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Abstract—This paper introduces CMCD, a Count Matrix
based technique to detect clones in program code. The key
concept behind CMCD is Count Matrix, which is created
while counting the occurrence frequencies of every variable
in situations specified by pre-determined counting conditions.
Because the characteristics of the count matrix do not change
due to variable name replacements or even switching of state-
ments, CMCD works well on many hard-to-detect code clones,
such as swapping statements or deleting a few lines, which
are difficult for other state-of-the-art detection techniques. We
have obtained the following interesting results using CMCD:
(1) we successfully detected all 16 clone scenarios proposed by
C. Roy et al.; (2) we discovered two clone clusters with three
copies each from 29 student-submitted compiler lab projects;
(3) we identified 174 code clone clusters and a potential bug
from JDK 1.6 source files.

Keywords-Code clone detection; count matrix; bipartite
graph matching

I. INTRODUCTION

In software development, it is common to reuse some code

fragments by copying with or without minor modifications.

This kind of code fragments are called code clones. Code

clones are shown to be harmful in software maintenance

and evolution [11]. However, studies show that a significant

amount (typically ranging from 7%-23%) of code is cloned

in large software system [21], [20], [7]. Thus, it is important

to detect the clones in the source code accurately, which

requires a great deal of work. Besides, as some code clones

are not exact copy of the original one, comparing their

similarity and discrepancy will help both programmers and

researchers in program understanding, code quality analysis,

or bug detection. A more serious problem is code plagiarism,

which often occurs in educational environment or relates

to legal cases. Therefore, detecting code clones is both

important and worthwhile in many fields.

Many clone detection approaches have been proposed in

the literature. Roy et al. proposed scenario-based evaluation

to compare almost all existing clone detection techniques

in [23]. They presented four kinds of scenarios. Among

them, Scenario 1 is the easiest, while Scenario 4 is the

hardest, which is related to switching statements, deleting a

few lines, and other minor changes. Based on their evalua-

tion, every known technique has its limitation in discovering

clones in certain scenario, especially in Scenario 4.

This paper presents a new Clone Detection algorithm

based on Count Matrix (CMCD) that could successfully

detect all the scenarios mentioned in the above paper (includ-

ing the hardest Scenario 4). The key idea of CMCD is the

language-independent Count Matrix, which can accurately

model the uniqueness of a code fragment, while achieving

both high accuracy and low false positive rate.

In the proposed technique, we use Count Matrix (CM)

to represent the characteristics of a code segment. A CM

is composed of n Count Vectors (CVs), while n is the

number of variables in the code segment. A CV represents

the occurrence counts of a certain variable in different cir-

cumstances. For instance, a CV will record how many times

the variable is used, defined, multiplied and called in the

given code segment. Different variables will have different

CVs since their occurrence counts in different circumstances

usually differ. By comparing the matrix using bipartite graph

matching algorithm, we can obtain the similarity between

different code segments.

Our algorithm has two major advantages. First, CMCD is

language-independent because it depends only on variable

counts. In this paper, we choose Java as the working

language to illustrate our approach, but the algorithm can

be easily adapted to almost all high-level programming

languages as well. Second, CMCD can detect clones ob-

tained by switching statements, adding or removing a few

lines, and other minor changes both in structure and in

context. Previous evaluations have shown that these clones

are difficult to detect for the state-of-the-art techniques.

CMCD can deal with methods as small as three to five

statements, and false positives are rare in our experiments.

Since we simply count the occurrence time of each variable,

rather than analyzing the interior structure of the code

specifically, it is not surprising that the execution time of

the proposed approach is relatively short compared to other

syntactic approaches.

In our experiments, we will show that CMCD not only

works perfectly in the scenario-based tests, but also highly

practical in real world applications. The results we have

achieved so far include: (1) we successfully detected all 16

clone scenarios proposed by C. Roy et al.; (2) we discovered

two clone clusters with three copies each from 29 student-

submitted compiler lab projects; (3) we identified 174 code
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clone clusters and a potential bug from JDK 1.6 source files.

II. BACKGROUND AND RELATED WORK

A. Clone Types

Previous researchers classified the code clones into four

types based on both the textual and functional similarities,

which are two main kinds of similarity between code frag-

ments [5], [8], [15]:

1) Type-1: Identical code fragments except for variations

in whitespace, layout and comments.

2) Type-2: Syntactically identical fragments except for

variations in identifiers, literals, types, whitespace,

layout and comments.

3) Type-3: Copied fragments with further modifications

such as changed, added or removed statements, in

addition to variations in identifiers, literals, types,

whitespace, layout and comments.

4) Type-4: Two or more code fragments that perform the

same computation but are implemented by different

syntactic variants.

Type-1 and Type-2 are relatively simple cases, while

Type-3 is more difficult. A representative case of Type-3

is swapping two adjacent lines of a program, and many

detection techniques cannot find that they are similar. We

believe it is the hardest case of code clone detection. For

Type-4, it does not require the code fragments to have

any similar code, but only the same computation, which

seems out of the scope of most clone detection research.

Actually, Type-4 clone detection problem is same as proving

the equivalence of two programs, which is fundamentally

undecidable.

In the context of this paper, we consider code clones as

code copied from the original copy, with or without minor

modifications. If there are more than a few modifications,

it becomes a derivation or innovation of the original, not a

clone. This is the base ground of this paper: we consider only

code clones of Type-1, Type-2, Type-3. Of course, Type-4

clones are inherently hard for most techniques as well. To

the best of our knowledge, there is no existing approach can

detect Type-4 clones effectively.

B. Clone Detection Techniques

There are mainly four types of code clone detection

techniques [23]:

(1) Textual approach: Textual approaches (or text-based

techniques) use little or no transformation on the

source code before the actual comparison, and in most

cases raw source code is used directly in the clone

detection process. Examples: SDD[17], NICAD[22],

Simian1, etc.

(2) Lexical approach: Lexical approaches (or token-based

techniques) begin by transforming the source code into

1http://www.redhillconsulting.com.au/products/simian/

a sequence of lexical “tokens” using compiler-style

lexical analysis. The sequence is then scanned for du-

plicated subsequences of tokens and the corresponding

original code is returned as clones. Lexical approaches

are generally more robust over minor code changes

such as formatting, spacing, and renaming than textual

techniques. Examples: Dup[2], [3], CCFinder[13], CP-

Miner[18], etc.

(3) Syntactic approaches: Syntactic approaches use a

parser to convert source programs into parse trees

or abstract syntax trees which can then be pro-

cessed using either tree matching or structural metrics

to find clones. Examples: CloneDr[4], Deckard[10],

CloneDigger[6], etc.

(4) Semantic approaches: Semantics-aware approaches

have also been proposed, using static program anal-

ysis to provide more precise information than simply

syntactic similarity. In some approaches, the program

is represented as a program dependency graph (PDG).

The nodes of this graph represent expressions and

statements, while the edges represent control and da-

ta dependencies. Examples: Duplix[16], GPLAG[19],

etc.

C. Scenario-based Evaluation

In the survey paper by Roy et al. [23], they proposed

a qualitative approach called scenario-based evaluation to

compare and evaluate almost all well-known existing clone

detection techniques, which includes both classical and

state-of-the-art techniques. Actually, they tried to present

benchmarks for clone detection techniques, by taking a

predictive, scenario-based approach. They designed a small

set of hypothetical program editing scenarios representative

of typical changes to copy/pasted code in the form of a top-

down editing taxonomy.

It seems difficult at the first glance to “choose” some

scenarios to be test cases to evaluate all the techniques, for

there are so many aspects need to be checked and compared.

However, there are mainly four kinds of scenarios, and some

kinds of scenarios are inherently difficult for certain clone

detection techniques. Thus, the scenarios actually represent

typical obstacles for the clone detection techniques, rather

than being specific invariable benchmarks. Generally, Sce-

nario 1 adds or deletes some irrelevant characters, such as

spaces or comments. Scenario 2 makes small differences

such as changing the names of variables, or swapping

the positions of two variables. Scenario 3 deletes some

statements, or changes the call of procedure. Scenario 4

swaps two statements of the code fragment. Figure 1 shows

examples of different scenarios.

Given the formal definition of each scenario, Roy et

al. [23] compared the performance of each clone detection

techniques in each scenario. The results show that Scenario

1 is the easiest one, while scenario 4 is hard for most
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void sumProd(int n) {

float sum=0.0; 

float prod =1.0; 

for (int i=1; i<=n; i++)

{ sum=sum + i; ’

prod = prod * i;

foo(sum, prod); }}

void sumProd(int n) {

float sum=0.0; //C1

float prod =1.0;

for (int i=1; i<=n; i++) {

sum=sum + i;

prod = prod * i;

foo(sum, prod); }}

void sumProd(int n) {

float sum=0.0; //C1

float prod =1.0;

for (int i=1; i<=n; i++)

{ sum=sum + i;

prod = prod * i;

foo(sum, prod); }}

void sumProd(int n){

float =0.0; //C1

float =1.0;

for (int )

{

foo( ); }}

void sumProd(int n){

float =0.0; //C1

float =1.0;

for (int )

{

foo( ); }}

void sumProd(int n) {

float sum=0.0; //C1

float prod =1.0;

for (int i=1; i<=n; i++)

{ sum=sum + i;

prod = prod * i;

foo(sum, prod, ); }}

void sumProd(int n) {

float sum=0.0; //C1

float prod =1.0;

for (int i=1; i<=n; i++)

{ sum=sum + i;

prod = prod * i;

}}

void sumProd(int n) {

float sum=0.0; //C1

float prod =1.0;

for (int i=1; i<=n; i++)

{

foo(sum, prod); }}

void sumProd(int n) {

float sum=0.0; //C1

float prod =1.0;

{ sum=sum + i;

prod = prod * i;

foo(sum, prod);

}}

Figure 1. Taxonomy of editing scenarios for different clone types.

techniques. No existing techniques can perform very well

in all the given scenarios.

III. APPROACH

During the process, we first split the source code into

classes, and then split classes into methods. Using a lexical

analyzer, we can obtain the count matrix (CM) for each

method. Based on the CMs, we will construct a bipartite

graph for two methods, and do bipartite graph matching

on the graph. Similarity between two methods is closely

related to the size of the matching. Using the similarities

between methods, the similarity between classes can be

easily calculated using the same method. A false positive

elimination step is performed after matching to eliminate

some obvious false positive cases based on heuristics. In the

end, methods or classes with strong similarities are detected

as clones.

A. Main Idea

One of the key ideas behind our approach is to avoid

using syntactic properties (such as structure, data flow,

etc.) of the program, because they are both complex to

analyze and difficult to compare. As we have seen, using

certain fixed syntactic properties of the program may prevent

the technique from detect some special cases of clones,

especially in the cases when the property is changed (for

example, switching statements). Instead, we try to analyze

lexical-only properties to overcome the limits. The properties

we choose in this paper is variable counts.

We introduce Counting Conditions, which are used to

decide when to count. That is, if we decide to count

the occurrences of variables in certain circumstance with

special criteria, this criteria is called a counting condition.

When current circumstance meets the condition, we increase

the count by one. Our approach uses different counting

conditions heavily to analyze the lexical properties. With a

large number of counting results, we can achieve a concrete

representation of the code.

There are two advantages using counting conditions. First,

it is easy and fast to analyze the code properties by counting.

Second, since we choose a large number of properties to

count, it will be highly unlikely, if not impossible, for some

special cases to influence all of the count conditions, thus

our approach is robust in almost all cases.

If two code segments are essentially different, it is un-

likely that all of their counting results will be similar;

meanwhile, if they are clones, most of their counting aspects

will match. The more aspects we investigate, the more

accurate our approach will be. Since the idea behind our

approach is simple, new kinds of count conditions can also

be added to the counting algorithm easily.

B. Count Vector

Since programs written in high-level programming lan-

guages are based on operations for variables, we choose to

investigate the behavior of variables. Our algorithm currently

include 13 counting conditions, which are related to the oc-

currence counts of variables in the following circumstances:
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1 used

2 added or subtracted

3 multiplied or divided

4 invoked as a parameter

5 in an if-statement

6 as an array subscript

7 defined

8 defined by add or subtract operation

9 defined by multiply or divide operation

10 defined by an expression which has constants in it

11 in a third-level loop(or deeper)

12 in a second-level loop

13 in a first-level loop

Notice that we analyze 13 aspects for every variable, and

these 13 aspects will construct a count vector (CV) for the

variable: these are the only information about the variable

after this step. So, neither the structure of the code nor other

information such as the names of the variables will remain

after the counting step.

Here are some reasons behind the choices. The name of

the variable is meaningless, because code could be cloned

by changing the name of the variables. The structure of the

code and the relationship between statements are important,

but they are hard to analyze and compare. Although these

13 numbers seem abstract, the count vector they form could

represent the variable satisfactorily for the purpose of clone

detection.

Different variables in different functions will have differ-

ent CVs. For example, loop counter i will often appear in

first-level loops, loop counter j will often appear in second-

level loops, and variables which save max/min data will

often appear in if-statements. Temporary variables will be

used for only a few times, while important variables are used

more frequently. By comparing their CVs, we can easily

distinguish one variable from another.

If one or two of the conditions are missing, it might not

affect the results significantly. You can also add more count-

ing conditions which are easy to calculate and helpful to

represent the variables: the more aspects of certain variable

used in the algorithm, the more accurate detection results

will be achieved.

Note that it is fully acceptable to use more or fewer
aspects here. It is also interesting to further investigate the
influences of each aspect, but we do not discuss this in this
paper due to page limitations.

Figure 2 shows an example for calculating the CVs for

variables. In the program, the variable tot appears only in the

first line, so its CV will be 〈0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0〉,
because it is defined by both subtract operation and multiply

operations. The variable i appears in the loop, and its

CV is 〈4, 1, 0, 0, 1, 3, 1, 0, 0, 1, 0, 4, 1〉. Similarly, the CV of

variable j is 〈3, 0, 0, 0, 1, 3, 1, 1, 0, 1, 0, 4, 0〉.
Note that during the implementation of the program, the

variables i and j should compare with n − 1 or n in

A sort program: Count matrix:
1: tot=n*n-Find(n)

2: for i = 1 to n− 1 do
3: for j = i+ 1 to n do
4: if a[i] > a[j] then
5: k = a[i]
6: a[i] = a[j]
7: a[j] = k
8: swap = swap+1
9: end if

10: end for
11: end for

tot 0 0 0 · · · 0
i 4 1 0 · · · 1
j 3 0 0 · · · 0
a 4 0 0 · · · 0
k 1 0 0 · · · 0
n 5 2 1 · · · 2
swap 1 1 0 · · · 0

Figure 2. A sample program and the corresponding count matrices.

the loop test expressions. Under this interpretation, some

dimensions of the CVs should be modified accordingly. But

it actually does not matter, because we just want to explain

the main idea of CV here. In practice, whether an occurrence

of a variable is counted in a certain circumstance is not

important either, as long as the counting condition is clear

and consistent throughout the implementation.

After calculating CVs for all variables, we obtain n
vectors, which form a count matrix (CM), with n lines and

13 columns. If two code fragments are cloned, their CMs

will be very similar. Intuitively, even if the clone changes

a small part of the original copy, their variable occurrence

counts will not change greatly from a statistical perspective,

thus their CMs will remain similar. Using an appropriate

method to compare their CMs, we can compare the similarity

between two code fragments.

C. Metrics and Matching

We compare the CVs in the Euclidean space. The differ-

ence between two vectors is determined by the Euclidian

Distance between them in the space, i.e.,

D(v1, v2) = ||v1 − v2||2 =
√∑13

i=1(v1i − v2i)2

However, the similarity of two CVs should be related to

their lengths. That is, if two vectors are very long, their

distance are likely to be longer, but they might be similar

as well. In the meantime, if the distance between two short

vectors is as long as the distance between two long vectors,

the two short vectors are less similar. Thus, we will calculate

the difference in a piecewise-defined function: if the lengths

of vectors are small, we calculate their distance; otherwise,

their difference equals their distance divided by their lengths.

The function itself is heuristic; we can still add lots of

special conditions in it. For example, if two vectors differ in

seven or more dimensions, the variables they represent are

unlikely to be similar. If the length of one vector is twice the

length of another, they will not match either. We design an

integrated function to determine the difference of two vectors

based on the above considerations. The function reads two

vectors, and produce an output of a float number ranged in
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Algorithm 1 Measure the similarity between two vectors

Input: two vectors u and v, Len(u) >Len(v)
Output: the similarity between u and v

1: if (Len(u) > 2∗Len(v)) or (dif(u, v) ≥ 7) then
2: return 0

3: end if
4: maxlen←Max(Len(u),Len(v))
5: if maxlen ≤SmallLen then
6: return Normalize(EucDist(u, v))
7: else
8: return Normalize(EucDist(u, v)/maxlen)
9: end if

[0, 1], where 0 means not similar at all, and 1 means they

are the same.

A CM is composed of n count vectors, where n is

the number of variables within the method. When we are

comparing two methods, we cannot just compare each row

of their matrices and “add” the result together as the answer,

because the variable represented by the first row of the first

matrix may match the variable represented by the fourth

row of the second matrix, while the variable represented

by the first row of the second matrix may not match any

variables in the first method at all. If we match the ith rows

of two matrices for all 1 ≤ i ≤ n, the result is certainly

unconvincing.

Hence, we will construct a bipartite graph from the ma-

trices, and do maximum matching on the graph. A bipartite
graph is a graph whose vertices can be divided into two

disjoint sets U and V such that every edge connects a vertex

in U to one in V, i.e., U and V are independent sets. A

matching M in G is a set of pair wise non-adjacent edges.

A maximum matching is a matching that contains the largest

possible number of edges. A perfect matching is a matching

which matches all vertices of the graph.

Maximum weighted bipartite matching is defined as a

perfect matching where the sum of the values of the edges

in the matching has a maximal value. If the graph is not

complete bipartite, missing edges are inserted with value

zero. There are efficient polynomial algorithms solving

both maximum matching in bipartite graphs and maximum

weighted bipartite matching problems.

Suppose the created graph is G = {U, V,E}, where U, V
are vertices sets and E is a weighted edge set. Every variable

in the first (second) method will be represented by a vertex

in U(V ), and for every vertex x ∈ U and every vertex

y ∈ V , there is a weighted edge e ∈ E connecting them,

whose weight is the similarity between the two variables

which x and y represented. After using the KM algorithm2,

we will get a perfect matching with maximum weight. If the

total numbers of the variables in the methods are not same,

2http://en.wikipedia.org/wiki/Hungarian algorithm

Algorithm 2 Compare two methods: using a threshold

Input: two matrices A and B
Output: the similarity between A and B

1: construct bipartite graph G for A,B
2: add zero node to G
3: if similarity(A[i], B[j]) ≤ Threshold then
4: ei,j ← 0
5: else
6: ei,j ← 1
7: end if
8: MiniWeight←AugmentingPath(G)
9: MiniWeight←Normalize(MiniWeight,size(G))

10: return MiniWeight

we can add some “zero node” to the graph, whose CVs are

zeros.

During the matching process, every variable is matched to

its most likely corresponding variable in the other method,

in the sense that the total similarity between each pairs

of variables is maximized. We use the total weight of the

matching to represent the similarity between two methods.

Of course, we should take the total number of the vari-

ables in the methods and the size of the methods into

consideration as well, because large methods are more likely

to have bigger matching weights, while in contrast, matching

weights of small methods will not be considerable even

the methods are essentially different. Hence, the similarity

between two methods should be normalized with the con-

sideration of method-size and variable-count.

We also want to mention a modified version of this

algorithm, which is more practical and is used heavily in

our implementation. We define a threshold for the similarity

between two variables. That means, if the similarity between

two variables is below the threshold, based on the function

we designed, we treat them as essentially different variables;

otherwise, we treat them as similar variables. With the

threshold, the edges no longer need to be weighted, and we

can use an augmenting path algorithm to find bipartite graph

maximum matching on the graph. In this way, the similarity

between two methods is the number of the matched variables

divided by the total number of the variable of the method.

The standard algorithm is more accurate and consumes more

time, and this modified algorithm is time-efficient, thus more

favorable.

Given any two methods, we can compare them efficiently.

Using the Scale-up approach, we can compare two classes

or two packages of classes. First, we construct a bipartite

graph for the two classes: each vertex represents a method

in the class, and the edge in the graph connecting two

vertices is weighted by the similarity between the methods

them represent. After constructing the graph, we use the

KM algorithm to find the maximum weighted bipartite
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Algorithm 3 Compare two classes in a scale-up manner

Input: two classes C1 and C2

Output: the similarity between C1 and C2

1: construct bipartite graph G for C1, C2

2: mij ←the jth method in Ci

3: add zero node to G
4: wi,j ←similarity(m1i,m2j)
5: MiniWeight←KM(G)
6: MiniWeight←Normalize(MiniWeight,size(G))
7: return MiniWeight

matching. The threshold also works here. And from classes

to packages, we can do this process again. Finally, we

will get a float number ranged from [0, 1], representing the

similarity between two packages of codes. In Algorithm

3 we describe the algorithm used to compare two classes

from the result of the similarities between methods in these

classes in a scale-up manner. The algorithm for comparing

two packages is similar.

IV. IMPLEMENTATION AND RESULTS

In the implementation of the CMCD prototype, we first

use Soot to convert the Java code to Jimple. Jimple is a 3-

address intermediate representation that has been designed

to simplify analysis and transformation of Java bytecode

introduced by Vallée-Rai and Hendren[24].

Jimple has a smaller language set, thus are more easily

to be analyzed. And it will break some complex statements

in Java into several basic ones, which helps us count the

occurrence times of the variables more easily. If there

are only class files, Soot is still able to convert them to

Jimple files without the Java source files, which is another

advantage of using Jimple to analyze the code.

Besides, while simplifying the implementation, this trans-

formation has little influence on the results the algorithm

might produce, because the Jimple language can do as many

things as the Java language. The transformation does not

change the functionality of the program; it just changes

the language it uses. Since our approach is language-

independent, it applies well to Jimple.

A. Scenario-based Evaluation

Based on the survey by Roy et al. [23], we have tested

the CMCD prototype implementation on all the 16 scenarios

listed in it. These scenarios are comparatively easy for

our algorithm because there are only a few modifications

between the original copy and the modified copies. Our

algorithm successfully detected all the clones, which is very

good since the authors believe that it is hard to solve all the

cases “very well”. Actually, according to their rating, there

are no known algorithms can solve all the cases well. We

make a small table listing the performance of some state-

of-the-art techniques [21], [12], [18], [4], [10], [1], [19]

quoted from the survey [23]. From the table, we can see that

Scenario 4 is the most difficult: many popular techniques fail

here, since this scenario has swapped or deleted statements,

which are difficult for previous techniques, but relatively

easy for our count based algorithm.

Note in the table, we use “�” to denote that the technique

can detect the clone in the scenario (“medium” or higher in

the original table), and use “�” to denote that it can not

(“low” or lower in the original table).

For our approach, Scenario 4 is just as easy as other

scenarios. Take the first modified program of Scenario 4

in Figure 1 as an example, i.e., swapping the first and the

second line in the for-loop. Since our approach does not

consider the order of statements, the similarity between the

two copies should be 1. And in the second program, the for-

loop is changed into while-loop. Since our approach converts

the Java language into Jimple, while after transformation,

there will be just goto-statements and if-statements. Neither

for-statement nor while-statement remains, thus these two

copies are similar in Jimple.

B. Detecting Plagiarism

In order to test the applicability of CMCD, we performed

an experiment to detect plagiarisms in student-submitted

compiler lab projects. The data are collected from the

previous year’s submissions (which won’t affect students’

grades). We tested 29 project submissions, and each of them

has class quantities ranging from 106 to 251, and their LoC

(lines of code) ranging from 7,825 to 38,086. The LoC

for all the 29 projects is 585,508. In our experiments, we

used an Intel(R) Core(TM)2 Duo CPU T9400 processor

with Windows 7, it takes 123 minutes to compare all the

projects. According to the results, we find 2 clusters of code

clones, while each has 3 copies in it. We have confirmed

with the professor that each cluster consists of two student

submissions copied from one original submission. In one

case, all the class names (including package/folder names)

are replaced, which is difficult to identify through only

manual examination.

Notice that all the 29 project submissions implement

the same functions using similar algorithms, but different

students has different writing styles, thus we did not find

any false positives in this experiment. Although the results

did not affect the student grades because the experiments

are considered confidential, but we have implemented it as

a Web service at this year’s submission website, such that

each student can check whether their code is similar to an

existing submission before they submit their final project. Of

course it is impossible to detect more delicate plagiarisms

in this way, however, we believe that if a student can pass

the automatic plagiarism check, they have spent enough time

modifying their code so that these code becomes their “own”

code.
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Figure 3. Ratings of techniques

C. Analyzing JDK 1.6 Source Code

In a larger-scale experiment, we choose to analyze JDK

1.6.0 18 (which contains 7,197 java files and 2,079,166

LoC). Our objective is to identify similar code as a code

cluster: these code clusters can be used as aspect candidates

to promote aspect-oriented programming (AOP) [14], or they

can also be used to detect potential bugs when considering

the differences in each cluster [18].

We pick every pair of two methods in the source code,

and calculate the similarity between them. If two methods

are similar, we will put them into the same cluster. Some

methods, such as init() or getName(), getObject(), are

relatively small methods and are easily to be similar. For

example, most of methods called getXXX(), has only one

line as its content, that is, “return xx.yy.zz;”. Of course they

are code clones, but it is meaningless to point them out.

So we focus on the larger methods, which produces more

meaningful results.

We have found 786 similar methods in 174 cluster in the

JDK source code in 163 minutes. Here we list three methods

in one cluster in Figure 4, which are similar but not exactly

the same. Many of the methods we discovered are in this

pattern, and they usually differ from swapping or deleting

some lines, which are typical scenario 4 cases. We believe

this kind of examples reveals the applicability and scalability

of our approach: it performs well in real cases.

The example in Figure 4 raises another interesting point:

we actually discovered a potential bug in it. All three

methods implement the Singleton design pattern [9]. It is

used to implement the mathematical concept of a singleton,

by restricting the instantiation of a class to one object.

To be thread-safe, a classical solution to implement this

design pattern is to use synchronization to lock the mutual

exclusion, and one needs to add if-statement both before and

after the synchronized-statement, which ensure current class

has no instantiation yet.

Method 1: (in com.sun.corba.se.impl.ior.iiop.JavaSerializationComponent)
public static JavaSerializationComponent singleton() {
if (singleton == null) {

synchronized (JavaSerializationComponent.class) {
singleton =

new JavaSerializationComponent(Message.JAVA_ENC_VERSION);
}

}
return singleton;
}
Method 2: (in com.sun.corba.se.impl.ior.iiop.SyncFactory)
public static SyncFactory getSyncFactory(){
if(syncFactory == null){
synchronized(SyncFactory.class) {

if(syncFactory == null){
syncFactory = new SyncFactory();

} //end if
} //end synchronized block
} //end if
return syncFactory;

}
Method 3: (in javax.swing.JComponent)
static Set<KeyStroke> getManagingFocusBackwardTraversalKeys() {

synchronized(JComponent.class) {
if (managingFocusBackwardTraversalKeys == null) {

managingFocusBackwardTraversalKeys = new HashSet<KeyStroke>(1);
managingFocusBackwardTraversalKeys.add(KeyStroke.getKeyStroke(

KeyEvent.VK_TAB,InputEvent.SHIFT_MASK|InputEvent.CTRL_MASK));
}

}
return managingFocusBackwardTraversalKeys;

}

Figure 4. A clone example found in JDK 1.6.0

The three methods found in the JDK source code have

different implementation: the first one has no if-statement

inside the lock; the second one is the classical implementa-

tion; the third one has no if-statement outside the lock.

Note that the third method is inefficient, but correct,

because once there is a singleton instance available, we

do not need to acquire the monitor again and again as it

is expensive. But the first method is incorrect, because it

is possible that two threads enter the first if-statement at

the same time when there is no singleton available. Then,

because there is no-statement inside the lock, both of these

two threads will enter the lock sequentially. Thus we could

get two instantiations.

This method is located in the class

com.sun.corba.se.impl.ior.iiop, and also in the newest

JDK version(jdk1.6.0 22). Because it is not fixed yet, we
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have reported it as a potential bug to the Java Developer

Support (the assigned Bug ID is 6999537, and the bug

report can be found at the website3).

V. CONCLUDING REMARKS

In this paper, we have presented a count-based, language-

independent clone detection approach called CMCD, which

is able to detect a class of hard-to-detect code clones.

CMCD compares code segments using their count matrices,

which is composed by count vectors for each variable in

a given code segment. By constructing bipartite graphs

and perform matching on the graphs, we can compare the

similarities between two methods, classes or packages. The

results shows that CMCD performs well in scenario-based

evaluation. In larger-scale evaluations, CMCD is able to

detect code plagiarism in students’ homework, and also able

to identify a potential bug in the JDK source code.
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