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ABSTRACT
Detecting code clones in a program has many applications
in software engineering and other related fields. Recent
studies show that syntactic-based clone detection methods
could achieve better accuracy compared to token-based ap-
proaches. However, token-based methods have their advan-
tages because they are inherently language-independent and
highly scalable.
In this paper, we present Boreas, an accurate and scal-

able token-based approach for code clone detection. Boreas
introduces a novel counting-based method to define the char-
acteristic matrices, which are able to describe the program
segments distinctly and effectively for the purpose of clone
detection. We conducted experiments on JDK 7 and Linux
kernel 2.6.38.6 source code. Experimental results show that
Boreas is able to match the detecting accuracy of a recently
proposed syntactic-based detection tool Deckard, with the
execution time reduced by more than an order of magni-
tude.

1. INTRODUCTION
In software development, programmers frequently reuse

code fragments by copy-paste operations. Those code frag-
ments, which are similar or identical, are called code clones.
Code clones could bring many problems to the software sys-
tems [11]. For example, if many cloned instances exist in
a software system and a bug was found in the cloned code,
one need to find and fix all of them. It would produce un-
predictable results if inconsistent modifications are made to
these clones. According to [25], a significant part of large
software system source code is cloned, typically ranging from
7%-23%. If these code clones could be efficiently and accu-
rately detected, the problems they brought might be easily
solved or at least properly controlled.
Many code clone detection approaches have been pro-

posed in the literature. Generally, they can be classified
into four categories: textual approaches, token-based ap-
proaches, syntactic approaches and semantic approaches.
This classification is made according to the level of analysis
applied to the source code. For example, textual approaches
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[23] usually apply little transformation on the source code,
and the comparisons are made based on the raw source code.
Meanwhile, semantic approaches [15] use program depen-
dency graphs (PDGs) to represent the program, and the
clones are detected by finding isomorphic subgraphs of cor-
responding PDGs, which is an NP-complete problem.

The traditional belief is that more complicated approaches
would have better understanding about the structure of the
programs, so that they can identify code clones more accu-
rately. Although syntactic approaches could produce better
results compared to previous token-based work in general,
these high level approaches have many shortcomings. On
one hand, syntactic and semantic approaches normally re-
quire that the source code are syntactically correct or even
compilable, which makes them inapplicable to incomplete
code. On the other hand, high level approaches usually de-
mand more computation and storage resources. For exam-
ple, they need to construct abstract syntax trees (ASTs) or
PDGs, and perform other compiling-related tasks. During
this process, many intermediate data need to be recorded
for comparison.

Token-based approaches are inherently language-independ-
ent and low-cost. They work faster because they only need
to transform the source code into tokens, without the need to
construct ASTs or PDGs. They are more language-independ-
ent compared to higher-level approaches as they are much
easier to migrate to other languages. They also need less
resources because they process low level data, which in turn
makes them more scalable to large-scale software systems.
However, previous token-based approaches, which are mostly
based on the sequence of tokens and with variable names ig-
nored, have their own limitations. Because they are too
focused on tokens, they could easily lose the big picture,
thus typically they cannot detect those clones with swapped
lines or added/removed tokens.

In this paper, we propose a new token-based code clone
detection approach called Boreas, which introduces a novel
counting-based characteristic matrix definition to overcome
the shortcomings of traditional token-based techniques. The
key idea of Boreas is to collect characterizing information of
each variable, and represent them as Count Vectors(CVs).
For every code segment, variable information, such as how
and where they are used, reflects the features of the code seg-
ment. Each CV records only counting information without
variable names, such that we could easily deal with variable
renaming clones. However, we differentiate variables with
different names in the CVs collected, such that we could
provide a more accurate description of the program segment



compared to previous approaches that treat all identifiers
as the same. By combining all the CVs, Boreas composes
a Count Matrix(CM) to represent the characteristics of a
code fragment. In addition to variables, Boreas also gen-
erates CVs for both keywords and punctuations to better
characterize a code segment.
In order to compare the CMs and CVs effectively, Boreas

employs two different functions to calculate the similarities
between two code segments. Several optimizations are also
introduced during comparison to further speed up the de-
tecting process. As a language-independent approach, we
perform experiments on JDK and Linux source code, and
compare Boreas to a state-of-the-art approach Deckard. Re-
sults show that Boreas is able to match the clone detection
abilities of Deckard, while reducing the comparison time by
an order of magnitude.
This paper is organized as follows. In Section 2, we in-

troduce the background and related work of code clone and
previous techniques. In Section 3, we give an overview of
Boreas. The notion of Count Vector and Count Matrix is
introduced in Section 4, and we describe two similarity func-
tions and comparison method in Section 5. After that, we
introduce clone clustering techniques in Section 6. The ex-
perimental results are presented in Section 7, and we con-
clude with Section 8.

2. BACKGROUND AND RELATED WORK

2.1 Code Clones
Previous researchers have classified code clones into four

types based on textual and functional similarities [5,8,16]:

1. Type-1: Identical code fragments except for varia-
tions in whitespace, layout and comments.

2. Type-2: Syntactically identical fragments except for
variations in identifiers, literals, types, whitespace, lay-
out and comments.

3. Type-3: Copied fragments with further modifications
such as changed, added or removed statements, in ad-
dition to variations in identifiers, literals, types, whites-
pace, layout and comments.

4. Type-4: Two or more code fragments that perform
the same computation but are implemented by differ-
ent syntactic variants.

Type-1 and Type-2 are relatively simple cases, while Type-
3 is more difficult. A representative case of Type-3 is swap-
ping two adjacent lines in a program. Many detection tech-
niques cannot detect this scenario. For Type-4, it does not
require the code fragments to have any similar code, but
only the same computation, which seems out of the scope
of most clone detection research. Actually, Type-4 clone de-
tection problem is the same as proving the equivalence of
two programs, which is fundamentally undecidable.
In the context of this paper, we consider code clones as

code copied from the original copy, with or without minor
modifications. If there are more than a few modifications,
it becomes a derivation or innovation of the original, not a
clone. Thus we consider only code clones of Type-1, Type-
2, Type-3. Of course, Type-4 clones are inherently hard for
most techniques as well. To the best of our knowledge, no
existing approaches can detect Type-4 clones effectively.

2.2 Clone Detection Techniques

Most code clone detection techniques can be classified into
four categories [25]:

(1) Textual approaches (or text-based techniques) use lit-
tle or no transformation on the source code before the
actual comparison, and in most cases raw source code
is used directly in the clone detection process. Exam-
ples: SDD [19], NICAD [24], Simian1, etc.

(2) Lexical approaches (or token-based techniques) begin
by transforming the source code into a sequence of
lexical “tokens” using compiler-style lexical analysis.
The sequence is then scanned for duplicated subse-
quences of tokens and the corresponding original code
is returned as clones. Lexical approaches are generally
more robust over minor code changes such as format-
ting, spacing, and renaming than textual techniques.
Examples: Dup [2, 3], CCFinder [13], CP-Miner [20],
etc.

(3) Syntactic approaches use a parser to convert source
programs into parse trees or abstract syntax trees which
can then be processed using either tree matching or
structural metrics to find clones. Examples: CloneDr
[4], Deckard [10], CloneDigger [6], Semantic-web Based
Technique [26], Intermediate Representation [27], Tree
Kernel Based Technique [7], etc.

(4) Semantics approaches have also been proposed, using
static program analysis to provide more precise infor-
mation than simply syntactic similarity. In some ap-
proaches, the program is represented as a program de-
pendency graph (PDG). The nodes of this graph rep-
resent expressions and statements, while the edges rep-
resent control and data dependencies. Examples: Du-
plix [17], GPLAG [21], Incremental PDG Based Tech-
nique [9],etc.

Many new techniques have been proposed recently, focus-
ing on new applications such as instant search on large scale
systems [14, 18]. The trend shows that it is important to
investigate faster approaches that are able to scale to large
code bases.

2.3 Counting-based Approaches
Counting is a great idea for code clone detection, because

it makes the approach resistant to minor modifications of
programs, and produces a characteristic vector for each code
fragment, which simplifies the comparison process.

Deckard is one of the state-of-the-art tree-based algorithms
proposed by Jiang et al. [10], which computes certain charac-
teristic vectors to approximate structural information within
ASTs and then uses locality sensitive hashing (LSH) to clus-
ter similar vectors. It adopts the idea of counting, as the di-
mensions of the characteristic vectors are occurrence counts
of the relevant nodes.

Boreas collects counting information based on token streams
in a program, which is much more scalable and language-
independent. Since we do not need ASTs to obtain syntac-
tic information, Boreas is much faster than Deckard. Boreas
uses different granularity from Deckard, so the results pro-
duced by them are different.

Our previous studies have shown that counting-based tech-
niques could improve the accuracy of token-based clone de-
tection and are effective in some applications such as de-
tecting programming bugs and plagiarisms [28]. But it only
1http://www.redhillconsulting.com.au/products/
simian/
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Figure 1: An overview of Boreas

applies to Java and uses bipartite graph matching algorithm
to find clones, which is not scalable. Boreas adds a count
vector for keywords and punctuations to improve accuracy,
and uses two different similarity functions for comparison.
Besides, Boreas introduces Quick Separation and clustering
optimization to construct code clone clusters efficiently.

3. OVERVIEW
We first introduce the key idea behind the proposed ap-

proach, then present an overview architecture of Boreas.

3.1 Key Ideas
The key of a code clone detection approach is to generate

precise abstractions for each code fragment. After abstrac-
tion, code fragments can be compared efficiently, using a
variety of comparing or clustering techniques.
The high level approaches are proposed because researchers

want to dig into the internal structure or exact meaning
of the source code, which limits the running speed. Al-
though much faster than high level approaches, previous
token-based approaches did not fully utilize the informa-
tion obtained from the tokens. They usually focus on the
structure of the token sequence, such as the longest common
substring of sequences of two code fragments. However, the
exact positions of tokens are not that important, as the effect

of many programs will not change after swapping some state-
ments. Moreover, since most token-based techniques erase
the variable name information, the precision of description
of the original code fragment, using the token sequence, is
inherently limited.

As a token-based approach, Boreas matches the variables,
rather than matching sequences or structures. Using this
idea, the similarity of two code segments is decided by the
proportion of variables that could be matched based on their
characteristics.

We introduce the notion of Counting Environments(CE),
and use these CEs to describe the patterns of variables. A
count vector(CV) for one variable is a combination of oc-
currence counts in different CEs. Since each CV represents
one variable in the code fragment, by combining all the CVs
together, we build a count matrix (CM), which forms a com-
prehensive description of the code fragment.

We choose variable occurrences for three reasons. First, it
is easy to implement. Second, it does reflect the pattern of
variables: the description of being in one CE for many times
and never appear in another CE, does help us identify the
corresponding variable. Finally, which is the most interest-
ing and important, counting-based representation has high
tolerance to minor modifications, making Boreas effective on
type-3 clones [8], including clones made by swapping lines



doLog ( Level . FINE , ”UTIL .
c lassCastExcept ionInLoadStub ” ,
parameters , Uti lSystemException .

class , exc ) ;
}
return exc ;

}
public BADOPERATION

classCastExcept ionInLoadStub (
CompletionStatus cs ) {
return c lassCastExcept ionInLoadStub ( cs ,

null ) ;
}
public BADOPERATION

classCastExcept ionInLoadStub ( Throwable t
) {
return c lassCastExcept ionInLoadStub (

CompletionStatus .COMPLETEDNO, t ) ;

Figure 2: A typical mismatched clone found by Deckard

or adding/removing tokens, where most existing code clone
detection approaches were unable to detect effectively.

3.2 Overview of Boreas
The overall process of Boreas can be divided into six steps,

as shown in Figure 1. we first remove the strings, declara-
tions, and headers (Step 1), then extract blocks and state-
ments and identify three different kinds of tokens: the vari-
ables, keywords and punctuations (Step 2). In step 3, a CV
will be generated for each variable by counting the corre-
sponding occurrences in three different stages. In step 4,
CVs for keywords and punctuations are generated by count-
ing their total occurrences in the code fragment. In step 5,
CMs and CVs will be compared correspondingly, and the
similarity between two code fragments will be computed.
Finally, the blocks are merged into clone clusters.

3.3 Clone Granularity
Clone granularity is a very important feature for clone de-

tection techniques. Many clone detection approaches [1, 22]
choose natural program structures such as begin-end blocks
as the clone granularity. Because this kind of granularity
represents meaningful program structures, they are easy to
identify and could have more potential applications.
Other approaches might choose different granularities, which

could potentially produce much different clone results. For
example, Deckard [10] uses fixed number of AST nodes as
its granularity. ASTs help Deckard slice the programs into
pieces, with which the sliding window algorithm can be ap-
plied. However, this kind of granularity could produce mis-
matched clones, such as the one shown in Figure 2. Although
these kind of clones sometimes are useful in detecting bugs or
other special purposes, they are not useful in other activities
such as analyzing software systems, or detecting interesting
aspects.
In order to produce meaningful clones that have wide ap-

plications, Boreas chooses code blocks separated by natural
punctuation marks as the basic clone granularity. Larger
granularities such as methods and classes can also be formed
easily if necessary. The task of finding code fragments can
be as simple as choosing blocks (or larger pieces such as
methods and classes), which could be easily done during the
token scanning process.

4. COUNT MATRIX

4.1 Classification of the Counting Environments

As mentioned before, Counting Environments (CEs) are
used for describing patterns of variables, and play a key role
in Boreas. We divide the CEs into three stages, with each
stage providing a more concrete and distinct description for
the chosen variables .

The first stage, Näıve Counting, includes the used and
defined environments. The CEs of this stage are easy to
discover, because we only need to find the variables in the
code fragments, with little analysis. The variables that have
an “=” (or “+=”, “-=”, etc.) token right after them are
treated as being defined. If we use CEs from this stage
to construct Count Vectors for variables, two variables are
matched if they have similar“used”and“defined”occurrence
counts.

A slightly higher stage, In-statement Counting, includes
CEs that should be identified using information from the
statements in which the variable appears. For example, if
the statement starts with “if”, we know that this is a if-
statement, and the if-environment count of the correspond-
ing variable will be increased by 1. Other CEs include add-
environment (the variable is added), subtract-environment
(the variable is subtracted), call-environment (the variable
is a parameter in a procedure-call), subscript-environment
(the variable is an array subscript), etc. A statement might
satisfy the condition of one or more CEs, and a variable can
appear in different CEs simultaneously.

The third stage, Inter-statement Counting, involves some
environments that need the information of multiple state-
ments to identify. A typical example is the nested loop-level
of variable. That is, to decide the variable is in a first-level
loop, a second-level loop, or a deeper level loop. In this
case, we need to find out how many loops have included the
variable.

In our implementation, we choose the following CEs from
all the three stages:

Näıve Counting Stage:
The variable is used
The variable is defined

In-statement Counting Stage:
The variable is in an if-predicates
The variable is added or subtracted
The variable is multiplied or divided
The variable is an array subscript
The variable is defined by expression with constants

Inter-statement Counting Stage:
The variable is in a first-level loop
The variable is in a second-level loop
The variable is in a third-level loop (or deeper)

Although we only use CEs mentioned above in Boreas,
other well-defined CEs can also be included if they could
help represent the code segment more comprehensively.

To clarify, we do use some syntactic techniques while iden-
tifying CEs. However, the simple analysis involves only ba-
sic analysis without the construction of ASTs, so Boreas still
belongs to the category of token-based techniques.

4.2 Count Matrix for Blocks
Using m CEs, we can generate an m-dimensional CV for

each variable. But the variables are not easy to distinguish
only by names. To avoid syntactic analysis, we simply treat
all the variables with the same name as the same variable



Algorithm 1 Merge CM of One Block with Its Subblock

1: function Merge(fa, son, loopLevel)
2: AddKeyV(keyV [fa], keyV [son])
3: for i = 1 to variableTotal[son] do
4: pos = FindName(fa, variName[son][i])
5: if pos = NULL then
6: pos← NewVariableID(fa)
7: end if
8: AddStage1&2(CM [fa][pos], CM [son][i])
9: AddStage3(CM [fa][pos], CM [son][i], loopLevel)

10: end for
11: end function

in Boreas. This might become a limitation of Boreas, be-
cause in a large block, two different variables in different
sub-blocks may have the same name with different declara-
tion statements in the corresponding blocks. However, ac-
cording to our experimental results, variables with the same
name usually have similar functions, thus this simplification
is generally acceptable.
If a block contains n variables, the CM for the block will

have n lines, which correspond to the CVs of these n vari-
ables. CMs can be calculated in O(L+ knm) time, where L
is the code length of the block, and k is the number of sub-
blocks in the block. During the computation of CM for a
block, we compute the CMs of its sub-blocks and then merge
all of them. The merge step is not only add those matrices
together; CEs like loop-levels need to be re-computed dur-
ing merging, because sub-blocks might be in a for-loop of the
larger block. Besides, if there are variables declared inside
the sub-block, the size of CM might increase after merging.
See Algorithm 1 for details.

4.3 Count Vector for Keywords and Punctua-
tions

Like variables, keywords and punctuations (such as ‘[’,
‘]’, ‘+’, ‘*’, etc) may also have their own CMs and CEs.
However, there is a big difference: variables in different pro-
grams can have different names and the same functions, but
keywords and punctuations cannot. In other words, the key-
words and punctuations are easier to match during the com-
parison. Moreover, because it is unnecessary to design envi-
ronments for keywords and punctuations, we only count the
occurring times of keywords and punctuations, and produce
a single Count Vector for them.

5. COMPARISON
Because there are two kinds of vectors: CVs for variables

and CVs for keywords and punctuations, we choose different
similarity functions to compare them.

5.1 Cosine Similarity Function
Cosine similarity is a measure of similarity between two

vectors by measuring the cosine of the angle between them.2

The cosine of 0 is 1, and less than 1 for any other angles.
The cosine of the angle between two vectors thus determines
whether two vectors are pointing to roughly the same direc-
tion. Cosine Similarity is a perfect choice for comparing
Count Vectors, because CVs represent the patterns of vari-
ables, and the closeness of two variables can be approxi-
mated by the cosine of vectors in high dimensional spaces.

2http://en.wikipedia.org/wiki/Cosine_similarity

For two vectors a and b with the angle α between them,
their cosine similarity is defined as

CosSim = cos(α) =
a · b
||a||||b|| =

∑m
i=1 ai × bi√∑m

i=1 a
2
i ×

√∑m
i=1 b

2
i

A drawback of the cosine similarity function is that if two
vectors with different lengths pointing to the same direc-
tion, their cosine similarity will be 1. Boreas also multiplies
the cosine similarity with the quotient of the length of the
shorter vector dividing the length of the longer one to get
the final similarity such that vectors with different lengths
will have similarity less than 1.

5.2 Proportional Similarity Function
In order to compare the CVs of keywords and punctua-

tions, we need to choose a different similarity function, be-
cause intuitively one dimension of the CV here, which rep-
resents a keyword or symbol, deserves more weight than one
dimension of the CV in the CM, which represents only 1/m
fraction of one variable.

Given two numbers, what is their similarity? The most
natural idea is to use the smaller one to divide the big-
ger one. However, sometimes certain keyword occurs in one
code fragment but not in the other, which means the corre-
sponding pair of occurrence counts of this keyword will be
a non-zero number and zero. In this case, the similarity will
be zero, which is not acceptable, because after multiplica-
tion with other similarities, it will make the final similarity
of two blocks become zero.

Boreas uses an improved proportional similarity function
to prevent incorrect zero similarity. Given two occurrence
counts a and b(a >= b), their proportional similarity is de-
fined as

ProSim =
1

a+ 1
+

b

a+ 1

If a equals to b, their ProSim will be 1; if b equals to 0,
their ProSim will be 1/(a+1), which continually approaches
zero as a grows (which means the difference between a and
b grows).

5.3 Calculating Similarity
The similarity of two blocks is the product of the simi-

larity of their CVs of the keyword and punctuations, and
the similarity of their CMs. The similarity of CVs is com-
puted using the proportional similarity function, while the
similarity of CMs relates to the matching of the variables.

In our previous work, we use Bipartite Graph Matching
to compute the similarity of CMs. This is a straightforward
idea, because each variable of one block can be matched to
only one variable of the other block, and we should pick the
matching with minimum total matching cost (or maximum
total matching similarity). However, the O(n3) time com-
plexity of the matching algorithm is unacceptable. In this
paper, we choose a fast and mostly accurate algorithm to
make Boreas scalable.

The solution, described in Algorithm 2, is to sort the vari-
ables according to their used frequencies, and then try to
match each variable a of block A to those variables of block
B whose ranks are close to the rank of a. Duplicated matches
are allowed, that is, although every variable of block A must
match exact one variable of block B, there are no such re-
strictions on the variables of block B. This greatly simpli-
fies the implementation and computation of the comparison:



Algorithm 2 Find Clones for Block A

1: function FindSimilar(a)
2: for i = 1 to blockTotal do
3: if (line[a] < miniLine)

∨
(line[i] < miniLine)∨

(Abs(lines[a]− lines[i]) > lineDif)∨
(Abs(variables[a]− variables[i]) > variDif)∨
(QuickSep(a, i, variAttr, variSep)) then

4: return
5: end if
6: dif ← PropDif(lines[a], lines[i])
7: dif ← dif ∗ PropDif(varibles[a], variables[i])
8: for j = 1 to keyTotal do
9: dif ← dif ∗ PropDif(keyV [a][j], keyV [i][j])
10: end for
11: for j = 1 to variableTotal do
12: best← 0
13: for k = j − range to j + range do
14: if (validNum((k))

∧
(VecDif(CM [a][j], CM [i][k]) > best) then

15: best← VecDif(CM [a][j], CM [i][k])
16: end if
17: end for

18: dif = dif ∗ best

similarity
19: end for
20: if dif > stdThres then
21: Clustering(a, i)
22: end if
23: end for
24: end function

Algorithm 3 Quick Separation for Two Blocks

1: function QuickSep(a, b, attr, minSep): boolean
2: for i = 1 to attributeSize do
3: if (Abs(attr[a][i]− attr[b][i]) > minSep[i][0])∨

(attr[a][i]/attr[b][i] > minSep[i][1])∨
(attr[b][i]/attr[a][i] > minSep[i][1]) then

4: return true
5: end if
6: end for
7: return false
8: end function

we only need to search a small range of variables for each
variable of block A, and pick up the most similar one as
the similarity value for each variable, and then compute the
product of these similarities. According to our experimental
results, this simple algorithm is both fast and accurate.

5.4 Optimization: Quick Separation
Since we use count matrices instead of vectors to represent

the blocks, many previous techniques for fast comparison or
clustering can not be applied here. Meanwhile, quadratic
pairwise comparisons are computationally expensive, so we
introduce an optimization heuristic called Quick Separa-
tion.
The basic idea behind Quick Separation is that if two

blocks are similar, most of their attributes will not differ
much. Typically, these attributes include the total lines, the
total number of variables, the maximum used times of vari-
ables, the total occurrence counts of keywords, etc. These
attributes will not be affected much with minor modifica-
tions, and thus are typically stable. If two blocks are “very

different” in one attribute, we will mark them as not similar,
and finish comparison early.

The meaning of“very different”includes two aspects. First,
the two numbers should not differ by a large constant (e.g.
15), such that 35 and 20 will be regarded as “very differ-
ent”. Second, the two numbers should not differ by a large
ratio (for example 1.5), so 8 and 4 will be regarded as “very
different”. The algorithm is given in Algorithm 3.

Thus, for every attribute, there will be two thresholds:
the constant and the ratio. These thresholds need to be
set carefully, because if the gap is too large, few pairs are
rejected and the heuristic has little effect. Meanwhile, if the
gap is too small, some pairs that are actually similar would
be rejected at the beginning.

In our experiments, the thresholds are pre-determined us-
ing a training phase. We first set a wide gap and then grad-
ually shorten the gap as long as Quick Separation has very
little effect on the final results. The pre-determined thresh-
olds are trained with Java, however they are also proved
effective for C in our experiments.

At first glance, Quick Separation does not improve the
running speed of Boreas much, as each pair of blocks is still
processed. However, Boreas improves it by sorting all the
blocks according to the number of their variables. Since
the number of variables is an important attribute used in
Quick Separation, every block will only compare with those
blocks located near it, which has similar number of vari-
ables. Thus, the running complexity becomes O(tn), while t
is a parameter related to the threshold of Quick Separation,
which equals to the number of nearby blocks for each block
in terms of total variables.

6. CLONE CLUSTERING
Similar to many other clone detection approaches, Boreas

also use clone clusters to represent the clone detection re-
sults. In Boreas, we require that all clusters must be disjoint
sets, because they have very efficient merge operations.

As a result, each cluster can appear in only one cluster. If
one block is similar to blocks in two (or more) clusters, we
will choose to either merge the two clusters or keep them sep-
arated in different clusters, according to the algorithms de-
scribed below. Moreover, because the clustering process re-
quires comparing the similarities of every pair of code blocks,
we also want to improve the clustering cost by reducing the
number of comparisons between blocks.

6.1 Clustering Algorithm
Boreas introduces a cluster average metric to describe the

representative features of each cluster, which is the aver-
age value of a selected set of important attributes of all the
blocks inside the cluster. Initially, each cluster has only one
block in it, so the cluster average is represented as the at-
tributes of this block. After merging two clusters, the cluster
average of the new cluster will be computed as the weighted
(based on their sizes) average of the two cluster averages.

Algorithm 4 shows the algorithms related to cluster aver-
ages. When we identify two similar code blocks, a and b, we
will attempt to merge their respective clusters. The quick
separation method described earlier is applied to compare
their cluster averages. (Note that the separation thresholds
used here are stricter than those used for block comparison.)
If they can not be quickly separated, we will merge them,
and calculate the new cluster average for the merged clus-



Algorithm 4 Block Clustering

1: function Clustering(a, b)
2: a←FindFather(a)
3: b←FindFather(b)
4: if (a = b)

∨
(QuickSep(a, b, clustAvgAttr, clustSep)) then

5: return
6: end if
7: father[b]← a
8: size[a]← size[a] + size[b]
9: AdjustClusterAvgAttribute(a, b)

10: end function

ter. Otherwise the two blocks will be kept in their respective
clusters (i.e., they are not considered clones of each other).

6.2 Clustering Optimization: Merge Twice
Ideally, all the code blocks in a clone cluster are similar to

each other. However, because similarity is not always transi-
tive, two blocks similar to the same block could be dissimilar.
Due to this constraint, many potential large clusters will be
split into much smaller ones in practice. On the other hand,
if we add a block to a cluster when the block is similar only
to one block in the cluster, the final cluster would be very
large, and contain essentially different blocks.
If we transform the cluster into a graph that each code

fragment is represented as a vertex, and we link two vertices
if the corresponding code fragments are clones, we can use
connectivity in graph theory to represent the overall similar-
ity in a clone cluster.
For a cluster, if the connectivity of its corresponding graph

is k, we say this cluster is k-connected. If in the cluster,
all n blocks are similar to each other, this cluster is n–1-
connected; if there exists some block that has only one clone
in the cluster, this cluster is considered as 1-connected. We
could set the k value to acquire clone clusters with different
connectivities. Thus, in order to add a block to a certain
cluster, we only need to find k similar blocks.
Boreas introduces an optimization called Merge Twice,

which essentially requires the connectivity be set to at least
2. During clustering, if current block has found two similar
blocks, further comparisons for this block will not be con-
ducted. In this way, the clusters will be at least 2-connected,
but in practice the connectivities of the final clusters are
much larger than 2. Experimental results show that this
optimization could reduce the clustering cost significantly,
without affecting the clustering results.

7. EXPERIMENTAL RESULTS
In this section, we evaluate Boreas in terms of four aspects:

scalability, clone quantity, clone quality, and clone clusters.
We have implemented Boreas in C++, and use the same

scanner generated by lex to process both Java and C/C++
code. It can be easily migrated to other languages. We
use the source code of Java SE Development Kit 7 (7,492
files, 2,260,946 LoC) and Linux kernel 2.6.38.6 (35,856 files,
10,068,963 LoC) as the test data. The experiments were
conducted with Core 2 Duo CPU T9400 and 6GB DDR3
RAM on Ubuntu 11.04.
In our implementation, we set range = 5,miniLine = 5

(see Algorithm 2). That means, each variable in the Count
Matrix will be compared with 11 variables (from j − 5 to
j+5), and only those blocks with at least 5 lines will be com-
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Figure 5: Setup time of Boreas (using different settings)
and Deckard on JDK and the Linux kernel

Table 1: Space requirements

JDK Linux

Boreas 52MB 249MB
Deckard 378MB 5120MB

pared. For Count Vectors of keywords and punctuations, we
construct a 34 dimension vector, including all representative
keywords and punctuations.

We use three different stages of CEs in the experiments:
Näıve Counting Stage, In-statement Counting State and Inter-
statement Counting Stage. Higher level stage also includes
CEs of the lower level stages. These three stages may also be
combined CVs of keywords and punctuations (represented
as “+key”). However, Näıve Counting Stage has compara-
tively poor performance, so we only keep the Näıve Counting
Stage without CVs of keywords and punctuations, which is
the simplest version of Boreas. Hence, we evaluated a total
of five versions of Boreas.

In the experiments, we use Deckard 1.2.1 for comparison.
The parameters of Deckard were set as mint = 50, stride =
2, which are the default parameter settings of Deckard and
also the settings used in the paper [10]. We notice that
Deckard is sensitive to the parameter stride; different strides
may produce very different answers. However, it is ex-
tremely time-consuming to attempt all possible strides, and
will also bring much more false positives, so we only compare
with the default parameter settings of Deckard.

Deckard uses a different similarity function from Boreas,
which makes precise comparison impossible. According to
our observation, the proper similarity range for Deckard is
[0.95, 1.0], because both false positive rate and running time
of Deckard become unacceptable when the similarity is be-
low 0.95. For Boreas, similarity can be set to as low as
0.8. Thus, the similarities of two approaches can not be
directly compared. Although we represent experimental re-
sults based on similarities, we want to put emphasis on the
trends of different aspects of the two approaches.

Many other recent clone detection techniques have shown
satisfactory results, such as CC-Finder [12], CP-Miner [20]
and CloneDR [4]. However, since Deckard has compared
with the previous techniques including CloneDR and CP-
Miner, we only compare Boreas to Deckard in this paper.

7.1 Scalability
We investigate the scalability of Boreas in terms of its

running time and space requirements. The running time of
Boreas is split into two parts: setup time and comparison
time. The setup time is the time consumed by Boreas to per-
form lexical analysis, and compute CMs and CVs; the com-
parison time is the time consumed by comparison. Deckard
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Figure 3: Comparison time of Boreas (using different settings) and Deckard on JDK and the Linux kernel (Note: The vertical
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Figure 4: Cloned LoC found by Boreas (using different settings) and Deckard on JDK and the Linux kernel (Note: Only
unique lines are counted here)

also has vector generation period and vector clustering pe-
riod, so we compare them correspondingly.
Comparison time is shown in Figure 3. As expected,

Boreas is much faster than Deckard, especially for JDK.
Boreas uses less than 3 minutes to process JDK, and less
than 3 hours to process the Linux kernel. As a matter of
fact, when similarity = 0.95, Deckard failed to produce re-
sults for the Linux kernel in more than 24 hours.
In Figure 3, the Näıve Counting Stage has decreasing run-

ning time as similarity decreases. It is because the Merge
Twice is very effective. In the Näıve Counting Stage, when
similarity decreases, it becomes easier for Boreas to find a
match, and jump out of the loop. So the running time is not
always growing.
We compare the setup time for each scenario in Figure

5. Higher level stages usually require more setup time be-
cause they perform more analysis on the source code. But
the setup times are in general stable for different versions
of Boreas. Deckard uses different parsers for different lan-
guages (which is not language-independent), and apparently
the parser for Java is very slow. In both cases, the setup
time of Deckard is significantly longer than the setup time
of Boreas, because it requires to construct ASTs, which is
much more time consuming.
As another indication of scalability, we compare the space

requirements of Boreas and Deckard in Table 1. The source

code of Linux kernel is only 401 MB, but Deckard requires
5 GB temporary files, which is much more than the require-
ment of Boreas (249 MB).

7.2 Clone Quantity
We measure the clone quantity by counting the number

of lines of code (LoC) within the detected cloned code frag-
ments. In the Deckard paper [10], LoC are counted for all
cloned pairs, which results in some code fragments to be
counted for multiple times if they belongs to code clone pairs
of different sizes. As a result, Deckard reports 1,943,777
cloned LoC from JDK 1.4.2, which has only 2,418,767 LoC
(which means that more than 80% of lines are cloned). We
believe this counting method for computing LoC is not rea-
sonable, so we choose to count the Unique Cloned LoC, that
is, each line of the code will be counted for only once, no
matter how many times they appear in the identified clones.
In this paper, “LoC” always represents unique cloned LoC.

Moreover, we found a large proportion of the clones iden-
tified by Deckard is trival, including self-clones and import
or package clones. Here, self clones refers to two code frag-
ments having a large shared fragment, and they are reported
as clones because Deckard found that their shared fragment
is “similar”. Since they actually refer to the same code frag-
ment, they are not clones (so called self clones). Import or
package clones are those clones consisting of only “import”



Table 2: False positive rates for different techniques
In-statement Inter-statement

JDK Näıve no key key no key key Deckard

1.00 2% 0% 0% 0% 0% 0%
0.99 8% 0% 0% 0% 0% 0%
0.98 25% 0% 0% 0% 0% 4%
0.97 36% 0% 0% 0% 0% 3%
0.96 40% 0% 0% 0% 0% 14%
0.95 66% 0% 0% 0% 0% 34%
0.90 90% 0% 0% 0% 0% -
0.85 89% 7% 6% 4% 9% -
0.80 89% 20% 26% 20% 19% -

Linux Näıve no key key no key key Deckard

1.00 0% 0% 0% 0% 0% 0%
0.99 28% 1% 0% 0% 0% 0%
0.98 56% 3% 0% 0% 0% 5%
0.97 68% 3% 0% 0% 0% 10%
0.96 65% 5% 0% 1% 0% -
0.95 76% 6% 3% 5% 3% -
0.90 89% 10% 5% 10% 11% -
0.85 94% 20% 15% 22% 27% -
0.80 95% 40% 36% 37% 45% -

and “package” statements (mainly in JDK). While they are
indeed clones, they do not have any practical implications.
Since Boreas does not include these kinds of clones, we per-
form a post-process to remove all the self-clones and import
or package clones from the results of Deckard. According
to our calculation, about 36% Cloned LoC in JDK and 50%
Cloned LoC in the Linux kernel produced by Deckard are
trival.
The comparison of identified clone LoCs is shown in Figure

4. As mentioned before, since Boreas and Deckard use differ-
ent granularities, Deckard produces clones with mismatched
brackets, which Boreas does not produce. Only about 12%
Cloned LoC in JDK and 18% Cloned LoC in the Linux ker-
nel produced by Deckard are matched clones. So we show
two cloned LoC results for Deckard: one with mismatched
clones, and another without. In both cases, we removed the
self clones and import/package clones from the Deckard re-
sults. In both JDK and Linux, Deckard finds more clone
lines than Boreas when counting mismatched clones. How-
ever, when mismatched clones are removed, Boreas can find
more clone lines than Deckard in JDK, while the two meth-
ods are very close in Linux. This shows that when comparing
blocks or methods to detect clones, Boreas performs at least
as effective as Deckard.
But cloned LoC can be deceptive sometimes. For exam-

ple, in both Figure 4(a) and Figure 4(b), the Näıve Counting
version of Boreas has found the most LoCs. However, most
clones it found are false positives, which we will discuss in
the next subsection. Taking clone quality into consideration,
we will later find that cloned LoC of higher level stage ver-
sions of Boreas are more reliable, which is also comparable
to cloned LoC of Deckard.

7.3 Clone Quality
Although clone quality is also an important metric, it is

very difficult to measure the false positive rates automat-
ically. Instead, we use manual inspection to detect false
positives. For each set of results, we randomly picked 100
cloned pairs and inspected them manually. Due to the small
set of samples inspected3 , this false positive rate might not

3We have investigated more than 9,000 cloned pairs. All of

Table 3: Number of clusters found by Boreas and Deckard

Boreas(simi=0.9) JDK Linux
inter-statement 123 423

inter-statement+key 114 355

Deckard(simi=0.97) JDK Linux
With mismatched 111 829

Without mismatched 67 551

be very accurate, but it could still reflect the clone quality
of the corresponding technique to some degree.

The numbers of false positives are presented in Table 2.
We can see that Näıve Counting has the highest false pos-
itive rate; and the false positive rates of different versions
will grow when similarity decreases. The results show that
Boreas is able to maintain a relative low false positive rate
(<10%) when similarity is as low as 0.90 (0.85 for JDK),
while the false positive rate of Deckard reaches above 10%
when similarity is lower than 0.96. Thus when comparing
the numbers of cloned lines in the previous subsections, we
also need to consider the false positive rates at different sim-
ilarity settings.

7.4 Clone Clusters
Next we inspect the clone clusters found by Boreas. In

order to remove the trivial clones, we only consider clusters
with at least 10 clones.

Boreas is able to identify 114 clone clusters from JDK and
355 clusters from the Linux kernel (using Inter-statement
+key, similarity = 0.90). Based on our manual inspection,
most of the clusters are correct. Moreover, Boreas is able
to find large clones, which could be potentially more useful.
For example, 6 clusters with at least 100 clones are identi-
fied from JDK, with the largest one containing 491 cloned
blocks4.

As Deckard also produces clone clusters, we should be able
to compare the clustering results. However, Deckard is able
to produce significantly more clone clusters due to self-clones
and mismatched clones. If we remove these kinds of clone
clusters, we found that Boreas could identify more clusters
than Deckard on JDK, and comparable number of clusters
on Linux (See Table 3).

In the meantime, the clusters found by Boreas are more
meaningful and interesting because they are bounded by
natural boundaries such as brackets. Since all the code frag-
ments in the same cluster are performing similar functions,
it might be of future interests to analyze the design patterns,
or find aspects within these clusters.

7.5 Effects of Optimizations
In this subsection, we investigate the effect of our opti-

mization heuristics using two scenarios. Scenario A includes
the whole JDK source files, and Scenario B includes the first
1000 JDK source files. We run Boreas on these scenarios,
with similarity = 0.85.

From the table, Merge Twice improves 20%-50% of the
running time, and Quick Separation improves about 100X
of the running time. Without Quick Separation, Boreas even
fails to produce the result within one hour for Scenario A.

them with fragment ID and label (true or false) are available
on our website http://www.callowbird.com/boreas.html.
Anyone can download them and inspect it.
4We also put the information and source code of the identi-
fied large clusters on our website.



Table 4: Experimental results of Boreas with and without
the optimization heuristics

QSep Twice CTime Clusters Max LOC

Scenario A yes yes 68.5s 869 491 339517
yes no 83.0s 868 491 339564
no yes >60min - - -
no no >60min - - -

Scenario B yes yes 1.6s 155 179 39563
yes no 2.5s 155 179 39563
no yes 131.7s 135 373 42814
no no 155.1s 129 613 42904

Meanwhile, The results produced (such as clusters and LoC)
are not significantly affected.
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8. CONCLUSION
In this paper, we propose a new approach called Boreas

for detecting code clone clusters. Boreas introduces a novel
counting-based characteristic matrix to represent the pat-
terns of variables, keywords and punctuations. With two
fast similarity functions and optimization heuristics, Boreas
is able to perform faster clone detection than previous ap-
proaches. The experimental results show that Boreas is able
to match the clone detection capability of by one of the
state-of-the-art approach Deckard with much faster execu-
tion time.
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