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Abstract. Although many approaches have been proposed to protect
mobile privacy through techniques such as isolated execution, existing
mechanisms typically work at the app-level. As many apps themselves
might contain vulnerability, it is desirable to split the execution of an
app into normal components and sensitive components, such that the
execution of sensitive components of an app can be isolated and their
private data are protected from accesses by the normal components.
This paper proposes SplitDroid, an OS-level virtualization technique to
support the split-execution of an app in order to isolate the execution of
sensitive components and protect its private data. SplitDroid is enabled
by porting the Linux Container to the Android environment and the
ability to split Android apps through programming and runtime support.
We also introduce a secure network channel to allow communication
between the isolated component and normal Android apps, such that
non-privacy-related information can be interchanged to ensure its correct
execution. Finally, we demonstrate the feasibility and effectiveness of
SplitDroid through a case study.
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1 Introduction

As the development of mobile Internet and smartphones, more and more mobile
applications (apps for short) have been developed to help people with their work,
entertainment and daily life. Currently, both Google Play and App Store have
over one million apps available for mobile users [2] to download.

As the number of mobile apps grows, people are storing more and more
sensitive information on smartphones, such as passwords, credit card numbers,
geo-locations, contacts information and even biometric information like finger-
prints. Unfortunately, these sensitive data are vulnerable to various attacks from
different malicious apps such as malware. For example, there are already a huge
number of malware aiming at stealing user privacy on the Android OS [30].

As a result, many approaches have been proposed to protect sensitive data
on smartphones based on various techniques, such as data encryption [9], data
isolation [13, 18, 19, 8, 27, 15, 17] and isolated execution [16, 14]. In this paper,
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we focus on approaches based on isolated execution because it is able to sepa-
rate the execution of attackers and target apps into isolated environments, thus
preventing sensitive data from being stolen from target apps.

Researchers have proposed several isolated execution approaches to protect
mobile privacy. Solutions like L4Android [16] and Xen on ARM [14] support
multiple virtual machines (VMs) containing Android OS running simultaneously
on the same hardware. With bare-metal virtualization, these solutions provide
strong isolation guarantee between VMs. However, they are too heavyweight to
be used in smartphone environments considering the impact on memory usage,
performance, and energy consumption. Other solutions aim at isolating confi-
dential data at the app-level. For example, TrustDroid [6], MOSES [22] and
AppCage [31] extend the Android framework to group apps into different do-
mains and enforce access control among domains to protect user confidential
data. These app-level solutions are lightweight in essence, but they assume that
the middleware layer can be trusted, which is not always true in reality.

Recent approaches like Cells[4] and Airbag[25] achieve isolated execution
by leveraging OS-level virtualization technologies. Both of them support mul-
tiple Android user spaces running simultaneously on the same Linux kernel.
OS-level isolation provides strong albeit lightweight isolation guarantee between
user spaces. However, these solutions typically protect each app as a whole,
which might not be enough in many cases.

Based on our observation, privacy leakage often occurs within one app, where
private data in one component may be leaked through another component in
the same app. For example, many apps employ “social login” capabilities, which
allow users to log in using popular third-party accounts such as Facebook or
Weibo. This technique is similar to single sign-on (SSO), and it allows users
to log into different apps with one account such as Facebook. However, one of
the potential vulnerabilities here is that, when a user logs into her Facebook
account within a different app, the account and password information might be
leaked through this app. In order to protect user information being leaked in
these situations, we need an environment where sensitive components in an app
can be executed in an isolated environment, for example, when a user enters her
passwords. After successful login, the app will receive a “log in successful” mes-
sage or an authentication token, but it cannot access the actual login credentials
such as passwords.

In order to achieve this kind of fine-grained protection on sensitive data, this
paper proposes SplitDroid, an OS-level virtualization technique to support the
split-execution of a mobile app. We introduce the concept of separating privacy-
related sensitive components from the rest of a mobile app and isolating the
execution of them in a secure environment. By porting the Linux Container to
Android, we build a trusted container with a separate Android runtime that
runs sensitive components alone. We also provide developers the ability to split
Android apps with dedicated programming and runtime support. We introduce
a secure communication channel across containers for exchanging non-sensitive
information with sensitive components from the normal Android environment.
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As a result, our approach is lightweight since both containers share the same OS
kernel, but it also provides strong protection with the Linux Container.

As a case study, we implement SplitDroid on a Nexus 5 smartphone and
demonstrate its feasibility by enabling the split-execution of an app using so-
cial login. We also evaluate the performance overhead of SplitDroid to show its
effectiveness.

This paper makes the following main contributions:

– We propose SplitDroid, a fine-grained privacy protection technique based on
OS-level virtualization, which enables isolated execution of sensitive compo-
nents in an app.

– We successfully port the Linux Container to Android and demonstrate that it
is feasible to achieve execution isolation through OS-level virtualization.

– We introduce a mechanism to split the execution of an Android app through
programming and runtime support. Based on the mechanism, we implement
SplitDroid on Android and demonstrate its feasibility through a case study.

2 Preliminaries

In this section, we introduce some preliminaries to define the scope of our work.
We start by presenting a running example to demonstrate the motivation for
split execution of sensitive app components. Then we describe our design goals,
assumptions and the adversary model.

2.1 A Running Example

Figure 1 depicts our motivation for fine-grained privacy protection by isolating
the execution of sensitive app components. The execution overflow on the left
side of Figure 1 shows a normal execution overflow of some mobile app A. App A
requires user login before accessing its services. This feature is reflected in the ex-
ecution of the “login” component in the normal execution overflow, which means
a user needs to provide her account and password to the remote authentication
server via the login UI in app A.

As app A runs in an open environment together with many other apps, mal-
ware may coexist with app A and steal the account and password combination
during the login procedure. Researchers have proposed many solutions to prevent
this kind of privacy leakage. An app can be easily isolated into a stand-alone
environment of many types, such as bare-metal VM, OS-level containers and
app-level sandboxes.

However, isolating the mobile app as a whole may not be enough to prevent
privacy leakage. As depicted in Figure 1, login credentials may be leaked through
another component in app A itself. For example, if app A provides the login
feature by integrating social login components from popular social networking
services such as Facebook, user’s Facebook password may be leaked through
vulnerabilities of components in app A.
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Fig. 1: A running example. Left: an app containing a login component, in which the login
credential might be stolen by adversaries; Right: the login component can be split and
executed in an isolated environment, the original app has no access to login credentials.

In order to prevent such kind of privacy leakage, we are motivated to build
an isolated execution environment to confine the sensitive component that con-
tains the private information. As depicted in the right side of Figure 1, software
components with sensitive data (e.g., the “login” component in app A) can be
split and executed in a fully-isolated environment. Threats on user privacy from
both inside and outside app A will be blocked by the isolation mechanism.

2.2 Goals

In order to provide fine-grained protection on user privacy, we propose Split-
Droid, which provides isolated execution of sensitive app components. Our design
of SplitDroid aims to meet the following goals:

– Privacy confinement. As more and more sensitive data congregate on mo-
bile devices, our work aims to confine user privacy by isolating the execution
of software components that are related to the collection and transformation
of these sensitive data. Isolated execution can be achieved by leveraging virtu-
alization technologies, which could support multiple execution environments
running simultaneously and provide strong isolation among them.

– Ease of programming. We want to minimize developer efforts to utilize the
proposed mechanism to enable the spilt-execution of an app. The underlying
mechanism that facilitates the isolated execution should not be exposed to
developers. In other words, developers do not have to know how to construct
and manage the isolated execution environment. Building a new app based on
the SplitDroid should be as simple as building native Android apps with Java.

– User transparency. App users should not notice the existence of the split-
execution in SplitDroid. For example, when a user clicks the “login” button in
an app and then types in “username” and “password”, a user should not feel
the action or delay of switching environments, although the login credentials
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collection UI and account authentication process actually happens in another
isolated execution environment.

– Low performance overhead. The influence of isolated execution on system
performance must be low. In order to meet this requirement, the performance
overhead of the isolated execution environment must be low compared to the
normal execution environment and the switch overhead between these two en-
vironments must also be kept low. Since the isolated execution environment
is based on virtualization technologies and different virtualization technolo-
gies bring different performance overheads and trusted computing base(TCB)
sizes, we must find a proper trade-off between them.

2.3 Assumptions

We make the following assumptions in our work.

– We assume that the isolated execution environment created by SplitDroid
is fully trusted as sensitive user data are confined in it. The whole software
stack within the isolated execution environment including the OS kernel, mid-
dlewares and applications are all assumed to be trustworthy.

– We assume that the OS kernel inside the normal execution environment is also
trusted since we choose OS-level isolation to implement the isolated execution.
In fact, the OS kernel is shared between the normal execution environment
and the isolated execution environment.

– We assume that there exists a trusted communication channel between the
normal and isolated execution environments. The communication channel is
mainly used to exchange non-sensitive information such as “login successful”
notifications and tokens which do not contain user credentials.

– We assume that the external parties communicating securely with the isolated
execution environment can be trusted, such as login authentication servers,
mobile banking services, etc.

2.4 Adversary Model

SplitDroid aims to protect user privacy against the following adversaries. In
order to steal user’s sensitive data, attackers can compromise any part of the
user space in the normal execution environment and even gain access to the
interface with APIs we propose to support isolated execution. The attacker may
also have access to the persistent storage in the normal execution environment.
Attackers can be any app in the normal execution environment or even the rest
components of the same app, while the execution of its sensitive components
can be isolated leveraging SplitDroid. However, we do not consider side-channel
attacks or physical attacks in this paper.
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Fig. 2: Architecture of SplitDroid.

3 SplitDroid Design

In this section, we present the design of SplitDroid. We first give an overview
of SplitDroid. Then we elaborate on its key functionalities and detailed design
considerations.

3.1 Overview of SplitDroid

As depicted in Figure 2, SplitDroid separates the user space into two execu-
tion environments: a normal execution environment where an untrusted stack of
software (middleware and most apps) runs, and an isolated execution environ-
ment created by SplitDroid where the trusted middleware and privacy-related
app components run. By leveraging OS-level virtualization technology (Linux
Container in our case), sensitive components running in the isolated execution
environment is isolated from the untrusted code running in the normal execu-
tion environment. Besides, SplitDroid provides a secure communication channel
between the two execution environments.

In order to leverage SplitDroid to protect privacy, a mobile app needs to
be partitioned into two parts: one part consists of privacy-related component,
and the other part consists of non-sensitive components. SplitDroid provides
programming and runtime support for developers to develop and deploy the
split-execution of mobile apps.

SplitDroid includes the following major components:

– Isolated Execution Runtime. First, the isolated execution runtime compo-
nent in SplitDroid ensures the stand-alone execution of sensitive components
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in the isolated execution environment. Its tasks include managing the execu-
tion lifecycle and providing isolated storage for sensitive components.

– LXC Management Service. The isolated execution environment is imple-
mented as a container enabled by porting the Linux Container (LXC) to An-
droid. The LXC management service is mainly responsible for the lifecycle
management of the isolated execution environment, including the initializa-
tion, creation, suspension and termination of it. Most importantly, the LXC
management service performs the environment switches when split-execution
happens in SplitDroid.

– App Stubs. We introduce app stubs as the proxies of the sensitive components
to the normal components of an app during split execution, and vice versa.
During the split execution of an app, two stubs are running in the normal
execution environment and the isolated execution environment, respectively.
For example, if the “login” components in a mobile app are considered to be
the sensitive part that are split and executed the isolated execution environ-
ment, the stub in the normal execution environment will serve as an agent
of the “login” component, which offers exactly the same interface as “login”
components.

– Secure Communication Channel. A secure communication channel be-
tween two execution environments is constructed through the shared OS ker-
nel. The communication channel is responsible to fulfill synchronization be-
tween the two parts of the mobile app running in different execution environ-
ments through trusted stubs. End-to-end security of the trusted communica-
tion channel can be achieved through encrypted communication between the
app stubs.

3.2 The Isolated Execution Environment

SplitDroid creates an isolated execution environment to run sensitive app compo-
nents separately. We introduce the isolated execution environment by adopting
OS-level virtualization. Compared to bare-metal virtualization, OS-level virtu-
alization is lightweight since the OS kernel can be shared by VMs.

Overview of the Linux Container. SplitDroid adopts OS-level virtualization
to create the isolated execution environment. In particular, we use a container-
based lightweight virtualization framework in mainstream Linux kernel called
Linux Container [3], which enables multiple isolated user-space instances running
on a shared Linux kernel, thus offering OS-level virtualization. LXC relies on
several Linux kernel features, in which Namespaces and Control Groups are the
key enablers.

Porting LXC to Android. LXC was originally targeted at the X86 architec-
ture for desktop Linux systems, so we need to port it to the ARM architecture
in order to support Android. Since the Linux kernel used in Android has been
optimized to support mobile environment, some kernel capabilities needed to run
LXC have been turned off and the standard GNU C library libc has been re-
placed by bionic libc. Thus, we first turn on those missing kernel capabilities
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and recompile the Android kernel. Missing kernel capabilities can be found by
running the lxc-checkconfig script in the standard LXC-tools against the ker-
nel config file of Android. After recompiling the Linux kernel, we cross compile
and statically link all GNU libc independent libraries of LXC.

The most challenging part of constructing an isolated execution container
is device virtualization which includes multiplexing the framebuffer and input
devices.

In Android, all graphical contents shown on screen are updated by the screen
updater to the framebuffer memory, which is mapped from kernel to user space.
Since we have only one physical screen with two screen updaters from two VMs,
we modify the framebuffer driver such that it will receive update requests from
each container but will only allow the foreground VM to actually update the
framebuffer. The other background container can still update its display data in
a backend buffer, which will not be displayed until it switches to the foreground.

For input devices such as touch screen and physical buttons, we modify the
device drivers only to respond to the requests from the foreground VM while
input requests from the background container are discarded.

Resulting Environment. Based on LXC, SplitDroid creates a new container
at system boot time. The new container is initialized with a clean copy of the
same Android framework as the original Android running on the smartphone and
relevant SplitDroid components. The new container is designed to serve as the
isolated execution environment to confine the execution of sensitive components.
LXC-tools are provided to enable on-demand switching between containers when
the split execution of mobile apps starts. Two containers are configured to locate
in the same virtual local network provided by LXC. SplitDroid also provides a
secure communication channel between containers based on encrypted socket
connection.

3.3 Split-Execution of Android Apps

SplitDroid introduces the concept of split execution of Android apps to protect
user privacy. Specifically, an app can be split into sensitive components and
normal components. By isolating the execution of sensitive components in a
trusted environment, sensitive data can be protected from being leaked. Thus
the goal of app split is to identify software components inside an app containing
some specific sensitive data. In our current design, we provide app developer the
ability to split the Android apps through programming support, which enables
them to execute in a split manner with the provided runtime support. In the
future, we plan to leverage static analysis techniques such as taint analysis to
identify sensitive components automatically to help split Android app binaries.
App Split. Split execution of an Android app has been widely explored for
various purposes such as computation offloading [7], where the computation-
intensive components of an app can be executed on a remote environment such
as a server or a cloud.

An Android app can be viewed as a state machine in which the states repre-
sent Android Activities and state transitions represent Activity switches. Each
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Activity corresponds to a Java class that inherits from the ApplicationContext
class. Besides, an Activity may be related to other Java classes and string/img
resources depending on its actual business logic. Throughout the generation, pro-
cess and storage of sensitive data (e.g. passwords), one specific item of sensitive
data relates to at least one Activity (e.g. “Login” Activity).

In our design, we split an Android app on the granularity of Activities. Given
the sensitive data to be protected, all Activities inside an app will be analyzed
to check if they are related to the sensitive data. After the app is analyzed, all
privacy-related Activities (including the related classes and resources) will be
extracted from the original app and packaged as sensitive components. A stub
will be inserted in to the rest of the app to work as the interface proxy of the
extracted sensitive components.

Runtime Support. The isolated execution runtime component inside Split-
Droid provides runtime support for the split execution of Android apps. The
first task of the isolated execution runtime is managing the code of sensitive
components. In our design, there is a one-time configuration step to install the
code of sensitive components into the isolated execution environment in parallel
with the installation of normal components of an app into the normal execution
environment. As there may exist more than one app needing split execution, the
isolated execution runtime should not confuse among different sensitive compo-
nents from different apps. To keep track of sensitive components from different
apps, the isolated execution runtime maintains an identity table to enforce a
signature-based check before isolated execution.

SplitDroid also provides runtime support to manage the lifecycle of isolated
execution. Once receiving a request to run sensitive components from the normal
execution environment, the isolated execution runtime starts a new service pro-
cess to run the code. When sensitive components finish executing, the isolated
execution runtime will terminate the service process and issue a notification to
the normal execution environment through a callback function. To ensure isola-
tion, SplitDroid only supports sensitive components from one app to run in the
isolate execution environment at a given time.

Programming Support. SplitDroid provides programming support for devel-
opers to enable the split execution of Android apps. In order to enable isolated
execution of the sensitive components, a developer should go through the fol-
lowing procedure.

1. Define the interface for accessing the isolated components from
the normal execution environment. The first step towards developing
an app with SplitDroid is to specify which part of the app is privacy-related.
After figuring out privacy-related components, the developer must specify
an interface to access these isolated components from the normal execution
environment. In the normal execution environment, the interface to access
isolated components should inherit from an ITrustedStub interface.

2. Implement the actual business logic running in the isolated exe-
cution environment. The developer should provide the actual code to be
executed in the isolated execution environment. There must be a core class
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in the business logic code that inherits the IsolatedExecution class since
the trusted runtime service component in SplitDroid will search the core
class to start isolated execution. Meanwhile, the core class has to implement
the interface defined in the first step, which wires the interface in the trusted
stub to the actual business logic.

3. Interact with isolated components. After defining the interface and
implementation of isolated components, the developer can write code to start
to run these software components in the isolated execution environment and
interact with them at runtime. The first thing to start running isolated
components is to create an instance of the IsolatedExeEnv class and pass
an instance of the core class of the isolated components as parameter to
the initialize function of the instance. Then the developer can write code
to interact with isolated components using pre-defined interfaces from the
normal execution environment.

3.4 Usage Scenarios

To illustrate the applicability of SplitDroid, we present two real-world usage
scenarios: social login and mobile payment. The confidentiality and the integrity
of user privacy can be guaranteed by adopting SplitDroid in both cases.

Social Login. Social login within mobile apps is a form of single sign-on (SSO),
which enables a user logging into a third-party app with existing login informa-
tion from social networking services such as Facebook and Weibo. Social login
is beneficial to all parties involved.

However, malware in an untrusted environment or even malicious app com-
ponents inside a third-party app that integrates Facebook social login service
could steal user’s login credentials. Once the login credentials of a popular so-
cial networking account get stolen, all related third-parties are in danger. As
described in Section 2.1, SplitDroid can be used to eliminate this kind of pri-
vacy leakage by isolating the social login components in an isolated execution
environment.

Mobile Payment. With the development of e-commerce and e-banking, more
and more e-commerce services are moving to the mobile platform. While building
one’s own mobile payment system is expensive and insecure, many e-commerce
apps choose to integrate third-party payment plugins such as PayPal and Alipay.

For example, when users place orders in an e-commerce app that integrates
PayPal services. After adding desired products into her shopping-cart, a user
can choose to check out with PayPal. By logging into PayPal and choosing a
proper bank account, the user can successfully place her order. Convenient on one
hand, this procedure contains potential risk of privacy leakage since PayPal login
happens in an untrusted environment. The user’s PayPal login credentials and
related bank account information could be potentially leaked. With SplitDroid,
we can prevent this from happening by isolating the software components of
PayPal login and payment service.
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4 Case Study

4.1 Goal

As a case study, we implement a prototype of SplitDroid to demonstrate its
feasibility. Based on the prototype, we build a mobile app to show the effective-
ness on privacy protection of SplitDroid. We also evaluate the performance of
SplitDroid to show its practicality.

4.2 Implementation

Our implementation includes two parts: the prototype of SplitDroid and a mobile
app based on the split-execution mechanism provided by SplitDroid.

SplitDroid Prototype. We implemented a prototype of SplitDroid based on
CyanogenMod 11 (corresponds to Android 4.4) on a Nexus 5 smartphone. Then
we port LXC 1.0 to Android and modify device drivers as we have described
in Section 3.2. We use the same Android version for the runtime in both the
normal execution environment (the host) and the isolate execution environment
(the container created by LXC). We implement components in SplitDroid based
on our design discussed in Section 3. We implement the programming support
in SplitDroid by providing an SDK to app developers .

Mobile App Implementation. In a proof-of-concept implementation, we have
implemented a simple app integrating social login services provided by Weibo.
This usage scenario has been previously described in Section 2.1 and Section 3.4.

We implement the app by following the programming steps described in
Section 3.3 . As shown in Code Example 1, the isolated sensitive components of
Weibo social login function only has one interface, which is used to activate the
authorize action.

Code Example 1: Declaring the interface for an SSO service.

public interface ISSOService extends ITrustedStub

{

public void authorize(AuthListener authListener);

}

Code Example 2 presents the core class from the implementation of the actual
business logic of Weibo social login service. The code example only shows some
key steps to conduct the SSO authorization based on the Weibo SDK since the
whole code base is relatively large and mostly irrelevant.

Code Example 2: Implementing the SSO service.

public class SSOService extends IsolatedExecution implements

ISSOService

{

public authorize(AuthListener authListener)

{



12 Lin Yan et al.

// Implements the authorize () function using the SSO SDK

......

mAuthInfo = new AuthInfo(this , Constants.APP_KEY ,

Constants.REDIRECT_URL , Constants.SCOPE);

mSsoHandler = new SsoHandler(WBAuthActivity.this ,

mAuthInfo);

mSsoHandler.authorizeWeb(authListener);

......

}

}

Code Example 3: The AuthListener Class.

class AuthListener implements WeiboAuthListener

{

@Override

public void onComplete(Bundle values)

{

// Parse login Token from Bundle

mAccessToken = Oauth2AccessToken.parseAccessToken(values)

;

if (mAccessToken.isSessionValid ())

{

// Handle login information

.........

} else

{

// Handle error

String code = values.getString ("code", "");

.........

}

}

}

Code Example 4: Calling the SSO service in Main Class.

IsolatedExeEnv isolatedExeEnv = IsolatedExeEnv.initialize(new

SSOService);

ISSOService sSOService = (ISSOService) isolatedExeEnv.

getTrustedStub ();

sSOService.authorize(new AuthListener ());

Code Example 4 shows how we interact with sensitive components running
in the isolated execution environment. After initialization, the code running in
the normal execution environment receives a reference of isolated components
by calling the getTrustedStub function of the IsolatedExeEnv class instance.
Then the authorize function of isolated Weibo social login components can
be invoked directly through the definition of the ISSOService interface. Code
Example 3 shows the implementation of a callback handler of SSO authorization,
which is required as a parameter to call the Weibo social login Service.
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4.3 Evaluation

To evaluate the effectiveness of our approach, we run the the mobile app we build
in the SplitDroid environment. Figure 3 shows the screenshots of the whole split-
execution process. The Weibo social login part of the app can be successfully
isolated in a trusted environment.

Fig. 3: Case Study: an Android app using the Weibo account login service.

To evaluate the performance impact of OS-level virtualization in SplitDroid,
we first run the AnTuTu benchmark [1] with three different setups. “Baseline”
means running AnTuTu in standard Android without SplitDroid. “NEE” means
running AnTuTu in the normal execution environment of SplitDroid. “IEE”
means running AnTuTu in the isolated execution environment created by Split-
Droid. We can see from the results shown in Figure 4, the impact of the OS-level
virtualization in SplitDroid on system performance is relatively low.

Fig. 4: Normalized performance impact of SplitDroid.
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Table 1: Comparison of execution time (normal execution vs. split-execution).

Execution time (ms)

Max. Min. Avg.

w/o SplitDroid 75 29 45
w/ SplitDroid 223 179 190

We then evaluated the performance of the mobile app running on SplitDroid
by comparing the execution time of split-execution with the execution time of
normal execution (normal app in standard Android environment) on the same
Nexus 5 smartphone. The execution time is measured between clicking the “login
with weibo” button, which is shown as the first step in Figure 3, and switching
back to the UI containing token information, which is shown as the last step in
Figure 3. The input time of user login credentials and network communication
time is subtracted to reflect only the overhead brought by SplitDroid. Results
are shown in Table 1. We can see that although the average execution time of
SplitDroid is more than three times of the normal Android, the worst execution
time is roughly one fifth of a second, which should be acceptable to most mobile
users.

5 Discussions

5.1 Limitations

Size of the trusted computing base (TCB). The TCB size of a privacy
protection solution has long been a major concern in the research community.
People believe that smaller TCB will narrow the attack surface of the trusted
software components and ease the formal verification efforts. Compared to solu-
tions based bare-metal virtualization, SplitDroid has a larger TCB size due to
the inclusion of the OS kernel and a trusted container. However, LXC is more
lightweight than bare-metal virtualization to fit in the mobile environment. So it
is a trade-off we make between practical security protections and the TCB size.

Lack of support for legacy mobile apps. Although SplitDroid can be used to
isolate privacy-related sensitive components inside a mobile app, it still requires
a source-code based approach, which means developers have to split the app
manually in advance. However, support of legacy apps can be implemented with
the help of program analysis in further studies.

Heavy deployment process. Our current implementation requires users to
reinstall a new ROM on their smartphones in order to use SplitDroid. The reason
is that the Android kernel has to be recompiled to support LXC by turning on
several kernel capabilities. However, if SplitDroid is employed as a standard
process in the future, the users do not to worry this any more.

5.2 Future Work

Automated app split. The current way to support split-execution in Split-
Droid relies on the efforts of developers to leverage our programming support.
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This would undermine the wide adoption of SplitDroid since it offers no support
for existing mobile apps. One potential future direction is to find an automated
way to split existing apps. This can be achieved by applying taint analysis on
the data flow of sensitive data, thus identifying sensitive software components
automatically.

SplitDroid based on cloud services. Although SplitDroid can protect mobile
privacy information from being leaked in a fine-grained level, sensitive data can
still be retrieved by physical attacks of dumping memory or storage contents.
As future work, we can investigate on building isolated execution environment
with both container technology and cloud service such as storage service, which
is similar to the idea of TinMan [26]. Sensitive data will never be leaked on the
mobile devices by not appearing in the local environment. However, this requires
a dedicated design on human computer interaction as the sensitive data can not
be provided directly on mobile devices.

6 Related Work

6.1 Privacy Protection on Smartphones

Many approaches have been proposed to protect sensitive data on smartphones.
Popular techniques include data encryption [9], data isolation [13, 18, 19, 8,
27, 15, 17] and isolated execution. Besides, TaintDroid [10] extends the Android
platform to track the privacy data that flowing through third party applications.
TaintDroid can be applied to monitor the system behaviors related to sensitive
data on smartphones.

Our work focuses on isolated execution based privacy protection because it
can separate the execution of attackers and target apps into isolated environ-
ments.

6.2 Isolated Execution based Privacy Protection

Bare-metal-level virtual machines. Bare-metal virtualization provides a
strong isolation guarantee to put different applications into separated VMs.
Some efforts tried to improve the security of the Android platform by intro-
ducing platform virtualization [5, 12, 14, 16]. However, platform virtualization
is a heavyweight mechanism, which runs multiple software stacks in different
virtual machines. It is usually neither necessary nor affordable in the current
battery-powered mobile devices. Full platform virtualization requires the sup-
port of device virtualization to multiplex hardware to guest domains.

Application-level sandboxes. TrustDroid [6] introduces a lightweight iso-
lation framework to protect apps in separate domains of different trust levels.
TrustDroid can support the isolation between corporate applications and private
applications. TrustDroid relies on the MAC mechanism to enforce the isolation
policy of each domain. Meanwhile, TrustDroid also depends on the Android mid-
dleware to confine the inter-domain communication and data access. MOSES [22]
also targets a similar usage scenario: company smartphones used by employees.
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MOSES introduces a policy-based framework to isolate apps with different se-
curity profiles on Android. AppCage [31] proposes two user-level sandboxes: dex
sandbox and native sandbox to interpose and regulate an app’s access to sensi-
tive APIs. These app-level solutions all assume that the Android middleware is
trusted, which is often not true in real cases.

OS-level containers. Cells [4] is a virtual mobile smartphone architecture by
leveraging OS-level virtualization. It introduces a new device namespace mech-
anism and novel device proxies to multiplex a single set of phone hardware
into multiple virtual phones (VPs). Airbag [25] adopts a similar container-based
method to isolate suspicious apps. However, these work mainly focus on isolating
the execution of a mobile app as a whole, which is not enough for real usage
scenarios where software components from the same app can also steal sensitive
data. SplitDroid adopts similar OS level virtualization technology while achiev-
ing more fine-grained privacy protection.

6.3 Split Execution of Mobile Apps

There are several attempts focusing on splitting the execution of some certain
components inside mobile apps such as advertisement components [20, 24, 21].
These approaches mostly focus on isolating specific categories of untrusted com-
ponents. However, our work aims to separate and protect trusted components
with more strict isolation guarantee based on Linux Container.

Other previous work have investigated in split execution of applications such
as Java or Android apps in order to provide features such as computation of-
floading [7]. These can be implemented by either splitting app binaries [7, 11]
or source code redevelopment [29, 28]. TLR[23] proposes the split execution of
.Net apps. Although the current design of SplitDroid requires developers to re-
design the app to support split execution, it can also be implemented using an
automated approach based on program analysis to split Android binaries.

7 Conclusion

Although isolated execution has been studied in smartphone environments such
as Android, they typically isolate the apps as a whole. Since an app cannot
always be trusted to handled all private information such as credentials in third-
party login services, we introduce the concept of splitting the execution of an
app into normal components and sensitive components, such that the execution
of sensitive components of an app can be isolated and their private data is can
be protected from being accessed by the normal components.

We have presented SplitDroid, an OS-level virtualization technique that sup-
ports the split-execution of an app. SplitDroid creates an isolated execution
environment enabled by porting the Linux Container to the Android environ-
ment. SplitDroid also provides programming and runtime support for developer
to fulfill the split-execution of mobile apps. We have demonstrated the feasi-
bility and effectiveness of SplitDroid by building a prototype of SplitDroid and
evaluation through a case study.
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