
Towards an Operating System for the Campus

Pengfei Yuan, Yao Guo, and Xiangqun Chen
Key Laboratory of High-Confidence Software Technologies (Ministry of Education)

School of Electronics Engineering and Computer Science, Peking University
{yuanpf12, yaoguo, cherry}@sei.pku.edu.cn

ABSTRACT
Almost every computing device runs an operating system,
which is responsible for managing different resources on
the device and providing higher-level programming abstrac-
tions. This paper proposes CampusOS, an operating system
which is responsible for managing networked resources on
university campuses, including data of students, teachers,
courses, organizations, and even data generated from users’
computing devices. CampusOS provides flexible support for
campus application development with SDKs consisting of
campus-related APIs. CampusOS features and SDK APIs
can also be extended by developers easily. We discuss the
design of CampusOS, as well as its challenges.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Tech-
niques—software libraries; D.4 [Operating Systems]: Or-
ganization and Design

General Terms
Design, Management

Keywords
Internet operating system, Middleware, Campus application
development, Internetware

1. INTRODUCTION
Operating systems are running on almost all modern

computing devices, such as PCs, smartphones, embedded
systems and even sophisticated sensors. The key function-
alities of an operating system are managing various kinds
of resources (CPU, storage, peripherals, etc.) and providing
programming and runtime support.
With the prevalence of the Internet, many computers are

connected together, forming a grid or cloud, in order to
support more complex applications. If we treat a cluster, a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Internetware ’13 October 23–24 2013, Changsha, China
Copyright 2013 ACM 978-1-4503-2369-7/13/10 ...$15.00.

data center or even the whole Internet as a computer, we can
envision that many applications are “actually” running on
the network of computers. Consequently, many researchers
have proposed various operating systems for cloud or even
the Internet. For example, Tim O’Reilly proposed his vision
of an Internet Operating System [7]. At the same time,
many other operating systems have been proposed for cloud
computing [10], networked home appliances [3], commercial
buildings [2], and even connected city blocks [4].

In contrast, this paper focuses on the evolvement of
applications and services running on closely-connected com-
munities such as a university campus, especially mobile
applications targeting community members and activities.
Developing applications for communities like university cam-
puses requires a lot of trivial work. A developer would
typically need to figure out how to retrieve and manage
users’ personal information, schedules, social relations, etc.
Large amount of time is spent on these lower-level details,
instead of focusing on implementing and improving the key
functionalities of the applications.

For a closely-connected community such as a university
or a similar organization, different applications have much
in common at the lower level. Providing higher-level APIs
for commonly used lower-level features can improve the
development process significantly. For example, identifying
a specific place (such as a building on campus) with a
smartphone requires access to the sensors on the device
and the campus building layout information, as well as
a positioning algorithm. As many campus applications
will require the same identification feature, we can provide
common APIs or services for outdoor (or even indoor)
location identification, such that all location-based campus
applications do not need to reinvent the wheel.

In order to support the existing (and emerging) appli-
cations on campus, we argue that an operating system
is needed to provide sufficient support during application
development, deployment, execution and maintenance. We
design CampusOS as an open, community-oriented operat-
ing system for university campuses. Just like traditional
operating systems, CampusOS provides programming inter-
faces, libraries, and runtime management of applications,
although at a higher level. Many components of CampusOS
depend on traditional operating systems like Windows and
Linux, as well as networked resources in the cloud and on
the Internet.

Many people may wonder why we need another operating
system as many features provided by CampusOS can be
implemented separately. We illustrate the necessity of an

operating system, as well as the contributions of CampusOS,
from the following aspects.

• CampusOS can provide support for students who are
interested in building personalized applications and
excited to share them with friends.

• CampusOS can provide support for courseware and
course-related applications with course-specific cus-
tomizations.

• CampusOS can help manage different communities on
campus, such as student union, student clubs, interest
groups, sports teams, etc.

• CampusOS can also serve as a research platform
where researchers can distribute applications for ex-
perimental purposes and collect user information with
permission.

CampusOS belongs to a larger ongoing project, in which
we are constructing a prototype of an Internet operating
system, which is a development and runtime supporting
environment for Internetware [5, 6].

2. CAMPUSOS DESIGN
We adopt a hierarchical architecture in CampusOS, which

is similar to traditional operating systems. In this section,
we first present our design goal to make CampusOS an open
and extensible ecosystem. Then we describe the specific
design of CampusOS.

2.1 Goal
CampusOS is intended to serve as an open platform

for campus applications, which means that not only can
developers publish new applications to CampusOS, but they
can also add new features to CampusOS. CampusOS is
designed with the principle of extensibility in mind, such
that new features can be easily added into it. When some
developers come up with interesting new features, they can
choose to share the features with other developers by adding
them to CampusOS. With more and more features added
into CampusOS, more complex campus applications can
be built, which will in turn attract more users and more
developers, thus forming an ecosystem.
Besides its open and extensible characteristics, Cam-

pusOS supports multiple computing platforms to better
adapt to the development and deployment of campus ap-
plications, including traditional PCs, smartphones, tablet
computers and web browsers. In the meanwhile, CampusOS
should protect the security and privacy of users’ data against
attackers and malicious campus applications.

2.2 Architecture
Figure 1 shows the hierarchical development architecture

of CampusOS. The bottom layer is the CampusOS Core
and the underlying implementations of the whole system.
This layer corresponds to the development of the CampusOS
system. The middle layer consists of service drivers on the
server side and the CampusOS SDK and service daemons on
the client side. This layer corresponds to the development
and extension of CampusOS features. The top layer is
based on the CampusOS SDK, including CampusStore and
campus applications. The development of various campus
applications belongs to this layer.
Just like SDKs in traditional operating systems, the Cam-

pusOS SDK is the key component that provides development
support for campus applications. To support multiple

Service

Daemon

Campus

Store

Campus

App

CampusOS SDK

Service Driver

CampusOS Core

Client

Server

System

Development

Feature

Development

Application

Development

Figure 1: The development architecture of Cam-
pusOS

Underlying Implementation

Service Driver Service Driver

VFS Dispatcher

Syscall over Network & Dispatcher

Network Communication

Network Communication

Syscall over Network

Service Interface Service Interface

Network

CampusOS SDK

CampusOS Core

……

……

Figure 2: The runtime architecture of CampusOS

computing platforms in CampusOS, the CampusOS SDK
supports multiple programming languages, such as C, C++,
Java, C#, JavaScript, etc.

For better extensibility, we adopt two abstractions that
are originated from traditional operating systems and use
them in CampusOS. One is the system call (syscall) and the
other is the virtual file system (VFS).

Figure 2 shows the hierarchical runtime architecture of
CampusOS. It illustrates the relation between the Cam-
pusOS SDK and the CampusOS Core. The top layer
consists of various service interfaces, which provide campus
applications with APIs for accessing various features. The
service interfaces invoke CampusOS syscalls, which are
encoded and passed to the CampusOS Core via network.

The CampusOS Core running on the server side accepts
syscalls, decodes and dispatches them accordingly. The VFS
layer maps service interfaces to their corresponding service
drivers. This mapping actually correlates feature invoca-
tions in campus applications to feature implementations in
CampusOS.

2.3 Feature Extension
In our design, CampusOS features are attached to VFS

nodes and accessed via syscalls. In this way, we achieve
the principle of extensibility. On the one hand, we provide
uniform interfaces for accessing different features in the
CampusOS SDK. On the other hand, we provide a general
approach to organizing different CampusOS features. In
short, syscall is the interface for VFS manipulation, i.e.,
actual CampusOS feature invocation.

Since all developers can contribute features to CampusOS,
we design four different approaches to service driver imple-

mentation, where syscalls are handled to extend CampusOS
features, to better adapt to the goal of extensibility. Dif-
ferent approaches correspond to different levels of isolation
between the service drivers and the CampusOS Core.

1. Service drivers can be statically linked into the Cam-
pusOS Core.

2. Service drivers can be dynamic libraries and loaded by
the CampusOS Core at startup.

3. Service drivers can be separate processes running on
the same server as the CampusOS Core.

4. Service drivers can also be hosted on separate virtual
machines or servers.

In the first three approaches, the service drivers share the
same runtime environment with the CampusOS Core, so the
service drivers should be audited and tested before actual
deployment. In Approaches 1 and 2, the service drivers share
the same virtual address space with the CampusOS Core, so
the services drivers should be tested more carefully to avoid
crashes, which will directly affect the CampusOS Core. In
the first approach, which has the lowest level of isolation,
service drivers can even access internal data structures of the
CampusOS Core. This approach is only used in a limited
number of features, such as session management. In our
design, the last approach, which has the highest level of
isolation, should be the main approach in which community
developers contribute features to CampusOS.
Based on the architecture of CampusOS shown in Figures

1 and 2, we summarize three patterns for feature implemen-
tation, which cover most common scenarios where features
of CampusOS are extended.

1. Features encapsulate existing services provided by
the third party, such as cloud storage service, social
network service, etc. This pattern is illustrated in
Figure 3(a) for cloud storage service.

2. Features involve data related to users, such as users’
location information. This pattern is illustrated in
Figure 3(b) for location service.

3. Features involve public data, such as campus news or
notifications. This pattern is illustrated in Figure 3(c)
for campus news service.

The difference between Figures 3(b) and 3(c) is that the
service daemon in Figure 3(b) runs on every CampusOS
user’s device and the crawler in Figure 3(c) only runs on
one server.

2.4 Security and Privacy Protection
In our design, we take a variety of measures to protect the

security of CampusOS and the privacy of user information.
Firstly, all the encoded syscall data transmitted over

network is tunneled through Secure Socket Layer/Transport
Layer Security (SSL/TLS). So user data is protected against
man-in-the-middle attack during transmission. User data
stored on the server is encrypted and can only be directly
accessed by the CampusOS Core and trusted service drivers,
i.e., service drivers that have lower levels of isolation to the
CampusOS Core.
We also design an access control mechanism, which is

based on application-specific passwords, for other service
drivers and campus applications to access user data with
permission. The authorization process works as the user
grants a subset of his/her privileges to a password and
delivers the password to a campus application. This process
can be applied when campus applications are installed from

CampusStore. The authentication process works reversely
as the campus application logs into CampusOS with the
password and exercises the subset of privileges granted to
the password on behalf of the user via certain service drivers.

More sophisticated mechanisms for protecting cooperative
privacy and colocation privacy are currently under research.
They can provide more fine-grained privacy protection than
this basic access control mechanism.

3. DISCUSSIONS AND RELATED WORK
In this section, we discuss challenges beyond our design,

relations and differences between CampusOS and traditional
operating systems and middleware, and related work.

3.1 Challenges
One major challenge in CampusOS involves its open

and extensible characteristics. Since many features in
CampusOS will be contributed by application developers
instead of system developers, how to test these features on
CampusOS without service downtime or broken functional-
ities is critical and very challenging.

As there are already many campus applications developed
and running, we need to consider how to migrate these
existing services and applications to CampusOS. Because
CampusOS is designed as an open community project, user
and developer involvement is critical to its success. How
to promote CampusOS in order to increase community
involvement can also become an imminent challenge once
the initial development and deployment are completed.

3.2 OS Evolution
Since the first working operating system was developed

on IBM mainframes, many operating systems have been
built in the last 50 years. However, ever since Windows
and Linux dominated the market, the main functionalities
and structures of traditional operating systems running on
single machines have kept unchanged for many years.

As we enter the Internet era, many people have proposed
to build an operating system for the “Internet as a com-
puter” concept. O’Reilly has proposed the idea of Internet
Operating System in 2010, arguing that an Internet OS
should contain new information subsystems and provide
higher levels of abstraction [7]. Although we have not
seen a working operating system for the entire Internet, we
have witnessed various approaches to developing operating
systems for software running on the Internet. For example,
TransOS [10] is proposed to manage the cloud from the view-
point of transparent computing. Urban OS [4] is proposed
as a software platform for accelerating the development and
deployment of urban technology and devices. HomeOS [3]
provides a centralized and holistic control of devices in the
home. CleanOS [9] uses trusted, cloud-based services to
limit exposure of sensitive data on Android. BOSS [2]
provides a set of operating system services which supports
applications on top of the distributed physical resources
present in large commercial buildings.

These “new” operating systems still provide basic key
functionalities similar to traditional operating systems, i.e.,
managing various resources and providing services to ap-
plications and/or users. In this sense, CampusOS is an
operating system serving the campus community, managing
campus-related data and resources, while providing devel-
opment and runtime support for campus applications.

Campus
App
Campus
App
Campus
App CampusOS

Cloud
Storage
Provider

Upload

Download

Syscall Request

Syscall Response

(a)

Campus
App
Campus
App

Campus
App

CampusOS

Location
Service

Daemon

Fetch Location

Update Location

(b)

Campus
News

Crawler

Campus
App
Campus
App

Campus
App

CampusOS

Fetch News

Update News

(c)

Figure 3: Patterns for CampusOS features

3.3 CampusOS vs. Middleware
Traditionally, middleware [1] is based on the operating

system kernel, providing a glue layer between the operating
system and applications. Although the boundary between
operating system and middleware is to some extent arbi-
trary, one could view CampusOS as a middleware system
when its dependence on traditional operating systems is
taken into consideration.
However, from a higher-level view, CampusOS is more

like an operating system, because its management of campus
data and services can be compared to the management of
various resources in traditional operating systems.

3.4 Centralized vs. Decentralized
The Internet is a huge decentralized network. Managing

data on the Internet in a centralized way is not possible.
However, data on university campuses is quite limited com-
pared with that on the Internet, so centralized management
is feasible and will save much time and effort for campus
application developers and users. Furthermore, we can also
manage decentralized Internet services, such as cloud storage
and social network, in a centralized manner.
In CampusOS, centralized management of data and ser-

vices conforms to the UNIX philosophy [8], like a monolithic
kernel. The modularity is achieved via the VFS abstrac-
tion and the unified syscall interface. The hierarchical
architecture also provides good separation and transparency
between campus applications and the underlying implemen-
tations of the whole system.

4. CONCLUDING REMARKS
In this paper, we argue that an operating system is

needed for applications targeting communities like university
campuses. We present our design of CampusOS, which aims
at providing an ecosystem that supports campus application
development, deployment and maintenance. In our design,
CampusOS is not restricted to being used in only one
university. It can span multiple universities and provide
a universal computing platform for general-purpose campus
applications. Operating systems similar to CampusOS can
be developed for organizations other than universities as
well.
With the development and prosperity of Internetware,

current operating systems and middleware systems should
collaborate to provide a common infrastructure to support
the development, deployment, execution and maintenance
of various Internet-based applications. While an Internet

OS that could manage all computers and computing envi-
ronments connected to the Internet may be too ambitious,
CampusOS can serve as one tiny case within such a big goal.

ACKNOWLEDGMENT
This work is supported by the National Basic Research
Program of China (973) under Grant No. 2009CB320703,
the High-Tech Research and Development Program of China
under Grant No. 2011AA01A202, and the National Natural
Science Foundation of China under Grants No. 61103026,
61121063, U1201252.

References
[1] Bernstein, P. A. Middleware: a model for distributed

system services. Commun. ACM 39, 2 (Feb. 1996), 86–
98.

[2] Dawson-Haggerty, S., Krioukov, A., Taneja, J.,
Karandikar, S., Fierro, G., Kitaev, N., and
Culler, D. BOSS: building operating system services.
In NSDI’13, pp. 443–458.

[3] Dixon, C., Mahajan, R., Agarwal, S., Brush,
A. J., Lee, B., Saroiu, S., and Bahl, P. An
operating system for the home. In NSDI’12, pp. 25–
25.

[4] Living PlanIT SA. The Urban Operating System.
http://living-planit.com/UOS_overview.htm.

[5] Mei, H., and Guo, Y. Network-oriented operating
systems: status and challenges. Scientia Sinica
Informationis 43, 3 (2013), 303–321. in Chinese.

[6] Mei, H., Huang, G., and Xie, T. Internetware: A
software paradigm for internet computing. Computer
45, 6 (2012), 26–31.

[7] O’Reilly, T. The State of the Internet Operating
System, 2010. http://radar.oreilly.com/2010/03/

state-of-internet-operating-system.html.

[8] Raymond, E. S. The Art of UNIX Programming.
Pearson Education, 2003.

[9] Tang, Y., Ames, P., Bhamidipati, S., Bijlani, A.,
Geambasu, R., and Sarda, N. CleanOS: limiting
mobile data exposure with idle eviction. In OSDI’12,
pp. 77–91.

[10] Zhang, Y., and Zhou, Y. TransOS: a transparent
computing-based operating system for the cloud. IJCC
1, 4 (2012), 287–301.

http://living-planit.com/UOS_overview.htm
http://radar.oreilly.com/2010/03/state-of-internet-operating-system.html
http://radar.oreilly.com/2010/03/state-of-internet-operating-system.html

	Introduction
	CampusOS Design
	Goal
	Architecture
	Feature Extension
	Security and Privacy Protection

	Discussions and Related Work
	Challenges
	OS Evolution
	CampusOS vs. Middleware
	Centralized vs. Decentralized

	Concluding Remarks

