
Cloud-based Programmable Sensor Data Provision

Lin Yan, Yao Guo and Xiangqun Chen
Key Laboratory of High-Confidence Software Technologies (Ministry of Education)

School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China

{yanlin10, yaoguo, cherry}@sei.pku.edu.cn

Abstract—As sensor data grow towards an explosion due to
the popularity of Internet of Things and mobile computing,
many sensor data sharing platforms are developed to support
various sensor-based applications. Although these platforms are
able to provide capabilities such as collecting data from sensors
and sensor data provision for applications, their capabilities are
normally confined in direct retrieval of sensor data with little
composition such as SQL aggregation or even no composition at
all. This kind of raw sensor data provision not only increases
the network traffic between platforms and applications, but also
put most computation burden on the client side, which poses
big challenges for applications running on resource-constrained
devices such as mobile phones.

In this paper, we propose cloud-based programmable sensor
data provision, which moves the sensor data processing logic from
client applications to cloud-based services. The key technique
behind this is FilterCombine, a two-step sensor programming
support framework that enables developers to specify sensor
processing logic in the cloud service. By moving sensor data
processing logic to the cloud, we not only reduce network traffic
due to data transfer and computation on the client side, we also
improve code reusability in the cloud side, as many sensor data
processing logic can be shared among multiple applications. We
build a prototype platform of cloud-based programming sensor
data provision called MiWoT, which implements the proposed
FilterCombine mechanism on the cloud side. We demonstrate the
feasibility of the proposed techniques through case studies.

I. INTRODUCTION

With the advancement of Internet of Things and mobile
computing, sensors are becoming pervasive in our daily life.
For example, there are billions of dedicated sensors planted
in our surrounding environment and billions of mobile sensors
embedded in our smartphones. As an example, dedicated sen-
sor networks have also been planted as a public infrastructure
by governments globally to improve city management[1].

As these sensors are generating an overwhelmingly huge
amount of data everyday[2], sensor data management has
become a big challenge. At first, sensor data are managed
by the corresponding sensor owners in an ad-hoc manner.
Sensor owners could develop various applications based on
these sensor data to fulfill their various data usage intentions.
However, it soon became evident that such scenarios cannot
exploit the full power of sensor data. On one hand, one sensor
owner alone has limited insights, resources and technical
skills. On the other hand, some sensor data based trends or
conclusions can only be drawn when taking a large scale of
geographically distributed sensors into consideration, instead
of some small set of sensors which belong to a single owner.

In order to unleash the full potential of sensor data,
many people are advocating open data initiatives for numerous

sensors planted worldwide[3], [4], [5]. Open Data encourages
the sharing of formatted government or private entity data
regardless of copyright restrictions, in order to support the
creation of innovative services and applications. It is believed
that the open data initiatives could boost open innovation
of citizens in a smart city. For example, Chicago is already
planning to open source its sensor data to the public[6].

As examples of open data platforms, a number of sen-
sor data sharing platforms have been built to provide data
collection as well as data provision services. Represen-
tative platforms in the research community include Mi-
crosoft SenseWeb[7], Global Sensor Networks (GSN)[8],
SensorBase[9], IrisNet[10], Sensor Data as a Service[11], etc.
There are also some commercial platforms such as Xively[12]
(a.k.a. COSM or Pachube), Wikisensing[13], SensorCloud[14].
For data producers (i.e. sensors), they provide web service
based APIs for data upload. For data consumers (i.e. applica-
tions), they provide web service based APIs for data retrieval.
However, these APIs are mostly data-centric APIs in the sense
that they focus on the creation, update, query and deletion of
specific sensor data streams in a simple “store-and-retrieve”
manner. Applications typically make direct use of the raw
sensor data with little processing provided by the platforms.
The situation is referred as “raw sensor data provision” in this
paper, which is illustrated in the top part of Figure 1.

�������	
�
���
������
������

������

�����
�����

���	
��

�
��	
�
�����
���

�
���������������

����	
����
���

�����
���������

�	�����������

��� �

������

�����
�����

���	
��

�
��	
�
�����
���

�
���������������

��	����	��	��
�	
�������

�����
���������

�	�����������
��	����	���
��������

�������������	
�
�����
���

!����� ������� �������������������
�������������������
�������������������
�������������������
�

Raw Sensor Data Provision

�������	
�
���
������
�����

�����

�����
����

���	
��

�
��	
�
�����
���

�
�������

����	
����
��

�����
���������

�	�����������

Raw Sensor Data Provis

���

�����

�����
����

���	
��

�
��	
�
�����
���

�
���������������

��	����	��	�
�	
�������

�����
��������

��	����	���
�������

�������������	
�
�����
��������� 	
�
 �

!���� ������� � � � � � � � � �
�������������������
� � � � � � � � �
�������������������

�������������������
�������������������
�������������������
�������������������
�

Programmable Sensor Data Provision

��������

�

ion

� �
�	�����������

��
��

���
���

���������
���������
�	
�������
����	���
��

������

Fig. 1: Paradigm shift of sensor data provision.

Developing applications with raw sensor data provision
services brings some serious challenges. First of all, many
applications might require polling a big number of sensors
regularly, which results in high network traffic. For instance,

2015 3rd IEEE International Conference on Mobile Cloud Computing, Services, and Engineering

978-1-4799-8977-5/15 $31.00 © 2015 IEEE

DOI 10.1109/MobileCloud.2015.27

135

if a certain application needs to do some computation with all
temperature sensor readings on a city level, it has to acquire
all related (tens of thousands, or even more) raw data streams
and perform the computation itself. This is especially challeng-
ing for applications running on resource-constrained mobile
devices as network communication consumes a significant
amount of energy and the computation power is limited.

One possible solution to this issue is moving sensor data
processing from the client side (applications) to the cloud side
(service provider), as shown in the bottom part of Figure 1.
In this case, developers can specify a sensor data processing
logic that runs in the cloud, which automatically collects the
required sensor data and computes the required results. The
client application can get the final results directly (for example,
through web services), instead of doing all the tasks on its own.

However, in the new data provision paradigm, sensor data
providers need to provide sensor data programming support,
such that application developers can specify their data pro-
cessing logic. Some platforms, such as GSN[8], allow data
consumers to compose new data streams based on existing
ones with simple range selectors or SQL selection and aggre-
gators. Although this can provide some degree of programming
support in defining the data processing logic, its capability is
very limited due to its reliance on SQL queries.

In this paper, we propose MiWoT, a cloud-based framework
that provides programmable sensor data provision. MiWoT is
designed as a typically sensor data sharing framework based on
cloud storage, in that it is able to provide a set of RESTful APIs
for sensors to upload readings and for applications to consume
sensor data. At the center of MiWoT, we propose a new sensor
data programming mechanism called FilterCombine.

As shown in the bottom part of Figure 1, FilterCom-
bine introduces a two-step programming support approach for
developers to specify processing logic on sensor data. The
two steps are called Filter and Combine, respectively. Just as
its name indicates, FilterCombine can filter the sensor data
and then combine the selected data into final query results
as requested by application developers. In order to achieve
this, FilterCombine will ask application developers to provide
code snippets including a Filter and a Combiner1. The
Filter tells the criteria to screen out qualified data streams
and the Combiner will guide the platform to transform these
qualified data streams into the target data stream. Both the
Filter and the Combiner are all written in a full-blown
scripting language.

For example, if an application wants to calculate the aver-
age temperature of a whole city with FilterCombine, it only
needs to define a selection criteria (location tags in this case)
called Filter and a set of composition rules (calculating
average value logic in this case) called Combiner. Then it
can retrieve the average temperature of the whole city directly
from the cloud service provider.

The contributions of this paper are three-fold.

• We propose MiWoT as a cloud-based programmable
sensor data provision platform, which is able to move

1FilterCombine can be compared to the popular Map/Reduce paradigm[15],
however focusing on a different area.

data processing logic from the client application to the
cloud-based service provider. MiWoT is also capable
of managing heterogeneous sensor data.

• We propose FilterCombine as an open sensor data
programming mechanism, which facilitates software
reuse as Filters and Combiners can be shared
and combined freely among developers.

• MiWoT could also reduce network traffic between
applications and data sharing platforms, which is
particularly meaningful for mobile applications.

• We have implemented a prototype of MiWoT, and
demonstrated the feasibility of cloud-based pro-
grammable sensor data provision through case studies.

The rest of this paper is organized as follows. We first
discuss the background and related work in Section II. Section
III presents the details of the MiWoT architecture. We present
detailed design and implementation of the FilterCombine
mechanism in Section IV and V. Section VI concludes this
paper.

II. RELATED WORK

The Internet of Things (IoT) [16], [17], [18] is a vision of a
world where all kinds of heterogeneous smart objects and de-
vices are uniformly and inherently networked together through
the Internet Protocol(IP). Hopefully, in the realm of IoT, all the
IP-enabled heterogeneous smart things will eventually speak
the same language, while hundreds of communication proto-
cols above IP such as AMQP[19], ModBus[20], Megaco[21],
etc., have been created by different academic groups, industrial
organizations and enterprises on behalf of their own benefit.
As a result, IoT was initially a set of isolated networks of
smart things as few developer know the whole spectrum of
technologies related to these ad-hoc systems.

One major perspective to solve the heterogeneity issue
is pushing standards. At the hardware level, IEEE 1451.4
provides a Transducer Electronic Data Sheet (TEDS) standard
for transducers[22]. TEDS compatible sensors can self-identify
and provide metadata about itself, such as manufacturer, ver-
sion, serial number, type and parameters for translating and
interpreting its raw readings of physical quantities such as
temperature, air pressure etc.

The Open Geospatial Consortium (OGC) proposes another
standard called Sensor Model Language, a.k.a SensorML[23].
The primary goal of SensorML is to reduce heterogeneity of
different sensor data structure thus enabling interoperability.
SensorML allows sensor providers to describe their data for-
mats with a XML-based specification so that sensor data can
be translated into understandable formats.

Although these standards are effective in eliminating het-
erogeneity of sensor data, they care more on the data collection
side. In other words, they provide a tool mainly for data
producers. As for data consumers, the difference made by these
standards is reducing the set of protocols they have to master.
Yet what data consumers really need is an efficient way to
develop new applications or services based on a large set of
sensor data.

136

There are a number of efforts, which have been made to
focus more on data consumer side. As a pioneer, TinyDB[24]
helps data consumers access sensor data by using SQL-like
queries and push the computation of these queries inside a
sensor network. Though TinyDB is mainly focusing on private
homogeneous sensor networks, it shows the feasibility of the
concept of an on-demand provisioning of sensor data.

Open data sharing platform is another mainstream initiative
for on-demand sensor data provisioning. The earliest platform
is SensorBase[9] built by the Center For Embedded Networked
Sensing (CENS) of UCLA. It is a centralized sensor data
storage and management platform, which allows users publish
and share their sensor data after defining data streams and
access control policies. For data consumers, SensorBase allows
users to query data streams using SQL-centric APIs. Users can
add filters to data selection in SQL language on location, type,
time range, or other relevant fields in the relational database
table.

Similar sensor data sharing platforms for research pur-
poses include Sensorpedia[25] by Oak Ridge National
Laboratory (ORNL), Microsoft’s SenseWeb[26], Nokia’s
SensorPlanet[27], Sun’s Sensor.Network[28] and SAP’s notion
of Sensor Data as a Service (SDaaS)[11]. All these platforms
provide web-based APIs for data producers to upload and
manage sensor data and for data consumers to retrieve data.
In particular, both SenseWeb and SDaaS mainly adopt a
SOA centric interface in order to support data retrieval and
SOA based service composition. Sensor.Network implements
a light-weight architecture to offer RESTful web service APIs.

There are also commercial sensor data sharing plat-
forms; representative examples are TempoDB[29], Xively[12],
Wikisensing[30] and SensorCloud[14]. These platforms share
some common features such as focusing on storing time-
indexed sensor data and providing REST APIs to facilitate
storing, retrieving, and querying time series data.

Besides, some of those commercial platforms like Sensor-
Cloud provide the ability to visualize sensor data. Users can
also run data analysis applications on the platform.

In summary, the above mentioned related work all focus
on providing sensor data provision support, which means that
client applications can only acquire raw sensor data with little
processing provided by the platforms. Thus they typically lack
of support to facilitate client end application development.

Yet another work Global Sensor Networks (GSN)[8] en-
ables users to define new sensor data streams called virtual
sensor data streams which are combinations of existing data
streams collected from physical sensors. However, the aggre-
gation method provided by GSN is based on SQL language
whose expressiveness is limited by the expressibility of SQL.

III. THE MIWOT PLATFORM

We first presents MiWoT, a cloud-based programmable
sensor data provision platform. At the center of MiWoT is
the proposed programming support mechanism FilterCombine,
which will be described in the next section. MiWoT stands for
“middleware for web of things”, which is designed as a cen-
tralized sensor sharing platform. With MiWoT, heterogeneous
IoT smart devices could be connected to fulfill the open data

initiative. MiWoT is a sensor data sharing platform with both
GUI support for user configuration and RESTful web service
APIs. By leveraging the RESTful APIs offered by MiWoT,
users could just provide the format of their sensor data streams
and then wire sensors in. Meanwhile, users could also develop
innovative services and application upon these shared sensor
data.

A. Architectural Overview

Figure 2 shows an overview of the MiWoT architecture.
Based on smart devices, MiWoT offers both an sensor data
sharing interface and an application-oriented programming
support for developers.

There are mainly three layers in the MiWoT archi-
tecture: Device Abstraction, Service Mapper and
Service Provider. These three layers can handle invoca-
tions from application and map them to invocations of services
on devices and calculate the final results or perform actions
as defined by application developers. Besides these layers of
components, MiWoT offers two management interfaces called
Device Manager and Service Manager for applica-
tion developers to accomplish the work of managing devices
and services. Next, we describe each part of MiWoT in a
bottom-up sequence.

Device Heterogeneous devices are connected to MiWoT,
such as sensor nodes measuring temperature, illumination and
humidity, smart sockets controlling power supply to home
appliances as well as RFID readers and tags to detect the
presence of objects being traced, or even sensors in our
smartphones. Device types are not limited to this list. In
general, devices can be classified into two categories: sensors
and actuators.

Device Abstraction For some devices, they offer web
services themselves like motes in Wireless Sensor Net-
works(WSN). For other dumb devices, such as smart sockets
and RFID readers and tags, web services are not directly
offered. In MiWoT, both kinds of devices can be integrated
with the help of Device Abstraction. For devices with discov-
erable web services on themselves, the Device Service Proxy
just forward their services to upper layers with almost no
modification. For dumb devices without the notion of web
services, the Device Service Wrapper communicates with them
in an ad-hoc manner and wraps their functionalities into web
services.

Service Mapper Application Services offered by MiWoT
need to be mapped into services on devices. The Filter compo-
nent filters device services for desired ones and the Combiner
calculates the final results.

Service Provider MiWoT provides both device-oriented
APIs and application-oriented APIs. All these interfaces or
services reside in the Application Service Runtime and the
Router responds invocations from applications.

Device Manager and Service Manager Application de-
velopers can add new devices, update or delete existing devices
with Device Manager. This GUI component also allows
developers to monitor the list of online sensors and the running
status of each device. The Service Manger offers developers

137

Sensor Owners & Developers�

Smart Devices �

Wireless Sensor
Network�

Smart
Objects�Smartphone

Sensors�

MiWoT �

Device Abstraction�

Device Service
Proxy�

Device Service
Wrapper�

Filter� Combiner�

Web Service Runtime� Router�

D
ev

ic
e

M
an

ag
er

�

Se
rv

ic
e

M
an

ag
er
�

Service Mapper�

 Service Provider�

Applications �

��������	
�

�����
�����

Smart Home
Applications�

Mobile
 Apps�

Web
Mashups�

���

���������	
���
�������

Fig. 2: An overview of the MiWoT architecture

the ability to define new application-oriented services by pro-
viding the Filter and Combiner code snippets. Besides,
developers can edit or search services using this module.

B. Key Data Abstraction

The key data abstraction in MiWoT is transforming phys-
ical sensor readings into data streams. In order to upload and
store sensor data on the platform, data producers, i.e. sensor
owners have to register the corresponding data streams first.
A data stream is a time series of one or more data readings
sampled by the same sensor, for example the temperature
readings. Meanwhile, a data stream also represents the concept
seen by data consumers. Data consumers can search, query
and retrieve these data streams in order to build applications
to meet their various usage scenarios.

The following metadata must be specified when a data
stream is introduced to MiWoT for the first time.

• Identifier Each data stream should provide this at-
tribute to uniquely identify itself, such as IRIS001.

• Description A brief description of the data stream
specified in natural language. In fact, this attribute is
reserved for human recognition, not for any machine-
related calculation.

• Location The exact location of the corresponding
sensor of the data stream must be specified in a
<latitude, longitude> pair.

• Environment Tags A data stream should be associ-
ated with one or more Environment Tags to describe
those environment in which it fits in, for example,
Alice’s Car, Bob’s Office, ConferenceRoom 101 and

so on. This attribute is specified in natural language
as well. The tags could be picked from existing ones.

• Sampling Period MiWoT will generated data readings
corresponding to this attribute. Besides, MiWoT could
detect devices’ status using this attribute. It should be
specified in the unit of milliseconds.

• Data Value A data stream must have a valid data
value. The data value stands for a type of data the
data stream can offer. More specifically, the data value
contains a sensor type, a data type and a unit. For
example, the temperature value of an IRIS mote has
a temperature sensor type, a float data type and a
unit of Celsius. All these fields could be selected in a
supported set provided by MiWoT as drop-down lists.

• Permissions Permissions of a data stream must be
specified in order to let MiWoT enforce its role-based
access control on sensor data.

C. Data Stream Manipulation APIs

Once a data stream is established, MiWoT will assign an
URI for it. In the meantime, a Representational State Transfer
(REST) style[31] web API set is also activated for this URI.
Authorized users could upload or retrieve sensor data using
this API set.

REST style APIs, or RESTful APIs, is a light-weight im-
plementation of web services that reuses the GET, POST, PUT,
DELETE methods of standard HTTP protocol. RESTful APIs
with JavaScript Object Notation (JSON)[32] as data represen-
tation is a lightweight replacement of traditional Simple Object
Access Protocol (SOAP)[33] and XML-based web services
since it reduces the parsing and encapsulating overhead. The

138

TABLE I: Basic Data Stream Manipulation APIs

����������URI
HTTP Method GET POST

http://miwot-platform/datastream/<id>

Response is an JSON object which
includes the complete metadata
of the corresponding sensor data
stream specified by id. As shown
in Example 1.

Invalid

http://miwot-platform/datastream/<id>/data

Response is a JSON array includes
all data readings of a specific sen-
sor data stream. As shown in Ex-
ample 2.

Upload this method to upload new
sensor readings of a specific sensor
data stream in JSON format.

combination of RESTful APIs and JSON data format has
become a de facto standard for open APIs on the web.

Table I shows the detail of the basic RESTful data stream
manipulation APIs, which mainly focus on sensor data upload
and retrieval. However, the FilterCombine mechanism will
introduce a new API format. We will cover it in the next
section.

Example 1: An example of metadata querying response

{
"id": "Office101Sensor1",
"description": "First temperature sensor in

Office101."
"latitude" : "116.32298703399",
"longitude" : "39.983424051248",
"tags" : "office 101|temperature|science

building 1|Peking University",
"samplingPeriod": "1000",
"dataValue": {

"sensorType": "temperature",
"dataType": "float",
"unit": "celsius"

}
}

Example 2: An example of data upload and retrieval message

[
{

"id": "Office101Sensor1",
"timeStamp": "1415935877.21"
"reading" : "26.2",

},
{

"id": "Office101Sensor1",
"timeStamp": "1415935878.21"
"reading" : "25.7",

}
]

IV. THE FilterCombine MECHANISM

Figure 3 illustrates the key idea of FilterCombine, which
represents our core data preprocessing mechanism in the
programmable sensor provision platform MiWoT. As depicted
in Figure 3, sensor streams have many features binding with
them. By letting application developers define a Filter as
well as a Combiner in code snippets, FilterCombine will
screen out a subset of sensor data streams into an intermediate
data collection and combine these data streams into one desired
data stream.

FilterCombine enables a different perspective on sensor
data for sensor data consumers, i.e. application developers.

Originally, as other sensor data sharing platforms do, MiWoT
only provides a set of sensor data manipulation APIs. These
APIs mainly support sensor data insertion initiated from smart
devices and sensor retrieval performed by application develop-
ers. This scheme is more like a simple accessing wrapper on
raw sensor readings, which enables data-oriented provisioning.

However, the FilterCombine mechanism provides more
flexibility to data consumers, which enables application-
oriented on-demand sensor data provisioning. This is more
suitable to application developers in real scenarios as getting
the full set of raw data streams is both network-intensive
and bringing extra handling work for application developers.
FilterCombine also promotes code reuse in the sense that those
previously defined Filters and Combiners could be shared
among different developers.

A. A Motivating Example

Consider an example in which the application needs to get
the average temperature of a whole building to indicate its
heating status in winter. Suppose that there are hundreds of
sensors providing temperature reading of different locations in
the building. Without MiWoT, the programmer have to manage
to get each temperature reading separately on all those sensors
and then average them in the application logic. However, with
the support of MiWoT, the developer can create a data stream
of the building’s average temperature in a FilterCombine way.

Application developers first need to define the Filter
as well as the Combiner code snippets on a GUI interface
provided by MiWoT. Both the Filter and the Combiner
code snippets have their own programming rules.

B. The Filter

There are two parts in defining a Filter: the unique
identifier and the Filter code snippet.

The unique identifier is a string to indicate the Filter’s
intention. For the motivating example, the identifier can be
defined as “scienceBlding1TempSensors”.

The Filter code snippet takes an object of
DataStream class as parameter and its return value is
a DSCollection array, which stands for data stream
collection. The Filter component of MiWoT will traverse all
existing data streams executing this function and finally get
a DSCollection object, which contains all data streams
wanted. Obviously, in function logic, the developer should
express the conditions of attributes that a data stream must

139

��������� ���������

�	
������� �	
�������
���������
����������
���

�����������������
���

Fig. 3: The FilterCombine Mechanism

satisfy and return qualified data streams. As for the motivating
example, The Filter code snippet is shown in Example

3.

Example 3: An example of the Filter code snippet in PHP

public function Filter($dataStream){
array $DSCollection=new array{};
if($dataStream->sesnorType == DSSenorTypes::

Temperature) {
foreach $tag in $dataStream->tags
if($tag == "science building 1")

$DSCollection.push($dataStream);
}
return $DSCollection;

}

C. The Combiner

Definition of a Combiner also contains two parts: the
unique identifier and the Combiner code snippet.

Just like in defining the Filter, the unique identifier of a
Combiner is a string to indicate the Combiner’s intention,
for the motivating example, the identifier can be “average”.

Based on the result of a Filter, the Combiner code
snippet takes a DSCollection object as input and returns a
new data stream value. In the function logic, a developer speci-
fies how to map various data streams in the DSCollection
into a single data stream. the Combiner code snippet will
be executed by the Combiner component in MiWoT. The
Combiner code snippet of the motivating example is shown
in Example 4 , which calculates the average value of all
temperature readings in a whole building.

Example 4: An example of the Combiner code snippet in
PHP

public function Combiner($DSCollection){
$sum = 0;
$count = 0;

foreach dataStream in $DSCollection
{
$sum += dataStream.reading;
$count++;

}

if($count == 0)
return null;

else
return ($sum/$count);

}

We can observe from this example that a Combiner does
not necessarily need be bound to a specific Filter. For
example, the “average” Combiner can be applied to any
data stream collections which need to be averaged. Thus the
FilterCombiner can significantly boost code reuse from two
aspects. 1) Both Filters and Combiners can be reused by
future applications; and 2) Filters and Combiners can be
freely combined as to support different usage scenarios.

One may argue that the FilterCombiner mechanism can
also be accomplished with the existing SQL-based composition
mechanisms. For example, there is a simple pre-defined avg
aggregator in SQL language to calculate the average of a group
of data streams. However, with the FilterCombiner mechanism,
application developers can express almost unlimited processing
capabilities on a group of data streams as the Filter and the
Combiner code snippets are written in a full-blown scripting
language. The semantic of the preprocessing is not confined
to the expressibility of the SQL language.

Another issue that needs clarification here is that although
data streams in a DSCollection are filtered according to
the same filter, the sampling periods of them may still
differ significantly. The question is how to merge these data
streams with different sampling periods. In the current design
of MiWoT, we choose to use a “minimum sampling period”
among a specific DSCollection as the sampling period of
the generate data stream. We can of course use other time

140

window based algorithms to deal with this. We leave this issue
to future work.

D. The FilterCombiner API

It must be noted that the configuration interface for data
consumers to specify both the Filter and the Combiner
is through a GUI component on the web portal of the MiWoT
platform. Once configured, a dedicated RESTful API is auto-
matically activated by MiWoT. The FilterCombiner API can
be identified through the combination of the identifiers of the
Filter and the Combiner, the URI format is:

http://miwot-platform/datastream/<filter id>/<
combiner id>

By using the GET HTTP method with this URI, MiWoT will
return the data stream values generated by the combination
of the specified Filter and Combiner. The format of the
response message is just like normal data retrieval results as
shown in Example 2.

All other HTTP methods performed on this URI will return
error message as a FilterCombiner-generated data stream does
not support data insertion.

As an example, the URI of the FilterCombiner API of the
motivating example in Section IV-A is shown below.

http://miwot-platform/datastream/
scienceBlding1TempSensors/average

V. IMPLEMENTATION

A. Implementation Environment

We build a small IoT testbed in our lab with several types
of sensors as well as actuators, which belongs to part of our
“Smart Lab” project. In this paper, we wired in all the sensors
in our testbed to the MiWoT prototype system. Here is a brief
introduction to these sensors.

IRIS Motes. As shown in Figure 4a, IRIS is a WSN
mote manufactured by MEMSIC. In our experiments, ten IRIS
motes are distributed in our office to acquire environment
context data, including indoor temperature and humidity con-
tinuously. Each of the motes runs TinyOS 2.1 operating system
and has network connections wire a base station.

RFID Readers and Tags. As shown in Figure 4b, these
radio-frequency based tags are carried by our lab members.
When a tag, which stands for the man who carries it, enters
the laboratory, the RFID reader will detect the event in real
time. The RFID reader is connected to a PC as a gateway via
the ModBus protocol.

B. Enabling Technologies

We adopted a Model-View-Controller architecture when
implementing the MiWoT platform and the FilterCombiner
mechanism. Key enabling technology and programming frame-
works involved are: Relational Database, the MVC program-
ming framework, the Responsive Front-end framework.

Relational database. Although NoSQL database prevails
nowadays, in this project we select table-oriented traditional
relational database as our sensor data repository. The reason

we choose the old-school database is because key-value based
database is efficient in handling heterogeneous data on one
hand, but it is slow when handling random data selection with
criteria on some specific fields. Meanwhile, NoSQL databases
emphasize more on the size of the storage it can handle rather
than the availability and fault tolerance on the data. As we
need to implement the the FilterCombiner mechanism which
contains a lot random selections on data repository, we choose
MySQL as our database.

The MVC programming framework. There are a lot of
MVC frameworks available in various programming languages
such as Django on Python, Ruby on Rails, CodeIgniter on
PHP and so on. In this project, we choose CodeIgniter[34]
as it supports rapid development with rich pre-defined classes
and libraries and PHP is among the oldest optimized scripting
languages specialized in web development. Of course, the Fil-
terCombiner is also realized in PHP. Besides, CodeIgniter has
also integrated the ActiveRecord which provides an abstract
layer of SQL language to perform sanity checks on queries
and transaction management.

Responsive front-end framework. We choose Twitter’s
Bootstrap framework[35] for our web portal design and im-
plementation. Bootstrap provides a rich HTML, JavaScript and
CSS-based design templates for web pages, typography, forms,
buttons, navigation and other dynamic interface components.
It is an easy-to-use toolset to rapidly develop professional web
interfaces for programmers who are not good at art design.

In Figure 5, we present some representative screenshots in
MiWoT. Figure 5a shows the homepage of MiWoT in which
we list a table of all available sensors and its metadata. Figure
5b and 5c shows the graphical interface to define a Filter
and a Combiner, respectively.

VI. CONCLUSION

In this paper, we introduce the idea of cloud-based pro-
grammable sensor data provision, in which we propose a new
sensor data programming support framework called Filter-
Combine. FilterCombine allows developers to define sensor
data processing logic in two easy steps: filters and com-
biners. The Filter indicates which subset of sensor data
the application desires while the Combiner expresses how
these selected data will be combined into a meaningful result
to the application. As the filters and combiners are generic
enough, they can be reused among different developers to
eliminate duplicated coding efforts. We have implemented the
FilterCombine mechanism in a sensor data sharing platform
prototype MiWoT, which demonstrates our idea of cloud-based
programmable sensor data provision.

Our future work includes improving the functionalities of
the MiWoT data sharing platform, developing API standards
for filters and combiners, and developing new sensor applica-
tions.

ACKNOWLEDGMENT

This work is supported in part by the High-Tech Re-
search and Development Program of China under Grant
No.2013AA01A605, the National Natural Science Foundation
of China under Grant No.61421091 and 61103026.

141

(a) IRIS Motes (b) RFID Reader and Tags

Fig. 4: Sensors for MiWoT Prototype Implementation

(a) Sensor List (b) Defining a Filter (c) Defining a Combiner

Fig. 5: Screenshots of MiWoT

REFERENCES

[1] (2014, May) Santander: The smartest smart city. [Online].
Available: http://www.governing.com/topics/urban/gov-santander-spain-
smart-city.html

[2] Gartner. (2014, March) Gartner says the internet of
things will transform the data center. [Online]. Available:
http://www.gartner.com/newsroom/id/2684616

[3] A. for Computing Machinery U.S. Public Policy Committee,
“Recommendations on open government,” 2012. [Online]. Available:
http://www.acm.org/public- policy/open-government

[4] O. D. risp Community, “Open data decalogue,” 2012. [Online].
Available: http://red.gnoss.com/en/community/OpenData/

[5] A. Domingo, B. Bellalta, M. Palacin, M. Oliver, and E. Almirall, “Public
open sensor data: Revolutionizing smart cities,” IEEE Technology and
Society Magazine, vol. 32, no. 4, pp. 50–56, winter 2013.

[6] (2014, August) From sensors to big data: Chicago
is becoming a smart city. [Online]. Avail-
able: http://smartdatacollective.com/bigdatastartups/229281/sensors-
big-data-chicago-becoming-smart-city

[7] W. Grosky, A. Kansal, S. Nath, J. Liu, and F. Zhao, “Senseweb: An
infrastructure for shared sensing,” IEEE MultiMedia, vol. 14, no. 4, pp.
8–13, Oct 2007.

[8] K. Aberer, M. Hauswirth, and A. Salehi, “Infrastructure for data

processing in large-scale interconnected sensor networks,” in 2007
International Conference on Mobile Data Management, May 2007, pp.
198–205.

[9] G. Chen, N. Yau, M. Hansen, and D. Estrin, “Sharing sensor network
data,” Center for Embedded Networked Sensing, UCLA, Tech. Rep.,
March 2007.

[10] P. Gibbons, B. Karp, Y. Ke, S. Nath, and S. Seshan, “Irisnet: an
architecture for a worldwide sensor web,” IEEE Pervasive Computing,
vol. 2, no. 4, pp. 22–33, Oct 2003.

[11] J. Zhang, B. Iannucci, M. Hennessy, K. Gopal, S. Xiao, S. Kumar,
D. Pfeffer, B. Aljedia, Y. Ren, M. Griss, S. Rosenberg, J. Cao,
and A. Rowe, “Sensor data as a service – a federated platform for
mobile data-centric service development and sharing,” in 2013 IEEE
International Conference on Services Computing (SCC), June 2013, pp.
446–453.

[12] Xively. [Online]. Available: http://xively.com

[13] Wikisensing. [Online]. Available: http://wikisensing.org/

[14] Sensor cloud. [Online]. Available: http://www.sensorcloud.com/

[15] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on
large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113, Jan. 2008.
[Online]. Available: http://doi.acm.org/10.1145/1327452.1327492

[16] H.-D. Ma, “Internet of things: Objectives and scientific challenges,”
J. Comput. Sci. Technol., vol. 26, no. 6, pp. 919–924, Nov. 2011.

142

[Online]. Available: http://dx.doi.org/10.1007/s11390-011-1189-5

[17] P. Pereira, J. Eliasson, R. Kyusakov, J. Delsing, A. Raayatinezhad,
and M. Johansson, “Enabling cloud connectivity for mobile internet
of things applications,” in 2013 IEEE 7th International Symposium on
Service Oriented System Engineering (SOSE), March 2013, pp. 518–
526.

[18] G. Li, Q. Wei, L. Li, Z. Jin, Y. Xu, and L. Zheng, “Environment based
modeling approach for services in the internet of things.” SCIENCE
CHINA Information Sciences, vol. 43, no. 10, p. 1198, 2013.

[19] Advanced messaging queuing protocol. [Online]. Available:
http://www.amqp.org/

[20] The modbus protocol. [Online]. Available: http://www.modbus.org/

[21] Gateway control protocol. [Online]. Available:
http://en.wikipedia.org/wiki/H.248

[22] An overview of ieee 1451.4 transducer electronic data sheets. [Online].
Available: http://standards.ieee.org/develop/regauth/tut/teds.pdf

[23] The sensor modeling language. [Online]. Available:
http://www.opengeospatial.org/standards/sensorml

[24] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, “Tinydb:
An acquisitional query processing system for sensor networks,” ACM
Trans. Database Syst., vol. 30, no. 1, pp. 122–173, Mar. 2005.

[25] B. Gorman, D. Resseguie, and C. Tomkins-Tinch, “Sensorpedia: Infor-
mation sharing across incompatible sensor systems,” in International
Symposium on Collaborative Technologies and Systems, 2009. CTS ’09.,
May 2009, pp. 448–454.

[26] S. Nath, J. Liu, J. Miller, F. Zhao, and A. Santanche, “Sensormap:
A web site for sensors world-wide,” in Proceedings of the 4th
International Conference on Embedded Networked Sensor Systems,
ser. SenSys ’06. New York, NY, USA: ACM, 2006, pp. 373–374.
[Online]. Available: http://doi.acm.org/10.1145/1182807.1182861

[27] N. Corporation. Sensor planet. [Online]. Available:
http://www.sensorplanet.org

[28] V. Gupta, P. Udupi, and A. Poursohi, “Early lessons from building
sensor.network: an open data exchange for the web of things,” in
The 8th IEEE International Conference on Pervasive Computing and
Communications Workshops, March 2010, pp. 738–744.

[29] Tempodb. [Online]. Available: http://tempo-db.com/features

[30] D. Silva, M. Ghanem, and Y. Guo, “Wikisensing: An online
collaborative approach for sensor data management,” Sensors,
vol. 12, no. 10, pp. 13 295–13 332, 2012. [Online]. Available:
http://www.mdpi.com/1424-8220/12/10/13295

[31] R. T. Fielding, “Architectural styles and the design of network-based
software architectures,” Ph.D. dissertation, University of California,
Irvine, 2000.

[32] Javascript object notation. [Online]. Available: http://www.json.org/

[33] Simple object access protocol. [Online]. Available:
http://www.w3.org/TR/soap/

[34] Codeigniter. [Online]. Available: https://ellislab.com/codeigniter

[35] Bootstrap. [Online]. Available: http://getbootstrap.com/

143

