile applications and checks them against the

constraints introduced in the Uniport architecture. The

purpose of these supporting tools is to help improve

productivity.

In order to demonstrate the applicability and flexibility

of Uniport, we perform a case study to transform three

existing mobile applications on iOS, Android and Windows

Phone, to their mobile cloud versions respectively. Only a

very small fraction of lines of code (ranging from 3–9%) are

modified (added/removed) to make them take advantage of

cloud computing. Evaluation results show that the transformed

MCAs reduce both execution time and energy consumption

significantly.

The rest of this paper is organized as follows: Section II

describes the basic principles of our framework. Section III

discusses how our framework provides developers with pro-

gramming support and Section IV describes details about

implementation. Section V presents how we apply the Uniport

framework to three existing mobile applications and shows the

evaluation results. Section VI discusses the applicability of our

framework and the evaluation results. Section VII compares

the Uniport framework with related work and Section VIII

concludes this paper and its future work.

II. OVERVIEW OF THE UNIPORT FRAMEWORK

The main objective of the Uniport framework is to provide

uniform programming support for MCAs on different mobile

platforms. In order to achieve this goal, the framework intro-

duces a platform-independent MCA architecture derived from

the MVC pattern and a few constraints to the architecture

to make it suitable for simplified development of MCAs on

different platforms and in different programming languages.

A. Mobile Cloud Application

An MCA is a mobile application which incorporates cloud

computing and cloud storage to augment the capabilities of

PMDs. Generally, an MCA can be divided into two major

parts: one running on PMDs; the other running in the cloud.

The users of an MCA are not aware of the separation of

the two parts because they collaborate together to execute as

a single mobile application, with the capabilities of PMDs

enhanced and usage scenarios expanded transparently.

In reality, many mobile applications adopt the MVC pattern

or its derivatives, such as Model-View-Adapter, Model-View-

Presenter, Model-View-ViewModel. The major goal of the

MVC pattern is to simplify the application architecture by

decoupling models and views, and to make source code more

flexible and maintainable.

MVC splits the interactions between the user and the

application into three roles: the model, the view, and the

controller. In MVC, the view represents the user interface

which consists of contents and styles applied to the contents.

The model describes the core of an application that uses

business logic to manipulate data. The controller is an event

handler and a bridge which connects the view and the model,

passes input from the view to the model and updates the view

from the execution results of the model.

Following the MVC pattern can greatly benefit the devel-

opment of MCAs, as the model part is a natural fit for cloud

execution, while the view and the controller should run on

PMDs.

To simplify MCA development, we propose an architecture

in which the model running on the device and the model

running in the cloud are the same. In practice, this can be

achieved via sharing the same code base for the model part in

the cloud and on the device, thus simplifying the development

procedure of MCAs.

To achieve the goal of simplicity, we introduce a cou-

ple of constraints to MCAs. Based on our observation, the

middleware on mobile platforms and their counterparts on

corresponding desktop platforms share a lot of constants,

data structures and APIs in common and they use the same

programming languages. Table I shows the comparison of mid-

dleware on different mobile platforms and their corresponding

desktop platforms. This characteristic enables us to achieve the

simplicity of the MCA architecture by enforcing the following

constraints:

• The model part of an MCA should not use the noncom-

mon features in the middleware, either directly or indi-

rectly. This constraint is reasonable because the majority

of those noncommon features are either device-dependent

or used for user interfaces and interactions.

• The model part of an MCA should not use static or

global variables directly because they are considered as

part of the local storage data source and need to be

synchronized via serialization mechanisms. To use static

or global variables indirectly, we can copy them to non-

static member variables before entering the model part.

B. The Uniport Architecture

Figure 1 presents the general architecture of MCAs based

on the Uniport framework, which is divided into two parts:

the device (client) and the cloud (server).

The MCAs based on the Uniport framework adopt an

architecture similar to the original MVC. They still include

views (that consist of contents and styles) and controllers

(as event handlers), which are exactly what most applications

on different mobile platforms have. What is different from

the original MVC pattern is the model part. In the Uniport

architecture, the model part of an MCA is now encapsulated

into the Uniport client to leverage cloud computing services.

72



TABLE I: Comparison of three mobile platforms
Mobile Platform Middleware Desktop Counterpart Language Used
Android Java-compatible Java Runtime Java
iOS Cocoa Touch Cocoa Objective-C
Windows Phone Silverlight .NET Framework C#/VB

View
Contents

Styles

Controller
Event Handlers

Data Source
Local Storage

Cloud Storage Cache Data Source
Cloud Storage

External Synchronization

Serialized Data

Device Cloud

Uniport Server

Model
Business Logic

Data

Uniport Client

Model
Business Logic

Data

Fig. 1: Overview of the Uniport architecture

In the Uniport architecture, the controller passes user input

from the view to the Uniport client and the client handles com-

putation offloading of the actual MCA model. The controller

receives execution results from the Uniport client, the process

of which is event-driven, and updates the view asynchronously.

In the cloud, the server application does not contain any

views because it does not need any user interfaces. The

role of the controller is partly acted by the Uniport server

which encapsulates the actual MCA model. The Uniport

client passes the user input it receives from the controller to

the Uniport server via network communication. The Uniport

server executes the actual MCA model in the cloud and sends

execution results back to the Uniport client in return, which

will then be passed to the controller for updating the view.

This is how cloud computing services are leveraged in MCAs

based on the Uniport framework.

III. PROGRAMMING SUPPORT IN UNIPORT

In order to simplify the development procedure of MCAs,

the Uniport framework provides programming support includ-

ing programming primitives, data source and runtime policies.

We discuss the details of these features in this section.

A. Programming Primitives

In the Uniport framework, we provide programming primi-

tives to implement the communications between the different

parts in the Uniport architecture (Figure 1). These primitives

also provide cloud computing service invocation support for

MCAs.

When developing an MCA, developers need to consider

three kinds of communications: the communication between

the controller and the Uniport client, the communication

between the Uniport client and the actual MCA model, and

the communication between the Uniport server and the actual

MCA model.

To handle these communications and support cloud comput-

ing service invocations, we provide a small set of program-

ming primitives. Table II shows the primitives we adopt and

TABLE II: Primitives in the Uniport framework
client execute The controller invokes the client to

run the model
execution run The model applies its business logic

to the data
execution will begin The client notifies the controller

before the model starts running
execution did end The client notifies the controller after

the model finishes running
restore session The model restores session data
backup session The model backs up session data

prepare sync The model prepares for a full
synchronization

finish sync The model finishes synchronization

their semantics. These primitives are programming language

and platform-independent, suitable for cross-platform MCA

development.

To demonstrate how the primitives client execute,

execution run, execution will begin and exe-
cution did end are used to support mobile cloud com-

puting, let’s take image processing as an example. The user

browses photos stored in Google Drive, iCloud or OneDrive

and chooses one for face recognition. The controller receives

user input from the view, analyzes it and invokes client
execute primitive with appropriate parameters. Since data

is provided by the cloud storage data source which will

be explained later, the Uniport client will only serialize

necessary parameters for the actual MCA model. Before

serialization and data transmission, the Uniport client invokes

execution will begin primitive asynchronously. The

Uniport server receives the serialized data, deserializes it,

invokes execution run primitive for executing the actual

MCA model and returns execution results. When the actual

MCA model runs in the cloud, it fetches the chosen photo

from Google Drive, iCloud or OneDrive. After the Uniport

client receives the results, it invokes execution did end
primitive asynchronously, notifying the controller to update

the view to show face recognition results.

73



The usage of primitives restore session, backup
session, prepare sync and finish sync will be

discussed later.

B. Data Source

At the bottom of the Uniport architecture shown in Figure 1,

data source provides the actual MCA model with data to

process. In the Uniport architecture, we also divide the data

source into two parts: one is the local storage data source, the

other is the cloud storage data source. The two kinds of data

sources operate together for full leverage of cloud computing

and storage services without too much alteration to the existing

design.

The local storage data source consists of data stored in files,

databases that only exist in the local storage of the device, as

well as static or global variables mentioned in the previous

section. The cloud storage data source consists of data stored

in the cloud storage services and cached locally. The actual

MCA model may use both data provided by the local storage

data source and data provided by the cloud storage data source

for processing.

To leverage cloud computing and storage services in the

Uniport architecture, we need to synchronize the data sources

used by the actual MCA model on the device and the

data sources used in the cloud. Data from the local storage

data source is synchronized to the cloud via serialization, a

mechanism provided by C#, Java, Objective-C and many other

programming languages. The serialization and synchronization

procedure is implemented in the Uniport client and transparent

to MCAs based on the framework.

The cloud storage data source is synchronized via external

mechanisms such as network file system, Google Drive,

iCloud, OneDrive.

C. Runtime Policy

In addition to the communications and data sources dis-

cussed previously, we design some runtime policies for better

support of mobile cloud computing. The key concerns of

the policies are availability, security, performance and energy

consumption of the MCAs based on our framework.

1) Availability: Many adversities may impact the smooth

execution of an MCA. For example, there are circumstances

where network is unavailable, network connection is slow and

unstable, or even the cloud service is unavailable. These are

availability issues.

To deal with the unavailabilities and guarantee the availabil-

ity of the MCAs based on the Uniport framework, we design

some runtime policies for the Uniport runtime libraries on

different mobile platforms.

The network availability is ensured by socket creation

and connection. If network is unavailable for MCAs, socket

creation and connection will fail. The speed and stability of

network connection is ensured by socket communication time-

out and the serialization mechanisms. The availability of the

cloud service is ensured by socket connection, communication

timeout and the serialization mechanisms.

client 
execute

network 
available?

local 
invocation

remote 
invocation

error?

execution 
did end

Yes No

Yes

No

Fig. 2: Execution flow

When any part is unavailable, the Uniport client will invoke

execution run primitive for executing the actual MCA

model locally on the device to guarantee the availability of

the MCA. This policy is under the hood and its detailed

mechanisms are transparent to the controller and the actual

MCA model.

With availability taken into consideration, the execution

flow of MCAs based on the Uniport framework is shown in

Figure 2.

2) Security: Security is another key concern, including the

security of the device, the security of the cloud and the security

and privacy of the data exchanged between them.

To protect the security of the device, the Uniport client

catches exceptions when receiving the results. To protect

the security of the cloud, the Uniport server only accepts

invocations of known MCA models from authorized clients

and catches exceptions during the execution of the MCA

model.

To protect the security and privacy of the data exchanged be-

tween the device and the cloud, Secure Socket Layer/Transport

Layer Security (SSL/TLS) is used for encryption. SSL/TLS

also provides mechanisms for authentication and authoriza-

tion [11]. Authentication and authorization can also be com-

bined with access control mechanisms.

3) Performance and Energy Consumption: The default

runtime policy of the Uniport framework shown in Figure 2

does not guarantee the shortest response time, but is rather a

trade-off between performance and energy consumption.

The Uniport client first tries invoking the execution
run primitive remotely in the cloud. It will only invoke

execution run locally if remote invocation fails. The

response time is Tr+Td if remote invocation succeeds, where

Tr is the time of remote execution and Td is the time of data

transmission. The response time is Tt+Tl if remote invocation

fails, where Tt is the default timeout and Tl is the time of local

execution.

To achieve the shortest response time, remote invocation

and local invocation can be performed simultaneously, which

74



will of course result in more energy consumption. With this

policy, the response time is min(Tl,min(Tr + Td, Tt)). It is

no more than the response time with the default runtime policy

and will be shorter if any forms of unavailabilities occur.

The choice between the two runtime policies can be con-

figured statically by the MCA developer. It can also be deter-

mined by the Uniport runtime library dynamically, according

to the real-time CPU utilization, battery level and network

connection quality.

Energy consumption is another important concern for

MCAs. To calculate the amount of energy saved via

offloading, we use the following formula proposed by Kumar

and Lu [1].

C

M
×

(
Pc − Pi

F

)
− Ptr × D

B

In the formula, C is the amount of computation. M is the

CPU speed of the device and the cloud is F times faster than

the device. Pi, Pc and Ptr are power consumed by the device

in idle state, for computing and for network communication.

D is the bytes of data exchanged between the device and the

cloud. B is the network bandwidth. In order to reduce energy

consumption as much as possible, we need to reduce D as

much as possible. There are two kinds of cases to consider

for the reduction of D.

In one kind of cases, like the image processing example

discussed previously, different invocations to the actual MCA

model are independent of each other, which implies that the

model does its work independently among different invoca-

tions. In this kind of cases, we can take advantage of the cloud

storage data source to reduce the amount of exchanged data.

Redundant data can also be removed by the Uniport server

while the cloud is returning results to the device.

In another kind of cases, a sequence of invocations to the

actual MCA model is doing one job. A simple practice is to

exchange the data representing the state every time. But it is

not energy efficient. To reduce the amount of exchanged data,

we can use a strategy in which only the data representing the

differences between states are exchanged.

In the optimized strategy, the device and the cloud need to

be synchronized in the state of MCA models. This is why we

introduce primitives restore session, backup ses-
sion, prepare sync and finish sync in the Uniport

framework.

Before the Uniport client tries invoking the execution
run primitive remotely in the cloud, it checks whether

the device and the cloud are synchronized in state. If not,

it invokes prepare sync to notify the MCA model for

preparing synchronization. After receiving results from the

cloud, it invokes finish sync to notify the MCA model

for cleaning up synchronization data. In the cloud, each

client has a corresponding session storing the current state

of MCA models. Before invoking execution run, the

Uniport server invokes restore session to notify the

MCA model for recovering the state from the session. After

invoking execution run, it invokes backup session

to notify the MCA model for backing up its state to the

session.

IV. IMPLEMENTATION

In this section, we present the implementation details of

the Uniport framework on different mobile platforms, how

different programming languages are supported, and how the

design goals of the Uniport framework can be achieved.

A. Platform and Language Characteristics

We implement the Uniport framework on three most popular

mobile platforms: iOS, Android and Windows Phone, with

Objective-C, Java and C# respectively. Fortunatedly, the three

mobile platforms and the three programming languages share

the following common characteristics, which enable us to

achieve the goal of simplicity and uniformity:

• The iOS platform runs upon the XNU kernel, which is

the same as the kernel of Mac OS X. Applications in iOS

are built upon a middleware layer named Cocoa Touch,

which corresponds to Cocoa in Mac OS X. Cocoa Touch

includes Objective-C frameworks such as Foundation
and Core Foundation that are platform independent

and subsets of their counterparts in Cocoa.

• Android runs a Linux kernel slightly different from the

stock Linux kernel [12]. Applications in Android are built

upon a Java-compatible middleware layer, which is based

on Apache Harmony [13] and provides many libraries in

common with the standard Java runtime.

• Windows Phone runs the Windows CE/NT kernel. Ap-

plications in Windows Phone are built upon either Sil-

verlight or the XNA framework with C# or Visual Basic.

The latter is mainly used in video games while the former

is used in normal applications and is a subset of the .NET

framework.

The similarities between these mobile platforms and their

corresponding desktop platforms are the key to our effort

to achieve simplification in the Uniport framework. Because

of the common features, most of the model parts in MCAs

can run both on the device and in the cloud without any

modification, which simplifies the development process of

MCAs.

B. Data Source and Serialization

As discussed in the previous section, the cloud storage

data source relies on external implementations. Popular mobile

platforms such as iOS, Android and Windows Phone have

built-in cloud storage support like iCloud, Google Drive and

OneDrive respectively. For Android, there are also network

file system implementations [14, 15].

For user input and data from the local storage data source,

the Uniport client serializes them before sending them to

the cloud side. The Uniport server also serializes the results

before sending them back to the device. The serialization

mechanism is supported in Objective-C, Java and C# via their

corresponding middlewares.

75



On iOS, NSKeyedArchiver and NSKeyedUnar-
chiver from the Foundation framework are used for

serialization and deserialization. To make the serialization

mechanism on iOS work, the MCA model must implement

NSCoding protocol.

On Android, ObjectOutputStream and ObjectIn-
putStream from Java language infrastructure are used for

serialization and deserialization. To make the serialization

mechanism on Android work, the MCA model must imple-

ment either Serializable or Externalizable inter-

face. In the Uniport framework, we choose the latter because

it allows serializing data members selectively.

On Windows Phone, we use DataContractJson-
Serializer for serialization and deserialization because

BinaryFormatter from the .NET framework is not

available in Silverlight. To make the serialization mechanism

on Windows Phone work, the MCA model must mark itself

with DataContract attribute and mark its fields that need

to be serialized with DataMember attribute.

If anything fails during serialization, deserialization or

invocation to the execution run primitive, an exception

will be caught by the Uniport framework. The runtime libraries

of the framework will then use the policies described in the

previous section to guarantee the availability of the MCA.

C. Execution and Error Handling

On mobile platforms, it is typically unacceptable to

block the main/UI thread [16], which will make the

whole application unresponsive, resulting in bad user

experience. The Uniport client uses background threads

to avoid blocking the main/UI thread. After the controller

invokes the client execute primitive, the Uniport

client starts running in a background thread. However, the

Uniport client should invoke primitives execution
will begin and execution did end in the

main/UI thread to avoid concurrency faults. The cross

thread invocations are implemented with Grand Central

Dispatch on iOS, android.os.Handler on Android

and System.Windows.Threading.Dispatcher on

Windows Phone.

While the invocation to execution run is in progress,

the main/UI thread can still access the local storage data

source. Therefore developers should take care and avoid

concurrency bugs.

In the Uniport framework, we use the middleware and

programming language-supported exception handling facilities

to deal with errors. We place code that might generate errors

in try-blocks and handle errors with runtime policies in

the corresponding catch-blocks. In some cases, such as the

invocation to finish sync, we use extra finally-blocks.

To handle network connection issues, we set up SO_RCV-
TIMEO and SO_SNDTIMEO options for the BSD compatible

sockets that are used for communications between the device

and the cloud.

If any error occurs during the remote invocations to ex-
ecution run in the cloud, the synchronization between

the device and the cloud discussed in the previous section

is broken. The Uniport client will invoke the prepare
sync primitive before the next remote invocation to the

execution run primitive.

D. MCA Development Support

In order to improve productivity for MCA developers using

the Uniport framework, we provide a set of developing tools

for MCA development. Currently the toolset consists of a code

generator and a static code analyzer.

The code generator takes advantage of the simplicity and

uniformity of the Uniport architecture and can generate code

skeletons for iOS, Android and Windows Phone from XML-

based MCA configurations. With the configuration and the

target mobile platform specified, the code generator produces

two projects, one for the device, the other for the cloud.

The former project contains the configured Uniport client

and the defined MCA models. The latter project contains the

configured Uniport server and the defined MCA models.

The configuration of an MCA is an XML file that defines

modules and specifies various attributes of the MCA, such

as cloud server address and port number, runtime policies,

timeout values.

Using the code generator, new MCAs for different mobile

platforms can be easily created. First, the developers design the

application and write an MCA configuration for it. Then the

developers choose from the supported mobile platforms and

generate necessary projects and code skeletons with the code

generator. Afterwards the developers can start implementing

the MCA. During implementation, the developers can reuse

code forming the model parts of the MCA in both the client

project and the server project. After these steps are completed,

the developers can build the projects, and deploy the client

application and the server application to the device and the

cloud respectively.

We also notice that there is demand for refactoring existing

code to use cloud computing services as well as demand for

constructing an MCA from scratch. While the code generator

is mainly used for developing new MCAs based on the Uniport

framework, the static code analyzer helps developers apply the

Uniport framework to existing code.

The analyzer is based on the ANTLR parser generator [17].

It parses Objective-C, Java and C# source code and checks

whether it conforms with the Uniport architecture and its

constraints for MCAs. The analyzer checks against direct

constraint violations while parsing and maintains a reference

graph for checking against indirect constraint violations.

We build the analyzer upon a parser instead of a lexer

because there are cases that a lexer can not detect accurately,

such as qualified names in Java and C#.

Another important job in MCA development is to identify

computationally-intensive code that is suitable for cloud exe-

cution. Modern mobile platforms include profiling tools that

can help developers with the identification job, such as Instru-

76



ments 1, Traceview 2, Windows Phone Application Analysis 3.

With these profiling tools, developers can pick out candidates

that are suitable for cloud execution, according to the formula

mentioned previously with respect to energy efficiency. After

dynamic profiling, the analyzer helps developers refactor the

existing code and apply the Uniport framework.

As mentioned in Section II, the project for the device and

the project for the cloud share the same code for the model

parts of the MCA without any modification. This goal of

simplicity is achieved via the Uniport architecture and with

the help of compilers. If code for the model parts of an MCA

fails to compile, either in the device project or in the cloud

project, one possible reason is that the code violates Uniport’s

constraint. MCA developers should check the implementation

of the model and modify it to the way that conforms with the

Uniport framework.

E. Cloud Side Support

In our implementation, the Uniport server supports cloud

computing services provided for iOS, Android and Windows

Phone devices. It uses threads to serve multiple clients con-

currently. For one client, it deserializes the received data,

invokes primitives restore session, execution run
and backup session successively, serializes the execution

results and sends them back to the client.

Only data that represents the model part of an MCA known

to the Uniport server will be deserialized. We embed the

three primitive invocations in a try-block. If any exception

is caught, service to the client will stop.

For iOS clients, the server application can run on Mac OS

X or with GNUstep, which is an open source implementation

of the Cocoa middleware. For Android clients, the server

application can run on platforms that support the Java virtual

machine. For Windows Phone clients, the server application

can run on the .NET framework or Mono, which is an open

source .NET implementation. GNUstep and Mono are cross-

platform replacements for Cocoa and the .NET framework. So

iOS and Windows Phone clients do not actually require Mac

OS X and Windows environments in the cloud.

V. CASE STUDY AND EVALUATION

In this section, we study how the Uniport framework can

be applied to existing mobile applications to transform them

into MCAs. We also evaluate the Uniport framework with the

three applications to demonstrate how the framework and its

runtime policies perform on three different mobile platforms.

A. Case Study

We choose three open source mobile applications, Kigo-

moku [18], Fivestones [19] and GomokuPro [20] for iOS,

Android and Windows Phone respectively because it is not

feasible to do binary code refactoring on all mobile platforms.

1https://developer.apple.com/technologies/tools/
2http://developer.android.com/tools/help/traceview.html
3http://msdn.microsoft.com/en-us/library/windowsphone/develop/

jj215908\%28v=vs.105\%29.aspx

The three applications implement Gomoku, an abstract strat-

egy board game, in which users play with the AI.

All three chosen applications adopt the MVC pattern. The

model part is the Gomoku AI that thinks and plays with the

user. The view part is the Gomoku board where the game is

displayed and the user responds. The controller part handles

user inputs and updates the game board from user inputs and

the AI’s responses.

The Gomoku model is a model where a sequence of

invocations is doing the same job, i.e., playing a round of

Gomoku game with the user. To be energy efficient, we

only serialize and transmit data that represents the differences

between game states.

We transform the three applications to MCAs respectively

based on the Uniport framework. Table III shows the modi-

fications applied to the three applications, in lines of source

code added, removed and modified in total. We can see that

with the Uniport framework, transforming an existing mobile

application to an MCA needs relatively small amount of

modifications, ranging from 3–9% of the total lines of code.

All the three applications have “undo” buttons, the action

of which actually breaks the synchronization. So we need to

notify the Uniport client about that. Figure 3a demonstrates

part of our modifications to the controllers of Kigomoku to

support the “undo” action. Similar modifications to Fivestones

and GomokuPro are demonstrated in Figures 3b and 3c.

B. Evaluation

In order to evaluate the three applications, we do not use

the models contained in the three applications. Instead, we

implement a Gomoku model that uses depth-first search and

α–β pruning [21]. Using the same Gomoku model among

the three applications helps us analyze platform and language

characteristics. Unlike the original models used in the three

applications, we do not bring any randomness into our AI

algorithm. With the same user input, the response of the model

is always the same. So we can reproduce the evaluation results.

The machine we use to simulate the cloud is a laptop

with 2.66GHz CPU and 4GB RAM. The devices we use

for evaluation are the second generation iPod Touch, Google

Nexus S and Nokia Lumia 800.

The response time is calculated as the time between two ad-

jacent invocations to primitives execution will begin
and execution did end. On iOS and Android, energy

consumption is measured via battery level APIs. On Windows

Phone, it is measured in the Diagnostics application. To

improve accuracy, we repeat the same round of Gomoku game

for ten times and calculate an average energy consumption for

one round.

For the first part of our evaluation, we run the three appli-

cations in emulation environments: iOS simulator, Android-

x86 [22] virtual machine and Windows Phone emulator. The

iOS simulator executes x86 native code and the CLR of

Windows Phone emulator is based on x86. The emulator from

the Android SDK is too slow because it interprets ARM

instructions. So we choose Android-x86 instead.

77



TABLE III: Amount of modifications applied to the three applications
Application Total Lines Part Lines Added Lines Removed Total Modifications

Kigomoku 1805
Model 119 0

161 lines, 8.9%
Controller 37 5

Fivestones 4424
Model 90 0

133 lines, 3.0%
Controller 33 10

GomokuPro 3428
Model 86 2

120 lines, 3.5%
Controller 31 1

- (void)undoRedoMove:(id)sender {
if (sender == undoButton) {

int moves_to_undo = 2;
if ([self game].gameStarted == NO

&& [self game].currentPlayerIndex == 1)
moves_to_undo = 1;

NSLog(@"undo UNDO pressed, undoing %d moves",
moves_to_undo);

[((GomokuViewController *)self.mainController).model
setSyncFlag:NO];

for (int i = 0; i < moves_to_undo; i++)
[[self game] undoLastMove];

} else if (sender == redoButton) {
NSLog(@"undo redo pressed"); 

}
}

(a) Kigomoku

@Override
public boolean onKeyDown(int keyCode, KeyEvent event) {

if (keyCode == KeyEvent.KEYCODE_BACK) {
handler.makeStepBack();
((AndroidEnemy)enemy).model.setSyncFlag(false);
return true;

}
return super.onKeyDown(keyCode, event);

}

(b) Fivestones

private void Withdraw_Click(object sender,
RoutedEventArgs e)

{
if (ChessBoard.Mode == GameMode.PlayMode)
{

ChessBoard.Withdraw();
ChessBoard.Withdraw();
if (engine.model != null)

engine.model.syncFlag = false;
}

}

(c) GomokuPro

Fig. 3: MCA modifications to support “undo” (code added shown in italic)

In each set of the results, we run the mobile versions of

the applications (without cloud support) and the mobile cloud

versions (with cloud support) separately, and compare their

performances.

Figure 4a shows the evaluation results. We can see that

the CLR in Windows Phone emulator is not as fast as that

of the .NET framework and that the Dalvik virtual machine

performs worse than the Java virtual machine. From the result

of Kigomoku, we can see that the Uniport framework does

not introduce performance overhead.

Then we run the three applications on real devices. Fig-

ure 4b shows the comparisons of response time and Figure 4c

shows the comparisons of energy consumption. With cloud

support, the Gomoku game achieves 3–7x speedup and 48–

66% decrease in energy consumption on different mobile

platforms.

On real devices, GomokuPro is the fastest among the three

applications because the CPU of Lumia 800 is faster. Although

Nexus S has a better CPU than the second generation iPod

Touch, Fivestones is still slower than Kigomoku because the

runtime efficiency of the Dalvik virtual machine is inferior.

Kigomoku consumes the least amount of energy among the

three applications because iOS applications execute native

code directly without the overhead of virtual machines.

The case studies and evaluation results show that, with

the application of the Uniport framework, existing mobile

applications can be converted to MCAs easily to improve

performance and reduce energy consumption.

VI. DISCUSSION

A. Applicability of Uniport

The Uniport framework support the transformation of mo-

bile applications based on the MVC pattern or its derivative

patterns into MCAs. This does not restrict the applicability

of the Uniport framework because the MVC and its derivative

patterns are widely adopted in mobile applications on different

platforms. The iOS Developer Library officially states that

“MVC is central to a good design for a Cocoa applica-

tion” [23]. Questions and answers about the MVC pattern

in Android applications on Stack Overflow are rated as very

useful [24, 25].

Although the Uniport framework is designed specifically

with the MVC pattern in mind, it can also be applied

to non-MVC applications with a little extra effort. As the

programming primitives and the runtime libraries can still

be used in any MCAs, the only extra effort we need for a

non-MVC application is to identify the modules that can be

offloaded to the cloud, which actually have similar roles to

the models in the MVC pattern. The identification task can be

accomplished either (semi-)automatically or manually, which

have been demonstrated in previous work [6]. The techniques

can be incorporated to the Uniport framework to support

MCAs in more general forms.

B. Performance and Energy Results

One of the major benefits of mobile cloud computing is that

it enables offloading computation from the mobile device to

the cloud in order to improve performance and save energy.

The performance of computation offloading highly depends

on the speed of the cloud and the quality of the network

connection between the mobile device and the cloud. In our

evaluation, we use a laptop as the cloud and wireless local area

network as the communication channel between the devices

and the cloud. If we use faster cloud servers and higher-speed

network connection, MCAs will have higher performance and

lower energy consumption. However, if the network speed

is slower when using the remote cloud, it might increase

the offloading time due to the transmission latency. Many

78



0

200

400

600

800

1000

1200

1400

1600

1800

2000

Kigomoku Fivestones GomokuPro

R
es

po
ns

e 
tim

e 
(m

s)
 

w/o cloud

w/ cloud

(a) Response time on emulators

0

500

1000

1500

2000

2500

3000

3500

Kigomoku Fivestones GomokuPro

R
es

po
ns

e 
tim

e 
(m

s)
 

w/o cloud

w/ cloud

(b) Response time on devices

0

1

2

3

4

5

6

7

8

Kigomoku Fivestones GomokuPro

E
ne

rg
y 

co
ns

um
pt

io
n 

(m
A

h)

w/o cloud

w/ cloud

(c) Energy consumption on devices

Fig. 4: Evaluation results

tradeoffs need to be made in reality for MCAs, which have

been studied extensively in the mobile computing and systems

community [2, 3, 6, 26].

Because the focus of this paper is developing a pro-

gramming framework to support MCA development, many

runtime decisions are beyond the scope of this paper. So the

performance and energy results shown in this paper are only a

proof of concept, and are not meant to reflect the complicated

reality of mobile cloud computing.

VII. RELATED WORK

A. Mobile Cloud Computing

Carzaniga, Picco and Vigna propose mobile code paradigms

for distributed applications [27]. Weinsberg and Ben-Shaul

propose a model for disconnected-aware applications on

resource-constrained devices [28].

In the Uniport framework, we adopt a new paradigm where

both the device and the cloud know how and own resources.

So MCAs based on the framework can run locally when

disconnected from the network, which guarantees availability.

CloneCloud [3] discusses the possibility of cloning mobile

device to a virtual machine running in the cloud and dy-

namically transferring the execution of mobile applications.

MAUI [6] discusses the possibility of using managed code

environment to provide a fine-grained energy-aware offloading

solution. Virtualized screen [29] presents a way for cloud-

mobile convergence by rendering screen of mobile device in

the cloud. Cuckoo [4] presents a framework which simplifies

the development of mobile applications that benefit from

computation offloading. Paranoid Android [5] focuses on pro-

tecting mobile devices with replay in the cloud. COMET [2]

leverages distributed shared memory for migrating execution

transparently on Android. Sapphire [30] provides a general-

purpose distributed programming platform for simplifying the

design and implementation of mobile/cloud applications via

the separation of application logic from deployment logic.

Sapphire, COMET, CloneCloud, Cuckoo and Paranoid An-

droid are specifically designed for Android. The implementa-

tion of MAUI relies on the reflection mechanism supported

by the CLR of Windows Mobile. Our Uniport framework,

however, does not rely on platform specific features. It uses

features and characteristics that are common among different

platforms and programming languages and makes low level

details transparent to MCAs based on the framework.
In the Uniport framework, we use the formula proposed

by Kumar and Lu [1] to calculate the reduction in energy

consumption. Recently, more fine-grained energy models [31]

and scheduling policies [26] have been proposed, which will

help MCAs make better decisions about code offloading.

B. Models for Mobile Applications
The MVC pattern was formulated in the 1970s by Trygve

Reenskaug at Xerox PARC [32]. During the past 40 years, its

application scenarios have been studied in-depth. Many other

patterns derive from MVC, such as Model-View-ViewModel,

Model-View-Presenter and Model-View-Adapter. But to the

best of our knowledge, no previous work has explored the

possibility of combining MVC and mobile cloud computing.
Christensen examines architectural considerations for mo-

bile application created with RESTful web services [33], with

data transfer size optimization and offloading intensive cal-

culations taken into consideration. Medvidovic and Edwards

conclude the state-of-the-art and research challenges of mobile

software and systems [34]. Bronsard discusses framework

constraints [35], which inspire us in designing the Uniport

framework and the constraints to the Uniport architecture.

C. Cross-Platform Solutions
There are a few cross-platform solutions to mobile ap-

plication development. Mobl [9] is a language designed to

declaratively construct web applications for different mobile

platforms. PhoneGap [10] is a framework that enables devel-

opment of native application for different mobile platforms

with web technologies.
Both Mobl and PhoneGap use web technologies including

HTML5, CSS and JavaScript, which are mainly concerned

with interactive user experience. Mobile applications devel-

oped with them actually run on a web view control provided

by the mobile platform, instead of the mobile platform itself,

limiting their runtime performance and energy efficiency,

making them suboptimal solutions to mobile cloud computing.
In the Uniport framework, we provide a conceptually cross-

platform solution. The primitives are platform and program-

ming language-independent and the runtime libraries support

multiple mobile platforms. The principles of the Uniport

architecture are simplicity and uniformity.

79



VIII. CONCLUSION AND FUTURE WORK

In this paper, we present Uniport, a uniform framework for

developing mobile cloud applications (MCAs). The Uniport

framework introduces a new architecture for MCAs, a set

of programming primitives and runtime libraries for MCA

development and runtime support, and runtime policies to

efficiently leverage cloud computing and storage services and

improve energy efficiency. We have implemented the Uniport

framework on three popular mobile platforms. Case studies

on different platforms show that, with relatively small amount

of modifications to existing mobile applications, developers

can create MCAs that reduce execution time and energy

consumption significantly.
Security features such as SSL/TLS have not been used in

the Uniport framework. In the future, we will consider adding

SSL/TLS to our framework for better protection of security

and privacy.
Other automatic tools would also be helpful to MCA

developers in addition to the code generator and analyzer,

such as a profiler that helps developers determine the partition

of modules for computation offloading, and IDE plugins for

Xcode, Eclipse and Visual Studio that integrate the code

generator, analyzer and profiler together to further improve

productivity.

ACKNOWLEDGMENT

This work is supported by the High-Tech Research and De-

velopment Program of China under Grant No.2013AA01A605,

and the National Natural Science Foundation of China under

Grant No.61421091, 61103026.

REFERENCES

[1] K. Kumar and Y.-H. Lu, “Cloud computing for mobile users: Can
offloading computation save energy?” Computer, vol. 43, no. 4, pp. 51–
56, Apr. 2010.

[2] M. S. Gordon, D. A. Jamshidi, S. Mahlke, Z. M. Mao, and
X. Chen, “Comet: Code offload by migrating execution transparently,”
in Proceedings of the 10th USENIX Conference on Operating Systems
Design and Implementation, ser. OSDI’12. Berkeley, CA, USA:
USENIX Association, 2012, pp. 93–106.

[3] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “Clonecloud:
Elastic execution between mobile device and cloud,” in Proceedings of
the Sixth Conference on Computer Systems, ser. EuroSys ’11. New
York, NY, USA: ACM, 2011, pp. 301–314.

[4] R. Kemp, N. Palmer, T. Kielmann, and H. Bal, “Cuckoo: a computation
offloading framework for smartphones,” in Mobile Computing, Applica-
tions, and Services. Springer, 2012, pp. 59–79.

[5] G. Portokalidis, P. Homburg, K. Anagnostakis, and H. Bos, “Paranoid
Android: Versatile protection for smartphones,” in Proceedings of the
26th Annual Computer Security Applications Conference, ser. ACSAC
’10. New York, NY, USA: ACM, 2010, pp. 347–356.

[6] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “Maui: Making smartphones last longer with
code offload,” in Proceedings of the 8th International Conference on
Mobile Systems, Applications, and Services, ser. MobiSys ’10. New
York, NY, USA: ACM, 2010, pp. 49–62.

[7] H. Mei and Y. Guo, “Network-oriented operating systems: status and
challenges,” SCIENCE CHINA Information Sciences, vol. 43, no. 3, pp.
303–321, 2013, (in Chinese).

[8] W. Zheng, “An introduction to Tsinghua Cloud,” SCIENCE CHINA
Information Sciences, vol. 53, no. 7, pp. 1481–1486, 2010.

[9] Z. Hemel and E. Visser, “Declaratively programming the mobile web
with Mobl,” in Proceedings of the 2011 ACM International Conference
on Object Oriented Programming Systems Languages and Applications,
ser. OOPSLA ’11. New York, NY, USA: ACM, 2011, pp. 695–712.

[10] Adobe Systems Inc., “PhoneGap,” http://phonegap.com.
[11] M. Brown and R. Housley, “Transport Layer Security (TLS)

Authorization Extensions,” http://tools.ietf.org/html/rfc5878.
[12] Embedded Linux Wiki, “Android Kernel Features,” http://elinux.org/

Android Kernel Features.
[13] Apache Software Foundation, “Apache Harmony,” http://harmony.

apache.org.
[14] Y. Guo, L. Zhang, J. Kong, J. Sun, T. Feng, and X. Chen, “Jupiter:

Transparent augmentation of smartphone capabilities through cloud
computing,” in Proceedings of the 3rd ACM SOSP Workshop on
Networking, Systems, and Applications on Mobile Handhelds, ser.
MobiHeld ’11. New York, NY, USA: ACM, 2011, pp. 2:1–2:6.

[15] Y. Dong, H. Zhu, J. Peng, F. Wang, M. P. Mesnier, D. Wang, and S. C.
Chan, “RFS: A network file system for mobile devices and the cloud,”
SIGOPS Oper. Syst. Rev., vol. 45, no. 1, pp. 101–111, Feb. 2011.

[16] Android Open Source Project, “Keeping Your App Responsive,” https:
//developer.android.com/training/articles/perf-anr.html.

[17] T. J. Parr and R. W. Quong, “ANTLR: A predicated-LL (k) parser
generator,” Software: Practice and Experience, vol. 25, no. 7, pp. 789–
810, 1995.

[18] K. Gredeskoul, “Kigomoku,” https://github.com/kigster/kigomoku.
[19] tungi52, “Fivestones project,” http://code.google.com/p/

fivestones-project.
[20] DragonGame, “GomokuPro,” http://windowsphone.com/s?appid=

bf68c082-1ff4-4a15-ba31-02ed83643453.
[21] G. Heineman, G. Pollice, and S. Selkow, Algorithms in a Nutshell.

Oreilly Media, 2008, ch. Path Finding in AI, pp. 217–223.
[22] C.-W. Huang and Y. Sun, “Android-x86 Project,” http://www.

android-x86.org.
[23] Apple Inc., “Cocoa Core Competencies: Model-View-Controller,”

https://developer.apple.com/library/ios/documentation/general/
conceptual/devpedia-cocoacore/MVC.html.

[24] Burjua, “MVC pattern in Android?” http://stackoverflow.com/q/
2925054/2748784.

[25] JustDanyul, “Which design patterns are used on Android?” http://
stackoverflow.com/a/6770903/2748784.

[26] W. Zhang, Y. Wen, and D. O. Wu, “Energy-efficient scheduling policy
for collaborative execution in mobile cloud computing,” in INFOCOM,
2013 Proceedings IEEE, ser. INFOCOM ’13. IEEE, 2013, pp. 190–194.

[27] A. Carzaniga, G. P. Picco, and G. Vigna, “Designing distributed
applications with mobile code paradigms,” in Proceedings of the 19th
International Conference on Software Engineering, ser. ICSE ’97. New
York, NY, USA: ACM, 1997, pp. 22–32.

[28] Y. Weinsberg and I. Ben-Shaul, “A programming model and system
support for disconnected-aware applications on resource-constrained
devices,” in Proceedings of the 24th International Conference on
Software Engineering, ser. ICSE ’02. New York, NY, USA: ACM,
2002, pp. 374–384.

[29] Y. Lu, S. Li, and H. Shen, “Virtualized screen: A third element for
cloud-mobile convergence,” IEEE MultiMedia, vol. 18, no. 2, pp. 4–11,
Apr. 2011.

[30] I. Zhang, A. Szekeres, D. V. Aken, I. Ackerman, S. D. Gribble,
A. Krishnamurthy, and H. M. Levy, “Customizable and extensible
deployment for mobile/cloud applications,” in 11th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 14).
Broomfield, CO: USENIX Association, Oct. 2014, pp. 97–112.

[31] C. Wang, F. Yan, Y. Guo, and X. Chen, “Power estimation for mobile
applications with profile-driven battery traces,” in Low Power Electronics
and Design (ISLPED), 2013 IEEE International Symposium on. IEEE,
2013, pp. 120–125.

[32] T. Reenskaug, “MVC,” http://heim.ifi.uio.no/∼trygver/themes/mvc/
mvc-index.html.

[33] J. H. Christensen, “Using RESTful web-services and cloud computing
to create next generation mobile applications,” in Proceedings of
the 24th ACM SIGPLAN Conference Companion on Object Oriented
Programming Systems Languages and Applications, ser. OOPSLA ’09.
New York, NY, USA: ACM, 2009, pp. 627–634.

[34] N. Medvidovic and G. Edwards, “Software architecture and mobility: A
roadmap,” J. Syst. Softw., vol. 83, no. 6, pp. 885–898, Jun. 2010.

[35] F. Bronsard, “Practical framework constraints,” in Proceedings of the the
7th Joint Meeting of the European Software Engineering Conference
and the ACM SIGSOFT Symposium on The Foundations of Software
Engineering, ser. ESEC/FSE ’09. New York, NY, USA: ACM, 2009,
pp. 273–276.

80


