MiWoT: An Application-Oriented Programming Supporting
Framework for Web of Things

Lin Yan, Tao Feng, Gang Chen, Yao Guo, Xiangqun Chen
Key Laboratory of High-Confidence Software Technologies (Ministry of Education)
Institute of Software, School of EECS, Peking University, Beijing, China

{yanlin10, fengtao09, chengang10, yaoguo, cherry}@sei.pku.edu.cn

ABSTRACT

With the development of Internet of Things (IoT) in re-
cent years, Web protocols have been adopted as a key
communication method, thus IoT evolves into Web of
Things (WoT). Different web service implementations have
been proposed to provide a standard framework to connect
heterogenous devices in WoT. However, most of the existing
efforts focus only on providing device-level web services,
making it difficult for programmers to develop complicated
applications. This paper proposes an application-oriented
programming supporting framework for WoT called MiWoT,
which provides a uniform framework to hide the hetero-
geneity of smart devices. In order to enhance programming
support of WoT applications, MiWoT also provides a high-
level application-oriented device abstraction interface, which
allows developers great flexibility and simplicity to develop
applications. We build a prototype of MiWoT in a SmartLab
project and show its feasibility through a case study.

Categories and Subject Descriptors

C.2.1 [Computer-Communication Networks]: [Net-
work Architecture and Design]

General Terms

Design, Management

Keywords

Internet of things, web service, application programming
interface

1. INTRODUCTION

Seamlessly integrating physical world with digital world
is a main objective in pervasive computing research. To
achieve this goal, the Internet of Things(IoT) provides a
vision that physical objects such as sensors, actuators and
even home appliances can be integrated into the Internet as
the information source or the action performer.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Internetware *11 Nanning, Guangxi China

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

Due to the fast advances in microelectronics and the
falling price of processors and communication modules,
physical objects are becoming smart objects with additional
computing and communication capabilities, which can be
easily interconnected in a uniform addressing scheme like
IP Address and a communication protocol like the Internet
Protocol(IP). Ideally, under the concept of IoT, all the
interconnected smart objects would eventually speak the
same language.

However, hundreds of IP based application protocols, for
example X10, AMQP, ModBus and Megaco, have been cre-
ated by different academic groups, industrial organizations
and enterprises on behalf of their own benefits. These
proprietary protocols divides IoT into hundreds of isolated
networks thus creating a great challenge for IoT application
development since very few application developers know
the whole spectrum of technologies across organizational
boundaries.

The notion of the Web of Things(WoT)[10], which en-
hances the interoperability of IoT, aims at eliminating the
tight coupling within each aforementioned isolated network.
WoT enables application developers to integrate those smart
things into the Web as resources leveraging widely adopted
Web standards and principles(e.g. HTTP, URI, HTML,
XML, REST).

In order to realize such a scenario, Web Service has
been leveraged as an key enabler to shield heterogene-
ity and provide interoperability. Web servers have been
implemented directly on embedded devices thus providing
web services[13][5]. For those severely resource-constrained
devices, the web server is implemented on the gateway which
connects the devices with the Internet[9].

However, most of the existing efforts focus only on
providing device-level web services, making it difficult for
programmers to develop complicated applications. To the
best of our knowledge, the APIs offered in existing WoT
frameworks are device-oriented, which means that they just
forward the raw sensing data from the specified device
to applications. While in fact, APIs that an application
developer really needs are more meaningful than sensing
data from each device. For example, the temperature of
a specific location (such as a conference room) provides
more meaningful results compared to a collection of tem-
peratures from all sensors in the location. One of the key
challenges here is how to provide application developers with
application-oriented APIs.

To solve the above problems, this paper proposes an
application-oriented programming support framework for

WoT called MiWoT, which provides a uniform framework
to hide the heterogeneity of smart devices. In order to
enhance programming support of WoT applications, MiWoT
also provides a high-level application-oriented device ab-
straction interface, which allows developers great flexibility
and simplicity to write applications. We build a prototype
of MiWoT in a SmartLab project and show its feasibility
through a case study.
The main contributions of MiWoT include:

e MiWoT implements a uniform framework supporting
heterogenous physical devices that could have different
implementations of web services.

For smart objects with relatively abundant resources,
MiWoT provides a light-weight web service imple-
mentation, such that these objects could be accessed
directly through web services. We implement these
web services on a wireless sensor network mote (IRIS)
running Tiny OS.

Because many objects do not have enough resources
to run web services (such as RFIDs), MiWoT also
provides a central proxy to connect these objects
through web services.

e Besides device-oriented APIs accessing each sensor
directly, a key feature of MiWoT is that it also provides
application-oriented APIs, which allow application de-
velopers to specify their requirements for application-
oriented data that is more meaningful. The data
requirements can be specified easily with a “Filter and
Combiner” mechanism.

e We evaluate MiWoT thoroughly through a case study
in a SmartLab project, in which several different
sensors and objects are deployed in a real environment.
Programming examples demonstrate that MiWoT pro-
vides developers great flexibility and simplicity when
developing WoT applications.

This paper is organized as follows: in Section 2 we discuss
the background and related work. Section 3 presents the
details of the MiWoT architecture. We present a case study
in SmartLab project in Section 4. Section 5 concludes this

paper.
2. BACKGROUND AND RELATED WORK

2.1 Web of Things

With the diminishing price of embedded devices, pre-
dictions have been made that the number of networked
sensors and actuators will eventually exceed the number
of networked computers by several orders of magnitude[3].
The Web of Things(WoT) vision leverages the existing
ubiquitous Web protocols and standards to interconnect
these devices. Compared to those proprietary protocols, the
Web protocols and standards like HTTP, URI, HTML, etc.
are much more open, flexible, scalable and widely accepted.
So integrating the smart objects and devices into the Web
really means integrating them into our daily lives.

The WoT implementations introduce web service as an
enabler of the interoperability for a loose coupling among
distributed smart objects and devices. These web services
are often RESTful web services[8] which are simpler and
more lightweight than WS-* Web Services.

RESTful WS
Web Server

(a) Direct Implementation

RESTful WS
Web Server

H Gateway

Native API |

ModBus
(b) Intermediate Implementation

Figure 1: Two ways of implementing Web Service

2.2 Web Service Implementation

There are two ways to implement Web Services as depict-
ed in Figure 1 . For devices with enough resources to support
a web server, such as WSN motes, Web Services are di-
rectly implemented on them like Tiny Web Services[13] and
sMAP[5]. For other devices with insufficient resources like
smart sockets, Web Services are intermediately implemented
on a gateway, which originally works as a proxy connecting
devices with the Internet. In MiWoT, the Device Service
Proxy plays the role of gateway in the latter way.

End user applications are developed in both works by
calling these web services implemented. While this kind
of implementation tackles a stunning technical challenge by
giving resource-constrained devices a web server, there are
still a lot of concerns to make use of these web services
directly on device. Resource-constrained devices are not
powerful enough to support concurrent applications and
complicated access control mechanism.

2.3 Application-Supporting Frameworks for
WoT

WoT frameworks have been proposed to address the
above issues. Omne category of such frameworks is like
Sensor.Network[11] and Pachube[2]. They facilitate sensor
and actuator to connect together and provide APIs to access
the data on them and to make use of their functions.
However, they just provide basic device-level APIs which
just forwards the raw sensing data to applications.

They other category of frameworks is like SOCRADES]6].
SOCRADES is an architecture focusing on coupling web

1 1

| Application 1

1 e T |

: Mobile App. Web Portal :

ke b _ _ _ _ _______________________ |
MiWoT

Service Provider

Web Service Runtime

Service Mapper

Device Abstraction

Device Service Proxy Device Service Wrapper

Device Manager
Service Manager

Figure 2: Architecture of MiWoT

service enabled devices with enterprise applications such
as ERP Systems. However, it doesn’t explicitly show its
support for application development.

3. ARCHITECTURE OF MiWoT

3.1 Overview

In this section we present an overview of MiWoT’s whole
architecture. As shown in Figure 2, based on smart devices,
MiWoT offers application-oriented programming support for
programmers.

There are mainly three layers of components in MiWoT:
Device Abstraction, Service Mapper and Service
Provider. These three layers can handle invocations from
application and map them to invocations of services on
device and calculate the final results or execute actions
as defined by application developers. Besides these layers
of components, MiWoT offers two GUIs called Device
Manager and Service Manager for application developers to
accomplish the work of manage devices and services. In the
following, each part of MiWoT and its basis is described in
a bottom-up sequence.

Device: Heterogenous devices are connected to MiWoT,
like nodes from Wireless Sensor Networks measuring tem-
perature, illumination and humidity, smart sockets control-
ling power supply to home appliances as well as RFID
readers and tags to detect the presence of objects being
traced. Device types are not limited to this list and in
general, devices can be classified into two categories: sensors
and actuators.

Device Abstraction: For some devices, they offer web
services themselves like motes in Wireless Sensor Network-
s(WSN). For other dumb devices, such as smart sockets and
RFID readers and tags, web services are not directly offered.
In MiWoT, both kinds of devices can be integrated with the

JSON Library

HTTP

UDP

IPv6(6loWPAN)

IEEE 802.15.4

Figure 3: Layers in the protocol stack on IRIS mote

help of Device Abstraction. For devices with discoverable
web services on themselves, the Device Service Proxy just
forward their services to upper layers with almost no
modification. For dumb devices without the notion of web
services, the Device Service Wrapper communicates with
them in an ad-hoc manner and wrap their functionalities
into web services.

Service Mapper: Application Services offered by Mi-
WoT need to be mapped into services on devices. The Filter
component filters device services for desired ones and the
Combiner calculates the final results or execute actions as
defined by application developers.

Service Provider: The MiWoT provides both device-
oriented APIs and application-oriented APIs. All these
interfaces or services reside in the Application Service
Runtime and invocations from applications are responded
by Router.

Device Manager and Service Manager: The appli-
cation developers can add new devices, update or delete
existing devices with Device Manager. This GUI also allows
developers to know the running status of each device. The
Service Manger offers the developers with the ability to
define new application-oriented services by giving the Filter
and Combiner Specifications. Besides, developers can edit
or search services using this module.

3.2 Device-level Web Service Implementation

As mentioned before, web service has been chosen as
an key enabler of the WoT scenario. In our architecture,
Device Abstraction is responsible for wrapping up devices’
functionalities into device-level Web Services.

In the following we discuss how Web Services are directly
implemented on WSN motes. In our approach we implement
Web Services on three different hardware platforms: IRIS,
SunSPOT and Arduino Duemilanove. Here we focus on
implementation of IRIS motes since implementation on Java
Virtual Machine enabled SunSPOT and Processing based
Arduino Duemilanove are relatively less challenging.

IRIS mote runs a TinyOS operating system on batteries
with only 8Kbytes of RAM. Targeting at such an resource-
constrained hardware platform, we implement a lightweight
protocol stack offering Web Services in a REpresentation-
al State Transfer(REST) manner which reuses the GET,
POST, PUT, DELETE methods of HTTP[8]. RESTful Web
Service with JavaScript Object Notation(JSON) as data rep-
resentation[4] is a lightweight replacement of Simple Object
Access Protocol(SOAP) and XML based Web Service since
it reduces the parsing and generating overhead.

As depicted in Figure 3, IRIS motes communicate in
an IEEE 802.15.4 based network. @We make them IP

addressable by adopting blip, an IPv6 stack included in
TinyOS 2.2 conforming to the 6loWPAN standard. The
6loWPAN standard[12] introduces an adaptation layer to
compress [Pv6 packets in order to reduce the communication
overhead. Upon IPv6 layer, we implemented a compressed
HTTP layer in conjunction with the JSON library just
serving basic requirement of RESTful Web Service provision.

3.3 Data Abstraction

One critical issue of MiWoT is the sensor data abstraction.
At the core of the MiWoT architecture is the concept of
a datastream. A datastream is a time-series of one or
more sensor values sampled by the same entity. The entity
could be actual sensors like aforementioned IRIS motes.
The datastream of an IRIS mote mentioned in Section 3.2
includes two values at a specific time point: temperature and
illumination. However, in MiWoT, the entity could also be
an environment, like a conference room or a car, defined by
application developers. The values of an environment entity
are fused from readings of actual sensors located in the same
environment by the “Filter and Combiner”mechanism.

For each datastream, the following attributes must be
specified when the datastream is first introduced to MiWoT.
They are Name, Type, Environment Tags, Sampling period
and Data values. We will discuss each attribute in detail.

Name Each datastream should have a Name indicating
what the datastream is and the Name must be unique, e.g.
"TRIS#001”

Type According to the sampling entity mentioned before,
a datastream should be referred as Sensed type or Envi-
ronment type.

Environment Tags A datastream must be associated
with one or more Environment Tags to describe those
environment in which it is fit in, like "John’s Car”, "Lily’s
Office” or ”ConferenceRoom 101”.

Sampling Period MiWoT will generated data values
corresponding to this attribute. Besides, MiWoT could
detect devices’ status using this period. Sampling period
should be specified in milliseconds.

Data Values A datastream could have one or more data
values. Each data value stands for a type of data that
the datastream can offer. For data values of a Sensed
datastream, each of them has a sensor type, a data type and
a unit. For example, the temperature value of the IRIS mote
mentioned in Section 3.2 has a temperature sensor type, a
float data type and a unit of Celsius. For data values of user-
defined Environment datastream, each of them should be
associated with a Filter function and a Combiner function
and we will discuss these two functions in Section 3.4.

3.4 The “Filter and Combiner’> Mechanism

The “Filter and Combiner” mechanism enables MiWoT
to support application-oriented programming. As stated
before, when application developers want to define an Envi-
ronment datastream, he should specify the Filter function
and Combiner function for each data value inside the
datastream.

Developers can use the Filter to select a collection of
datastreams from raw sensing data. Then Combiner will
generate the newly defined datastream from the collection.

The Filter function and Combiner function are spec-
ifications for the Filter component and the Combiner
component in the MiWoT architecture. Developers can

specify Filter function and Combiner function similar to a
Map-Reduce style[7].

Consider a motivating example in which the application
needs to get the temperature of a conference room whose
number is 101. Suppose that there are ten smart objects
providing temperature reading of different locations in con-
ference room 101. Without MiWoT, the programmer should
manage to get each temperature reading separately on those
ten objects and then calculate them in the application logic
to get the value wanted.

However, with the support of MiWoT, the developer can
get the temperature of conference room 101 directly in a
“Filter and Combiner” way. The developer should define
an Environment datastream named “ConferenceRoom101”
and add a data value of “temperature” sensor type to this
datastream. Then the developer should specify the Filter
and Combiner telling MiWoT how to generate this data
value.

The Filter function takes an object of DataStream type as
input and its return value is a DataValue object. The Filter
component of MiWoT will traverse all existing DataStreams
executing this function and finally get a DataValueCollec-
tion object. Obviously, in function logic, the developer
should express the conditions of attributes that a datastream
must satisfy and return the desired data value of the
datastream. As for the motivating example, the Filter
function is like the following codes.

DataValue Filter (DataStream dataStream){

if (dataStream.type = = ”Sensed”){
foreach tag in dataStream.Environment_tags
if (tag = = ”conference_room 1017)
foreach datavalue in dataStream.Datavalues
if (datavalue.Sensor_type = = temperature)
return datavalue;
}
return null;
}

The Combiner function takes a ValueCollection object as
input and returns a DataValue object. In function logic,
a developer should specify how to map the data in the
ValueCollection into a single data value. The Combiner
function will be executed by the Combiner component in
MiWoT. The Combiner function of the motivating example
is like the codes below to calculate the average value of all
temperature readings in conference room 101.

DataValue Combiner(ValueCollection vCollection){
double sum=0;
foreach datavalue in vCollection

{

sum+=(double)datavalue. Value;

return sum/vCollection.Count;

}
3.5 Multi-level API

As stated before, our framework implements RESTful
APIs on smart objects to provide access to sensors and
actuators through the web. We can provide not only basic
device-level APIs to access data from actual sensors, but
also application-oriented APIs to access data pre-processed
by MiWoT based on application requirements.

To access sensor data, we provide a uniform format of
API for both datastream from actual sensors and datas-

/datasteam/sensed/iris00 1/temperature
L I J L I]

|
Root

Sensor Type of a data value

ID of a datastream

Type (either Sensed or Generated)

Figure 4: The URL structure for a temperature
reading on a sensed datastream named IRIS001

~ .

[Desk Lamp

| Controller
\U/
‘/ Desktop - - B [Appliance
| Controller | Controller |
\ 'y The \ \1 g/
Y T Miver |
\
Prototype /
N .
Room { Room
| Humidifier | Temperature
\ Adapter | Adapter
\ 4 B 4

Figure 5: Five applications based on the MiWoT
prototype

tream defined by application developers. Figure 4 shows
the whole URI structure of the API by an illustrating
example to read a datastream(URI of the server such
as “http://www.miwot.com” has been left out here for
neatness).

As REST implies[14], the datastream accessing API is
a Resource Oriented Architecture. Table 1 illustrates the
resource hierarchy of the datastream accessing API. All
APIs on the resource hierarchy should be accessed using the
GET method of HTTP.

To perform actions with actuators, we also provide a
uniform format of API. Different from datastream accessing
APIs, action performing APIs make use of both GET
method and POST method of HTTP. The resource hierarchy
of action performing APIs is illustrated in Table 2, in which
a smart socket is taken for example.

4. MiWoT IN SMARTLAB PROJECT: A CASE

STUDY

4.1 Project Scenario

Being on the market for more than two decades, home and
office automation has already been a commonplace both for
high-end and low-end user around the world[15]. SmartLab
Project envisions a office automation scenario of a computer
laboratory. The main goal of SmartLab project is to provide
convenience for lab members’ daily life and make the lab
energy-efficient . To accomplish this goal, we use MiWoT
to wrap up all the physical devices with RESTful APIs thus
providing better programmability to make the lab smarter.

4.2 The Prototype

Humidifier SunSPOT Desktop Computer

Air
Conditioner
|

. 8
it

3 2

@

Figure 6: The plan view of the lab as SmartLab
prototype

Table 3: Application Description of the prototype

Application Description
Desk Lamp | Turning the desk lamps
Controller on and off depending

on the presence of their
owners and illumination
Cutting off the power
supply when nobody in
the lab and recovering
when somebody shows

Appliance Controller

up

Room Temperature | Maintain the room’s

Adapter temperature

Room Humidity | Maintain the room’s hu-

Adapter midity

Desktop Controller Booting the desktop
computer when the
owner shows up;

Hibernating it when
the owner leaves

4.2.1 Overview

We build a prototype of MiWoT in a SmartLab project
based on our own lab environment. A plan view of our lab
is shown in Figure 6. The physical objects deployed in the
lab include several IRIS motes and SunSPOTSs, one Arduino,
one RFID reader and several tags, appliances such as an air
conditioner, a humidifier, a drinking fountain, desk lamps
and desktop computers. These objects are all managed by
MiWoT. As depicted in Figure 5, the prototype consists of
five separate applications developed by the use of RESTful
APIs offered by MiWoT.

4.2.2 Smart objects

Smart objects are enhanced physical objects with ad-
ditional computing and communication capabilities. As
depicted in Figure 6, in our prototype, some objects are
already smart, such as IRIS, SunSPOT, Arduino, RFID
reader and tags and desktop computers. Other objects
can be combined with smart ones into smart objects like
smart desk lamp, smart humidifier, smart air conditioner
and smart drinking fountain.

In Table 4, we describe these smart objects in detail
such as sensors/actuators on them and in which way they
can be integrated into MiWoT. If web service has been
directly implemented on the smart object, then it is directly

Table 1: Example of resource hierarchy of datastream accessing API provided by MiWoT

/datastream root collection of datastreams
/datastream/sensed collection of sensed datastreams
/datastream /generated collection of generated datastreams
/datastream/sensed /1001 collection of sensor types

/datastream/sensed /1001 /temperature | collection of temperature readings on
sensor datastream 1001
/datastream/sensed/1001/illumination | collection of temperature readings on
sensor datastream 1001

Table 2: Example of resource hierarchy of action performing API provided by MiWoT

HTTP Method | URI Purpose

GET /actuator To list all the actuators available

GET /actuator /smartsocket To list all the outlets on the
smartsocket

GET /actuator /smartsocket/outlet1 To get the status of outlet 1

POST /actuator /smartsocket/outlet1/1 | To change the status of outlet 1 into
1 which stands for 'ON’

Table 4: Details of smart objects in the prototype

Name Sensor Actuator Integration
Method
IRIS temperature, | N/A Directly Integrated
light
SunSPOT temperature, N/A Directly integrated
light, 3-axis
accelerome-
ter, humidity
RFID reader and tags RSSI of each | N/A Proxy style
Tag
Desktop ~ computer(Wake On | N/A Booting or Hi- | Proxy style
Lan(WOL)[1] Enabled) bernating the
desktop com-
puter
Smart air conditioner(Arduino+ | temperature Heating Directly integrated
Air conditioner) or Cooling
hardware
Smart desk lamp(smart socket+ | N/A socket Proxy style
desk lamp)
Smart humidifier(smart socket+ | N/A socket Proxy style
humidifier)
Smart drinking fountain(smart | N/A socket Proxy style
socket+ drinking fountain)

Infrared

Figure 7: Deployment of hardware and software
components

integrated into MiWoT. Otherwise, if the smart object takes
MiWoT as a gateway to offer web service, it is integrated in
a prozy style.

To sum up, the deployment of hardware and software
components is illustrated in the Figure 7.

4.3 Desk Lamp Controller: An Example Im-
plementation

To show the flexibility and simplicity in developing ap-
plications on MiWoT, we presented the implementation of
Desk Lamp Controller which is one of the five applications
in our prototype.

The desk lamp controller application controls desk lamps
on each working desk. A desk lamp is turned on and off
based on the presence of its owner and the light condition.
A desk lamp will always stay off when its owner is not in the
lab. When the owner shows up in the lab, the application
will keep the illumination around him in a pre-defined range.

To fulfil the design functionalities, the programmer should
know how to access the RFID sensing data to determine
whether the desk owner is in the lab, the illumination around
the desk and average illumination of the whole lab. Besides,
the programmer should have a method to turn the lamp on
and off.

Before programming, an Upper Limit [llumination Thresh-
old(ULIT) and an Lower Limit Illumination Threshold(
LLIT) must be given to determine the aforementioned
range. When the owner is at the desk, the application logic
to maintain the illumination in the range is described in
Table.

Without the notion of application-oriented programming
supported by MiWoT, the application get device-oriented
APIs. The key algorithm of the application logic in pseudo-
code is like Algorithm 1.

With MiWoT, we can simplify this algorithm by lever-
aging the application-oriented programming support. The
room illumination belongs to a Environment datastream
which is created by application developer using “Filter and
Combiner” mechanism.

In our approach, Filter and Combiner functions are

Algorithm 1 Algorithm to maintain illumination around
the desk
1: dllumination[5]; /*initialization.
illumination sensors in the lab*/

There are five

2: illumination[0] = Get illumination reading from the
first sensor with its API;/*This is the reading around
the desk*/

3: illumination[l] = Get illumination reading from the
second sensor with its API;

4: illumination[2] = Get illumination reading from the
third sensor with its API;

5: gllumination[3] = Get illumination reading from the
fourth sensor with its API;

6: illumination[4] = Get illumination reading from the

fifth sensor with its API;

7: sum = 0;

8: average = 0;

9: for (int i =0;4<4;i++) do

10: sum+ = illumination][i];

11: end for

12: average = sum/5;

13: if average>ULIT&& illumination/0]>ULIT then
14: Turn the desk lamp off through API;

15: else
16: if average>LLIT&&illumination/0]>ULIT &&illu-
mination[0]<ULIT then

17: Turn the desk lamp off through API;

18: end if

19: else

20: if average>LLIT&& average<ULIT
&&illumination[0]>ULIT&& illumination[0] <ULIT
then

21: Turn the desk lamp off through API;

22: end if

23: else

24: if average<ULIT&&illumination[0]<ULIT then

25: Turn the desk lamp on through API;

26: end if

27: end if

agnostic of where the readings come from. The Filter and
Combiner functions are defined as follows:

DataValue Filter (DataStream dataStream){

if (dataStream.type = = ”Sensed”){
foreach tag in dataStream.Environment_tags
if (tag = = ”lab”)
foreach datavalue in dataStream.Datavalues
if (datavalue.Sensor_type = = illumination)
return datavalue;
}
return null;
}

DataValue Combiner(ValueCollection vCollection){
double sum=0;
foreach datavalue in vCollection

{
sum+=(double) datavalue. Value;
return sum/vCollection.Count;

Since MiWoT provides RESTful APIs, the application
development is not limited to any specific programming

Table 5: Illumination Maintaining Logic.“ON?” stands for turning the lamp on; “OFF” stands for turning the
lamp off; “N/A” stands for there is no such a circumstance; “Remain” stands for remaining the status of the

lamp;

Desk illumination | LLIT < Desk illu- | Desk illumination
> ULIT mination < ULIT | < LLIT

Lab illumination | ON N/A N/A

> ULIT

LLIT < Lab illu- | OFF OFF N/A

mination < ULIT

Lab illumination | Remain Remain ON

< LLIT

Algorithm 2 MiWoT-based Algorithm to maintain
illumination around the desk
average = Get the reading from /datastream/generat-
ed/lab/illumination
2: qllumination0 = Get the reading from /datastream/gen-
erated/iris000/illumination
if average>ULIT& & illumination0>ULIT then
4: Turn the desk lamp off through API;
else
6: if average>LLIT& & illumination0>ULIT &&illumi-
nation0 <ULIT then
Turn the desk lamp off through API;
8: end if
else
10: if average>LLIT&& average<ULIT
&&illumination0 >ULIT& & illumination0 <ULIT
then
Turn the desk lamp off through API;
12: end if
else
14: if average<ULIT&&illumination0<ULIT then
Turn the desk lamp on through API;
16: end if
end if

language or platform. The only requirement is that the
code to access a HT'TP server can be written in the chosen
programming language. Continuing the above example of
the Desk Lamp Controller, the application could access the
room illumination using the URI:

/datastream/generated/lab/illumination

with GET method of HTTP. And the application can
access the illumination of the desk from IRIS mote whose
number is 000 using the URI:

/datastream/generated/iris000/illumination

To control desk lamp, the application could use the URI:

Jactuator/desklamp/0/

with GET method to check the status of it and use the
URI:

Jactuator/desklamp/0/on

with POST method to turn on the lamp or with “off” at
the end to turn off the lamp.

Based on these APIs described, key algorithm of the
application logic of Desk Lamp Controller can be written
as Algorithm 2.

S. CONCLUSIONS

In this paper, we presented the design and implementation

of MiWoT, a Web Service based framework to interconnect
heterogenous devices and provide both the device-oriented
and high-level application-oriented APIs for application
developers. With MiWoT, we build a prototype in a
SmartLab project and show MiWoT’s feasibility through a
case study.

For the near future, we plan to add new features to
MiWoT such as access control mechanism,and an eventing
module to support event-driven programming.

6. ACKNOWLEDGMENTS

This work is supported by the National Basic Research
Program of China (973) under Grant No. 2009CB320703;
the National Natural Science Foundation of China under
Grant No. 60821003; the National Science and Technology
Major Project 2011ZX01043-001-002.

7. REFERENCES
[1] AMD White Paper on WOL.

http://support.amd.com/us/Embedded_TechDocs/20213.pdf.

[2] Pachube. http://www.pachube.org.

[3] D. D. Clark, C. Partridge, R. T. Braden, B. Davie,

S. Floyd, V. Jacobson, D. Katabi, G. Minshall, K. K.
Ramakrishnan, T. Roscoe, 1. Stoica, J. Wroclawski,
and L. Zhang. Making the world (of communications)
a different place. SIGCOMM Comput. Commun. Rev.,
35:91-96, July 2005.

[4] D. Crockford. RFC 4627 - The application/json Media
Type for JavaScript Object Notation (JSON).
Technical report.

[5] S. Dawson-Haggerty, X. Jiang, G. Tolle, J. Ortiz, and
D. Culler. smap: a simple measurement and actuation
profile for physical information. In Proceedings of the
8th ACM Conference on Embedded Networked Sensor
Systems, SenSys 10, pages 197-210, New York, NY,
USA, 2010. ACM.

[6] L. M. S. De Souza, P. Spiess, D. Guinard, M. Kéhler,
S. Karnouskos, and D. Savio. Socrades: a web service
based shop floor integration infrastructure. In
Proceedings of the 1st international conference on The
internet of things, IOT’08, pages 50-67, Berlin,
Heidelberg, 2008. Springer-Verlag.

[7] J. Dean and S. Ghemawat. Mapreduce: simplified
data processing on large clusters. In Proceedings of the
6th conference on Symposium on Opearting Systems
Design & Implementation - Volume 6, pages 10-10,
Berkeley, CA, USA, 2004. USENIX Association.

8]

R. T. Fielding and R. N. Taylor. Principled design of
the modern web architecture. In Proceedings of the
22nd international conference on Software
engineering, ICSE ’00, pages 407416, New York, NY,
USA, 2000. ACM.

D. Guinard. Towards the web of things: Web mashups
for embedded devices. In In MEM 2009 in Proceedings
of WWW 2009. ACM, 2009.

D. Guinard, V. Trifa, and E. Wilde. Architecting a
mashable open world wide web of things. Technical
Report 663, Department of Computer Science, ETH
Zurich, Feb. 2010.

V. Gupta, A. Poursohi, and P. Udupi. Sensor.network:
An open data exchange for the web of things. In
PerCom Workshops, pages 753755, 2010.

J. W. Hui and D. E. Culler. Extending ip to
low-power, wireless personal area networks. Internet
Computing, IEEE, 12(4):37-45, July-Aug. 2008.

N. B. Priyantha, A. Kansal, M. Goraczko, and

F. Zhao. Tiny web services: design and
implementation of interoperable and evolvable sensor
networks. In Proceedings of the 6th ACM conference
on Embedded network sensor systems, SenSys ’08,
pages 253-266, New York, NY, USA, 2008. ACM.

L. Richardson and S. Ruby. RESTful web services.
O’Reilly Series. O’Reilly, 2007.

J.-P. Vasseur and A. Dunkels. Interconnecting Smart
Objects with IP - The Next Internet. Morgan
Kaufmann, 2010.

