
Similarity-based Web Browser Optimization

Haoyu Wang, Mengxin Liu, Yao Guo∗, Xiangqun Chen
Key Laboratory of High-Confidence Software Technologies (Ministry of Education)

School of Electronics Engineering and Computer Science,Peking University, Beijing, China
{wanghy11,liumx11,yaoguo,cherry}@sei.pku.edu.cn

ABSTRACT
The performance of web browsers has become a major bottleneck
when dealing with complex webpages. Many calculation redun-
dancies exist when processing similar webpages, thus it is possible
to cache and reuse previously calculated intermediate results to
improve web browser performance significantly. In this paper,
we propose a similarity-based optimization approach to improve
webpage processing performance of web browsers. Through
caching and reusing of style properties calculated previously, we
are able to eliminate the redundancies caused by processing similar
webpages from the same website. We propose a tree-structured
architecture to store style properties to facilitate efficient caching
and reuse. Experiments on webpages of various websites show
that the proposed technique can speed up the webpage loading
process by up to 68% and reduce the redundant style calculations
by up to 77% for the first visit to a webpage with almost negligible
overhead.

Categories and Subject Descriptors
H.4.3 [Communications Applications]: Information Browsers

Keywords
Web Browser; Similarity; Caching; Cascading Style Sheet

1. INTRODUCTION
Web browser has become one of the most important applications

on a variety of computing devices, including PCs, tablets and
mobile phones. A majority of users rely heavily on web browsers
to access information, data and services on the Internet. However,
as webpages become more and more complex, the performance
of browsers has become critical for users to have a satisfactory
browsing experience. Due to the limitation of network bandwidth
and processing power, loading and processing complex webpages
might take several seconds to tens of seconds. This perfor-
mance bottleneck of web browsers is especially worse on resource-
constrained mobile devices such as smartphones.
∗corresponding author

Copyright is held by the International World Wide Web Conference
Committee (IW3C2). IW3C2 reserves the right to provide a hyperlink to
the author’s site if the Material is used in electronic media.
WWW’14, April 7–11, 2014, Seoul, Korea.
ACM 978-1-4503-2744-2/14/04.
http://dx.doi.org/10.1145/2566486.2567971.

The webpage loading time is affected by two major factors. The
first factor is due to the time cost when retrieving the web contents
from a remote web server, which is limited by the networking
speed. The other factor is the time of processing the webpage
locally. As webpage processing is computation-intensive and needs
substantial computation resources, it has become a very important
factor affecting the performance of web browsers, especially for the
mobile devices with weak computing power.

Because networking speed is typically out of the control of web
browsers, in this paper we mainly focus on improving the webpage
processing speed on the devices. According to previous research [9,
29] and our own experimental results, style formatting and layout
calculation account for most of the webpage processing time and
they are the key issues that lead to poor web browsing performance.

With a close inspection of the calculations performed during
webpage processing, we find out that there exist many redundancies
that can be potentially eliminated, mainly due to similarities
between webpages and the embedding components. For example,
many webpages might be visited more than once. Although related
resources of these webpages are typically cached, the browser still
need to calculate the styles and layouts every time the webpage
is accessed. On the other hand, multiple webpages from the
same website also exhibit strong similarities, causing the browser
performing many repetitive calculations. Caching and reusing
these intermediate calculated results could potentially improve the
performance of web browsers, as demonstrated by earlier studies
such as Smart Caching [29].

In this paper, we explore the similarities between webpages
and propose a new approach to eliminate the redundant style
calculations between webpages by caching the style formatting
results and sharing the results between different webpages. The key
technique in our proposed approach is similarity-based style reuse.
We store the processed style properties in tree-structured caches
which can be shared between webpages. Cached style properties
could be loaded directly without re-calculation when the identical
element is processed subsequently.

Our work is partially motivated by Smart Caching [29], which
first proposed to reduce the local computations by caching the
intermediate results when revisiting the same webpage. The Smart
Caching approach is effective for webpage revisits, however, the
majority of the webpage visits are new visits. For example,
75% of the webpages visited are new visits for mobile user in
a recent study [24]. Besides same-page revisits, we explore the
possibilities of exploiting the similarities between webpages from
the same website, analyze the amount of similar styles between
webpages and propose a new technique supporting style reuse
between different webpages.

575

Compared to caching techniques for the same-page revisits,
similarity-based style reuse, which aims to capture similarities
between different webpages, brings new challenges. In order to
facilitate style sharing between different webpages, we propose
a tree-structured style graph architecture for organizing the styles
stored for future use. A style graph is constructed for each visited
website. The style graph is organized according to the directory
structure of the website. Each directory node relates to a style
tree, which stores the style properties from all the visited webpages
in the same sub-directory, such that they can be shared efficiently.
When a new page (same for a previously visited page) is visited, we
always retrieve the corresponding style tree in the corresponding
sub-directory node for previously stored styles and reuse those
whenever possible. If the corresponding style tree is empty because
there are no previous accesses to the same sub-directory, we also
propose a heuristic algorithm to search in the style graph to find
reuse possibilities.

We have implemented a prototype of the proposed approach
based on QtWebKit [3]. Experimental results show that our
approach can speed up the webpage loading process by up to 68%
(27% on average) and reduce the redundant style calculations by
up to 77% for the first visit to a webpage, with almost negligible
overhead.

We make the following main contributions in this paper.

• We explore the similarities between webpages and the poten-
tial of style reuse between different webpages. We find that
most webpages in the same website have lots in common,
not only in their appearances, but also in the style properties
used. This offers us the opportunities to further optimize web
browsers.

• We propose a new similarity-based style reuse technique in
order to reduce the redundant calculations between webpages
during web browsing. This technique can be applied to both
webpage revisits and new visits.

• We demonstrate the applicability and performance of similarity-
based style reuse through extensive experiments with web-
pages from many popular websites. We show that we are
able to exploit the similarities between webpages to improve
web browsing significantly. We also measure the memory
overhead of our approach and the result shows that the
overhead is almost negligible.

• We perform a user study and analyze the traces generated by
10 real users. We observe that the web browsing histories
exhibit strong spatial and temporal locality, which demon-
strates the potential of applying our approach to enhance user
experience in a real environment.

The rest of this paper is organized as follows. Section 2
introduces the background of webpage processing, existing caching
scheme for web browsers and Cascading Style Sheets. Similarities
between webpages are explored in Section 3. The similarity-based
style reuse technique is presented in Section 4. In Section 5, we
report our implementation and experimental results. User study
is performed in Section 6. We discuss limitations of our work
in Section 7 and present related work in Section 8. At last, we
conclude the paper in Section 9.

2. BACKGROUND
In this section, we first give a brief introduction to the procedure

of opening a webpage. We then introduce the existing caching
schemes for web browser and give an overview of Cascading Style
Sheets (CSS), which will be used heavily in this paper.

Resource

loading
Parsing

Style

Formatting

Layout

Calculation
Painting

Scripting

Display

User action

Raw

resources

DOM

Tree

Render

Tree

Render

Tree with

layout

bitmap

Figure 1: The process to open a webpage

2.1 The process to open a webpage
Most web browsers have similar frameworks and usually process

the webpages with the same procedure. Figure 1 shows the typical
work flow of a web browser. The web browser retrieves related
resources from the remote web servers or local storage, including
HTML documents, Cascading Style Sheets(CSS), pictures, audio
files, JavaScript files, and so forth. The HTML data is the main
resource, which is parsed into a DOM (Document Object Model)
tree, which represents the structure of the HTML documents.
Contents referenced by the URLs in HTML documents are sub-
resources, which are fetched and added to the DOM tree subse-
quently. Style formatting operations calculate the presentations
(e.g. color, font-size) for each DOM element. Layout calculations
compute the position for each element in order to render them.
These operations occur concurrently and the webpage is gradually
drawn to the screen. After completion of loading the initial
webpage, user interacts with webpages by triggering JavaScript
executions. The JavaScript execution may modify the DOM
tree, which would in turn cause the re-computation of the style
properties and layout.

Style formatting and layout calculation account for most of the
webpage processing time and they are the key issues leading to
poor web browsing performance. The previous studies [9, 29] show
that style formatting and layout calculation account for more than
50% of the webpage processing time. We also have profiled the
performance of WebKit [6] based on OProfile [2], and the result is
similar. One reason is that Cascading Style Sheets are widely and
heavily used in modern webpages. Because CSS matching process
is sequential and recursive, it makes the whole procedure time-
consuming. Meanwhile, because the layout results are sensitive
to the style properties, any changes to style properties may lead to
the re-calculation of the layout, which is also a recursive process.

JavaScript execution is no longer the bottleneck for web browser-
s thanks to the development of JavaScript optimization techniques.
For example, with the adoption of tracing JavaScript Just-In-
Time (JIT) compiler in Firefox [1], the performance of JavaScript
has improved significantly [7]. Previous work [16] proves that
optimizing JavaScript execution on their test sites would only
reduce 7% of the total CPU time at most, while parsing related
tasks for JavaScript spends much more time.

2.2 Caching in Web Browsers
Caching is a well-known approach to deal with I/O bottlenecks.

Frequently visited data is stored so that future requests for the same
data can be served faster. The traditional caching scheme for web
browsers is to store frequently visited web resources (e.g. pics, CSS
files, JS files) locally, which can save the round-trip-time (RTT) for
future visits, reducing network traffic as well as improving browser
performance.

576

selector
{ Declaration 1; Declaration 2; … Declaration n }

Property: Value Property: Value Property: Value

Declaration Block

Figure 2: The general CSS rule structure

Although straightforward and effective, the traditional caching
scheme faces many challenges. On one hand, the miss rate of the
traditional scheme is high because more and more web contents
become dynamic. Even increasing the cache size to infinite only
reduces 10% of the cache misses [23]. On the other hand, the
process of re-validation greatly reduces the effectiveness of the
browser cache [24]. The cached resources have two states, either
fresh or expired. The expiration time of resources is indicated
in the HTML header. If the state is fresh, the resource can be
reused without confirming with the server. If the state is expired,
the browser needs to connect to the server to confirm whether
the resource can be used or not. In this process, the expired
resources bring in at least one RTT. Re-validations account for a
large portion of cache requests from browser, thus greatly reducing
the effectiveness of the browser cache [23].

Zhang et.al proposed Smart Caching [29] to cache the inter-
mediate results in style formatting and layout calculation stages.
The cached results can be applied in subsequent processing of the
same data to avoid repeated local computations. Though dynamic
webpages change frequently, the cached results may be still useful
for the unchanged parts. Thus this caching scheme is effective for
webpage revisits.

However, the majority of the webpage visits are new visits. For
example, 75% of the webpages visited are new visits for mobile
user in a recent study [24]. Based on our experimental results,
different webpages in the same website share a lot of similarities. If
we cache the intermediate results in computation-intensive stages
of webpage processing, the results may be useful for the identical
components across similar webpages.

In this paper, we propose a similarity-based caching and reusing
scheme to cache and share intermediate results across similar
webpages. We only cache the style results, excluding the layout
results. Because layout calculation is typically content-related,
the layout results are sensitive to the actual contents and style
properties. Any modification to the DOM tree will lead to invalid
layout cache. Different webpages in the same website may share a
large portion of style properties, however, the contents are typically
different. Meanwhile, CSS matching process accounts for the
largest portion of the webpage processing time [7]. Thus caching
and reusing the style properties across webpages have the most
potential to improve the web browsing performance.

2.3 CSS Overview
CSS is used to separate the presentation from the contents for

webpages. Every webpage corresponds to a style sheet, which
contains a series of CSS style rules. The style rules specify the
fonts, colors or other presentations of the corresponding DOM
element. Each CSS rule contains two parts: the selector and the
declaration block.

Figure 2 presents the general structure of CSS rules. The
selector determines which kind of elements match this CSS rule.

Figure 3: The similarities of two Wikipedia webpages

There are many kinds of selectors, such as tag selectors, ID
selectors, Class selectors, or complicated descendant selectors and
sibling selectors, etc. The declaration block contains one or more
declarations. Each declaration consists of a property and a value.

For example, a simple CSS rule h1 { color:blue; font-h1
size:10px; } contains a selector “h1” and a declaration block
{ color:blue; font-size:10px; }, which contains t-
wo declarations. The meaning of this CSS rule is: set the color
of the text within “h1” as blue, and set the font size as 10 pixel.

To calculate the style properties of a DOM element, a CSS
matching process is needed. Each CSS rule is checked to determine
whether the rule is matched to the element or not. This process is
executed sequentially and recursively in order to get a proper result.
Thus this process is computation-intensive and time-consuming.
The CSS rule-matching component accounts for the largest portion
of the webpage processing time [7].

CSS allows the style characteristics to be shared across multiple
webpages. On one hand, it could reduce the repetitions in
specifying the styles for each webpage. On the other hand, it is easy
to keep the style consistent for all webpages in the same website.
In current web design, CSS is often shared between webpages in
the same website, which offers us the opportunity to exploit this
feature to optimize web browsing performance.

3. SIMILARITIES BETWEEN WEBPAGES
In this section, we explain and evaluate the similarities between

different webpages, which is the key motivation behind our pro-
posed approach.

Many webpage visits are from the same website, most of
them from the same sub-domain or same sub-directory. These
webpages may share many common resources (eg. CSS files,
JS files, pictures), possess similar webpage structure and similar
(or even the same) styles. For example, in Figure 3, the two
different Wikipedia webpages share a lot of similarities. From the
visual point, they have the similar appearance and same strucutre,
including the same navigation bar, and the same header and footer
components. After analyzing their web resources, we find out
that all the CSS files and JavaScript files they used are the same.
Besides actual contents, only the relevant pictures are different.

577

Table 1: Similarities between webpages

website webpages HTML
repetition
ratio

style matching
ratio

Amazon item pages 33.7% 74.8%
Baidu result pages 51.0% 79.5%
Bing result pages 71.0% 54.6%
Youtube video pages 27.1% 58.5%
QQ news pages 53.1% 68.9%
Youku video pages 32.9% 84.3%
Taobao item pages 45.3% 63.3%

 Style Retrieving

 Style Reusing

 Style Calculation

 Style Caching

Style

 Formatting

DOM

 Element

Styled

 Element

Figure 4: The procedure of similarity-based style reuse

The reason of so many similarities exist in current webpages is
because that many webpages are generated based on web templates
[5]. In modern web design, templates are widely used to keep the
uniformity of the webpages and separate the presentation from the
contents. However, the template brings in many redundant data
along with the convenience. As shown in previous research [5], up
to 40% of all data on the web are actually templates, which causes
not only redundancies in Internet traffic, but also redundancies in
webpage processing.

In order to further explore the similarities between webpages,
we analyze both the HTML data repetition ratio and style matching
ratio of elements for a set of webpages in the same sub-directory.
We use webpages from eight of the top websites from Alex [4]
in our experiments. The results are shown in Table 1. The
HTML data matching ratio refers to the percentage of the same
HTML data (including the JS code inside HTML document) shared
between different webpages. The style matching ratio refers to the
percentage of style properties shared between different webpages.
The HTML data repetition ratio varies, because the contents of
different webpages change a lot. However, the webpages from the
same website share more than half of their style properties, up to
more than 80%. This result indicates that although their contents
varies, the styles keep unchanged for many webpages.

4. SIMILARITY-BASED STYLE REUSE
In this section, we describe the proposed similarity-based style

reuse technique in detail, including style storage and management
techniques, style retrieving and matching algorithms.

temp.com

a.temp.com b.temp.com

a.temp.com/c/ a.temp.com/d/

Style Tree

Style Tree

Style Tree Style Tree

Style Tree

Figure 5: An example of style graph

Figure 4 presents an overview of the proposed similarity-based
style reuse approach. We cache all the style calculation results
during style formatting in a tree-structured architecture, which will
be explained in detail next. When the style of a DOM element
needs to be calculated, we first retrieve the style properties from
the cached style trees. If matched style nodes are found in the
style tree, the style properties can be reused without calculation.
If no corresponding style nodes can be found in the style tree, we
calculate the style properties for this element and cache the results
in order to benefit future visits.

4.1 Style Storage & Management
In order to facilitate style sharing between different webpages,

we propose a tree-structured style graph architecture to organize the
style storage. A style graph is constructed for each visited website.

The style graph is organized according to the directory structure
of the corresponding website. An example style graph is shown in
Figure 5. There are two kinds of nodes in a style graph: directory
node and style node. Directory nodes include domain nodes, sub-
domain nodes and sub-directory nodes. They connect the entire
style graph into a tree structure. They do not store any style
information. Each directory node relates to a style tree, which
stores the styles of webpages visited in the same sub-directory, such
that they can be shared efficiently. All the nodes in a style tree are
style nodes, which store the style properties of the corresponding
DOM elements.

The architecture of a style tree is similar to a DOM tree.
However, it only keeps the structure information of the DOM
tree and records the style properties for the corresponding DOM
elements. All webpages in the same sub-directory share a common
style tree. The same sibling style elements are merged into one
element, thus reducing the storage space and the complexity of
style retrieving.

However, some extreme situations might happen. For example,
two webpages in the same directory share a common style tree, but
they are totally different, even the root elements cannot be matched.
In this case, the root element cannot be merged into the style tree,
let alone other elements. In order to solve this problem, a meta-
root node is created in each style tree. The meta-root node does not
store any style information. Its only purpose is to connect all the
different root elements.

For each style node, we use a triple <TagName, ID, Class>
as the node identifier. For each DOM element, the style properties

578

can be reused only if the node identifier and the path to root are
matched with the style node.

Compared with the style storage method in Smart Caching
[29], our proposed style graph structure is more efficient. In
Smart Caching, each webpage has a corresponding style tree.
However, many webpages are only visited once, for example,
people seldomly access a news webpage for a second time. Thus
the cached style tree would never be used again and it is a waste of
resources. In contrast, all the webpages in the same sub-directory
share a common style tree in our approach. The same elements are
compacted to save the storage space. According to our statistics,
the style graph structure can save more than 60% of the storage
space on average compared with Smart Caching. When more
webpages from the same sub-directoy are visited, the average style
storage space for each webpage is decreased. Meanwhile, the style
tree keeps the structure information of the DOM tree, which is
efficient for style retrieving and matching.

4.2 Style Retrieving
Each style tree stores the styles from all the visited webpages

in the same subdirectory, such that they can be shared efficiently.
When a page is visited, we always check the corresponding
style tree for previously stored styles and reuse those whenever
possible. If the corresponding style tree is empty because there
are no previous accesses to the same subdirectory, we also propose
an algorithm to search in the whole style graph to find reuse
possibilities. The process of style retrieving can be divided in two
steps: style graph searching and style matching.

4.2.1 Style Graph Searching
When a page is visited, we always retrieve the corresponding

style tree to reuse previously stored styles whenever possible.
When the corresponding style tree is empty, we propose a heuristic
method to find reuse possibilities in the whole style graph.

We introduce the concept of webpage distance. A website
is typically organized as a directory structure, which can be
represented as a tree structure. Any webpage can be attributed to a
specific directory. The distance of two webpages is the distance of
their corresponding directories, which refers to the number edges
from the starting directory to the ending directory.

We assume that the shorter the distance of two webpages, the
higher similarities they have. The intuition behind this is that,
the webpages in the same sub-directory have higher possibility
to share more common characteristics than webpages in different
directories. Besides, the webpages in the same sub-domain have
higher possibility to share more similarities than webpages in
different sub-domains. While this assumption is not necessarily
correct for every website, it offers a heuristic way to find reuse
possibilities.

Based on this assumption, we use a breadth-first search (BFS)
algorithm to search for non-empty style tree when necessary. When
visiting a webpage, if the corresponding style tree is empty, we use
the BFS algorithm to choose the nearest non-empty style tree. The
algorithm is very efficient because the number of style trees is very
limited. While the resulting style tree is reused, we cache the reused
styles in the corresponding style tree for the new webpage, such that
for future accesses to the webpages in the same directory, searching
is not needed because the style tree is not empty any more.

4.2.2 Style Matching
Style matching is the method to compare the DOM element with

the cached style nodes. If the nodes can be matched, the cached
style properties can be reused directly without calculation.

When a webpage is loaded, the DOM tree is constructed in a pre-
order manner, thus the parent nodes are always processed before
the children nodes. The style properties of a DOM element are not
only related to the CSS rules, but also related to the parent-children
hierarchy. If the parent node cannot be matched, the style properties
of all the children cannot be reused from the cache and should be
re-calculated.

The style tree can be very large because many visited webpages
may contribute to the same tree. Even so, the process to retrieve the
style tree can be very efficient. When matching a DOM element,
we only need to find the style node “sp” corresponding to its parent
node, and compare the DOM element with the children elements of
“sp”. The style matching algorithm is described as below.

STYLECAL(DOMELEMENT D, STYLETREE T)
1 if d = ROOT NODE
2 then
3 t← COMPARE(d, T.root)
4 if t = TRUE
5 then d.style←(T.root).style
6 if t = FALSE
7 then calculate the style for d
8 StyleCache(d)
9 else

10 find d’s parent DOM node Pd
11 find Pd’s style node s
12 for sc in children of s:
13 do
14 t← COMPARE(d, sc)
15 if t = TRUE
16 then d.style←sc.style
17 exit
18 if t = FALSE
19 then
20 calculate the style for d
21 StyleCache(d)

4.3 Handling CSS Inconsistencies
Our approach is based on the assumption that when two nodes

have the same identifier and parent-child relationship, we could
reuse the cached style properties. The assumption is reasonable in
practice since it is uncommon to create two different styles with the
same node identifier, or modify an existing style without changing
its node identifier.

However, considering the rare situation when two pages have
matching DOM elements but different CSS rules for these el-
ements. The proposed approach will render the second page
incorrectly, because it reuses the CSS rules from the first page.

To address this situation, we need to be able to detect the
inconsistencies in the CSS rules for the styles with the same style
node identifier. When we reuse a cached style, we record the
corresponding matched CSS rules in the style tree. When a new
page is being loaded, we can identify which rules are missing and
which rules are newly added compared with the cached rules. If
there are missing rules or newly added rules, it means that an
inconsistency has been detected. We then eliminate the missing
rules and add the newly matched rules to the matched rules list
for each node, and recalculate the style properties. The new style
calculation results are cached and they will be reused if the same
node identifier and parent-children hierarchy are matched in the
future.

579

Table 2: Websites and webpages used in experiments.

category website webpages
news www.bbc.com 10 news pages
news www.qq.com 10 news pages

search engine www.google.com 10 result pages
search engine www.baidu.com 10 result pages
e-commerce www.amazon.com 10 item pages
e-commerce www.taobao.com 10 item pages

social network www.facebook.com 10 personal profile pages
social network www.twitter.com 10 personal profile pages
online video www.youtube.com 10 video pages
online video www.youku.com 10 video pages

5. EXPERIMENTAL RESULTS
We have implemented a prototype of the proposed approach

based on QtWebKit [3] (version 2.2.0) in Windows, which is a
Qt-based WebKit layout engine. Our experimental machine is a
mainstream PC with an Intel Dual Core 3.30GHz processor and
6GB of DDR2 RAM running Windows 7 Professional with the
latest patched installed. Because the window size of the web
browser can affect the performance of loading a webpage, we
fix the window size at 800 by 600 pixels. We also write a
script to test the webpages automatically. Because QtWebkit used
in our experiments is a basic and open-source web browser, its
speed cannot be compared with the heavily optimized production
web browsers in the market, such as Google Chrome, Microsoft
Internet Explorer, or Mozilla Firefox. However, the purpose of
our experiments is showing the relative performance improvement,
which should remain in a similar range when applied to other
browsers.

5.1 Overall Performance Improvement
In our experiments, we select ten popular websites in five

categories from Alexa [4]. For each website, we randomly choose
10 content pages in the same sub-directory as the testing webpages.
The list of websites and webpages used are shown in Table 2.

Because networking speed is typically out of the control of
web browsers and network conditions vary significantly during
our experiments, we fetch all the webpages and related resources
locally and turn off the Internet connection in our experiments.
There may still exist some JavaScript asynchronous requests that
cannot be fulfilled during the experiments, which could affect the
absolute numbers in the results, but it would not affect the relative
comparison between different sets of results.

We measure the time period for the whole page loading phase.
In WebKit, both the start and finish of page loading send signals,
thus the page loading time is calculated as the interval between the
load-start and load-finished signals.

For each website, we test the performance of opening any
two pages in different sequences with and without applying the
proposed similarity-based style reuse method. Each case is tested
10 times and the average data is used in the presented results. We
present the loading time improvements in Figure 6. We also show
the matching ratios for each website in Table 3.

In Figure 6, the results indicate that the performance of the
proposed approach varies for different websites. The geometric
mean of speedup for loading time is 27% for all webpages. For
webpages such as BBC and Amazon the speedup can reach as high
as more than 60%. For webpages of search engines like Google
and Baidu, the improvement is not obvious and we only can see a
speedup about 10% compared to the original browser. In Table 3,

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

google baidu bbc qq amazon taobao facebook twitter youtube youku

Lo
a

d
in

g
 t

im
e

(m
s)

Web Site

Orginial

Optimized

Figure 6: Loading time improvements for different websites.

Table 3: Style Matching ratios for different websites.

website total opera-
tions

matched
operations

matching
ratio

www.google.com 3009 1357 44.6%
www.baidu.com 464 360 77.7%
www.bbc.com 1023 392 38.8%
www.qq.com 1259 583 39.9%
www.amazon.com 2079 1105 53.4%
www.taobao.com 1978 1397 70.7%
www.facebook.com 1120 256 22.1%
www.twitter.com 855 93 10.1%
www.youtube.com 970 497 51.2%
www.youku.com 1901 1200 41.7%

we can see that the style matching ratios range from 10% to nearly
80% for webpages across different websites. The geometric mean
of the style matching ratios is 41.7%. The matching ratios for fresh
new pages of Facebook and Twitter are relatively low.

Because webpages from different types of websites typically
show relatively different behaviors, we also compare the data from
different categories, which is shown in Table 4.

From the comparison, we can see that social network websites
have the lowest matching ratios, because the personal profile pages
of social network websites differ significantly. On one hand,
every user could customize his own profile page with different
templates provided by the website, which causes the styles different
between webpages. On the other hand, each fresh news entry in the
webpages of Twitter usually has a unique “ID”. Although most of
them have similar styles, we still can not reuse them because their
IDs are different.

The results show that search engine websites have a high match-
ing ratio but the performance improvement is relatively low. We
analyzed these webpages and identified two reasons. First, there
are a lot of Javascript executions in the webpages, which occupy a
large portion of the loading time. Second, these webpages usually
have fewer elements than webpages in the other website categories.
Thus the style formatting process only occupies a small portion of
the whole page loading time.

Table 4: Performance gains for different website categories

Website Category Speedup Matching Ratio
search engine 9.1% 58.9%

news 36.8% 39.4%
e-commerce 42.2% 61.4%

social network 13.9% 16.3%
online video 41.1% 56.9%

580

1

1.05

1.1

1.15

1.2

1.25

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 2 3 4 5 6 7 8 9 10

M
a

tc
h

in
g

 r
a

ti
o

S
p

e
e

d
u

p

Visited Webpages

matching

ratio

speedup

Figure 7: The speedups and matching ratios for 10 consecutively
visited webpages

200

2200

4200

6200

8200

10200

12200

14200

1 2 3 4 5 6 7 8 9 10

N
u

m
b

e
r

o
f

S
ty

le
 E

le
m

e
n

t

Visited webpages

cached

element

total

element

Figure 8: The number of total and cached style elements for 10
consecutively visited webpages

The webpages of news, e-commerce and online video websites
usually have many elements with the same style properties, thus the
performance can be improved significantly. The matching ratio is
typically over 50%, and the speedup is more than 36%.

The results show that:

• For webpages using heavy CSS styles, our approach can
improve the performance greatly. Our approach is suitable
for webpages whose style formatting process accounts for a
large portion of page loading time.

• The performance of our approach is also related to the design
pattern of webpages. Too many unique IDs and classes
in the webpages will lead to low matching ratios and low
performance gains.

5.2 Consecutive Visits to Similar Webpages
In this experiment, we test the performance of opening a series of

webpages in the same sub-directory. The purpose is to test whether
we can eliminate more redundant calculations when more similar
webpages are cached. At the same time, we also calculate the size
of the style trees as an indicator of the incurred overhead.

We choose 10 news webpages in the sub domain “news.sina.
com.cn”. The webpages are visited in a particular order consec-
utively. There is no style cache available when the first webpage is
accessed.

The speedups and matching ratios of these 10 continuous visited
webpages are shown in Figure 7. The matching ratio for the
first webpage is lower than the others because there is no style
cache when the first webpage is visited, and the matched elements
are matches within the same page. Because there is a similar

0

5000

10000

15000

20000

25000

30000

35000

40000

0 1 2 3 4 5 6 7 8 9 1 0

M
E

M
O

R
Y

 U
S
A

G
E

(K
B

)

WEBPAGE

Original With PageCache Optimized With PageCache

Original Without PageCache Optimized Withour PageCache

Figure 9: Memory usage comparison between the original and
optimized browser with/without PageCache

mechanism in WebKit to reduce the redundant computations within
a webpage, although the internal matching ratio is 75%, the
speedup is low. There are no obvious performance gains with more
webpages visited for the following webpages. The speedup keeps
in a relatively stable level between 15% to 20%. The matching
ratios remain at about 90%.

Then, we evaluate the number of cached style elements and the
total number of elements while visiting more webpages. The result
is shown in Figure 8, which is an accumulated graph. The style tree
is initially empty and it grows in a relatively slow speed as different
elements are added. Compared with the total elements, the number
of cached elements in the style tree is much smaller. It means that
the styles of many elements are the same and we have actually
eliminated those redundant style calculations with similarity-based
style reuse.

5.3 Memory Overhead
Currently, our approach stores the cached style results in the

memory of the browser process. Thus we compare the memory
usage of QtWebkit with and without the proposed caching scheme
to understand the overhead of our approach. Similar to the
previous experiments, we choose 10 webpages in the sub-domain
“news.sina.com.cn” and open them consecutively. We record the
memory usage after each visit respectively. Because QtWebkit is
compiled in the Windows environment, we can use the Windows
Task Manager to monitor the memory usage of QtWebkit.

The result is shown in Figure 9. We can see that memory usage
of the optimized browser is almost unchanged compared to the
original browser. By closer inspection, we can even see the total
memory usage is reduced a little bit with the optimization enabled.
According to common sense, the memory usage of optimized
browser should be higher than the original browser because we
cached extra data structures such as style graphs in the memory.
The result is somewhat surprising and we further investigated the
reasons.

While caching the style nodes in our approach, we have not
created new style nodes but pointed them to the previously created
style nodes using a pointer. These style nodes are referenced by
pointers thus they would not be destroyed even the old pages are
closed. Furthermore, there is a cache mechanism called “Page
Cache” in WebKit. It is used only when a user clicks the back or
forward button. When a user navigates to a new page, the previous
page is not thrown out completely, instead it is placed in the Page
Cache. The Page Cache mechanism makes clicking the back button
almost instantaneous. To use Page Cache, the results of previously
visited webpages are stored in the memory, including the style

581

Table 5: Browsing history traces of different users.

USER History Items USER History Items
User1 535 User2 25331
User3 1534 User4 1904
User5 8539 User6 33056
User7 562 User8 5097
User9 8428 User10 25369

nodes. Consequently, our approach have no memory overhead
compared to the original browser with Page Cache. Due to the
consecutive visits to similar webpages, some style nodes can be
reused, thus the memory usage of the optimized browser can be
even lower than the original browser.

In another set of experiments, we turn off the Page Cache
mechanism in WebKit by modifying the source code for both the
original browser and optimized browser. We re-run the experiments
and the result is also shown in Figure 9. It shows that the memory
usages of both the original browser and optimized browser are
decreased about 5,000 KB after turning off the Page Cache. The
memory usage of the optimized browser is slightly higher than the
memory usage of the original browser, with an increase of 660 KB
on average. This is expected because we cached the style nodes
in the optimized version, which are not preserved in the original
browser with Page Cache turned off.

Nonetheless, the growth of memory usage is negligible com-
pared to the total memory usage of the browser in all cases.

6. USER STUDY
In this section, we perform a user study and analyze web

browsing traces generated by real users. As stated above, our
approach is demonstrated effective for webpage revisits and new
visits of similar webpages in experiments. The intention of this
user study is to understand the browsing behaviors of real users
and verify the validity of our approach.

We choose ten volunteers in our lab and analyze their web
browsing histories collected from different browsers including
Internet Explore, Chrome and Firefox. The time period varies from
two days to more than three months, and the number of visited
URLs varies from 535 to 33056, as shown in Table 5. All the
browsing traces are continuous.

In order to understand the revisit ratio in their web browsing his-
tories, we analyze the percentage of visited URLs which occurred
within a specified period of time after the last visit to the same
URL/domain/directory. Figure 10 shows the analysis results for
different time periods, which are set as 2 minutes, 10 minutes, 1
hour and 1 day, respectively.

We see that the revisit ratio to the same domain is more than
90% within one day. Even after shrinking the time period to two
minutes, the revisit ratio to the same domain is still nearly 70%.
Furthermore, the revisit ratio to the same directory is more than
50% within two minutes on average. However, the revisit ratio for
the same URL is much smaller, which is only about 10% within
two minutes.

We make the following observations from the results:

• The web browsing history exhibits very strong spatial locali-
ty. The users are likely to visit URLs which are highly related
(i.e., closer) to the current URL in the near future, such as
URLs in the same domain or same directory.

• The web browsing history exhibits very strong temporal
locality. We see that there is almost a 50% chance for a user

to access a webpage in the same domain/directory within two
minutes.

• The revisit ratio to the same URL is much lower than the ratio
of visiting to the same directory or same domain. Thus the
traditional cache scheme for the same webpage works only
for a small portion of webpage visits.

These observations show that webpage revisits in the same
domain/directory within a short period occur very frequenlty,
which means great potential to enhance user browsing experiences
using our approach, which is able to take advantage of similarities
between recently visited webpages.

7. DISCUSSIONS
The experimental results with our prototype implementation

demonstrate the effectiveness and applicability of similarity-based
style reusing. In this section, we examine possible limitations in
our current design and discuss potential future improvements.

Cache Storage.
Our approach currently stores the cached style results in the

memory of the browser process, rather than serializing the results to
files on the disks. The reason is that many repetition visits happen
within a very short time period (as short as 2 minutes) after the last
visit to the same URL/domain/dir, as demonstrated in Section 6.
Though we cache the style results in the memory, our approach has
almost no memory overhead comparing with the original browser,
which is demonstrated in Section 5.3. The caches could easily be
serialized and stored in permanent files on the disks if needed.

Network Influence.
Networking speed is typically out of the control of web browsers.

When networking speed is fast, the process of local processing
accounts for a majority of the web browsing time, thus our
approach is able to improve the performance of web browser
significantly. However, in the case of poor networking speed, the
process of resource loading only accounts for a small portion of
the total page loading time, thus our approach may not improve the
overall browsing performance obviously. In the evaluation Section
5, we have not taken the networking speed into consideration
because networking speed varies greatly at each test, making it is
impossible to accurately measure the impact of our approach.

Mobile Web Browser.
As mobile devices become more and more popular, many people

are using mobile browsers to access the Internet. The redundant
calculations might cause a greater problem on mobile browsers.
Although we have only implemented the proposed technique on
a PC environment, it can be easily incorporated to a mobile
browser. As the processing speed of mobile devices is typically
slower, we expect that the proposed technique can achieve a better
improvement for mobile browsers and has the potential to reduce
the power/energy consumption as well.

Redundant Data Transmission.
Webpage templates are widely used in current web designs.

Webpage templates refer to pieces of HTML code common to a
set of webpages usually adopted by content providers to enhance
the uniformity of Websites. The templates cause the contents to
be replicated in multiple webpages and occur in large volumes.
According to previous studies [20, 21], the templates represent
over 40% of data currently available on the Web. Fetching and

582

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

user1 user2 user3 user4 user5 user6 user7 user8 user9 user10 average

1 day

SameURL SameDir SameDomain

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

user1 user2 user3 user4 user5 user6 user7 user8 user9 user10 average

1 hour

SameURL SameDir SameDomain

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

user1 user2 user3 user4 user5 user6 user7 user8 user9 user10 average

10 min

SameURL SameDir SameDomain

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

user1 user2 user3 user4 user5 user6 user7 user8 user9 user10 average

2 min

SameURL SameDir SameDomain

Figure 10: Revisit ratios to the same URL/domain/directory for 10 real users within different time period (2min/10min/1hour/1day).

processing the templates is likely to lead to a waste of bandwidth
and computation resources. It offers the opportunity of reducing
both the redundant computations and network traffic.

8. RELATED WORK
Web browser is one of the most important applications on

devices connected to the Internet, thus improving the performance
of web browsers is very important. Researchers and industry orga-
nizations propose various methods to build a better web browser.
The authors in [22] have surveyed optimizing approaches for web
browsers. The approaches include caching optimization [29, 18,
19], parallelization [7, 17, 12, 9], prefetching [15, 8], speculative
loading [24] and utilizing the power of cloud computing to enhance
web browsers [25, 27, 28, 26, 13, 14, 10, 11].

Effective Caching.
The typical caching scheme in current web browsers is to cache

the web resources, including HTML data, pictures, CSS files and JS
files. Smart Caching [29] presents a novel caching method to cache
the intermediate results in style formatting and layout calculation
stages. The cached results can be applied in subsequent processing
of the same data to avoid the repeated local computations. This
method only addresses the redundant calculations for revisits to the
same webpage.

Parallelization.
Parallelizing the computation-intensive steps in webpage pro-

cessing can improve the performance of browsers. Jones et al.
[9] analyze the browser and discuss how parallelism can make
the browser more responsive and energy-efficient. They describe
the design of a parallel web browser, and analyze the possibility

and algorithms to parallelize each browser component, including
parallelizing the fronted, parallelizing page layout and parallelizing
the scripting.

Prefetching.
Webpage prefetching attempts to predict which webpages user

will visit in the near future and download the predicted webpages
before actual visits. If the prediction is correct, the browser can
use the resources preloaded locally. For example, PocketWeb [15]
tries to predict user accesses by analyzing their access history. The
web visiting history of a user is used to train the user access model
using a machine-learning approach. The result shows that for 80%
to 90% of the users, the model can accurately prefetch 60% of the
URLs within 2 minutes before requests.

Speculative Loading.
The motivation of speculative loading [24] is similar to our work.

They find that webpages in the same website usually share a lot of
common web resources. Thus they propose a speculative loading
method to predict which resources may be useful when visiting
a webpage and the predicted resources are loaded along with the
main resources, thus saving the round-trip-time. The difference
is that they utilize the similarities between webpages to speedup
resource loading, while we use the similarities to improvement the
performance of webpage processing.

Cloud-Based Optimizations.
The performance of web browsers can be improved with the aid

of cloud computing. The cloud can act as an agent of the web
browser, and all traffic between the web server and the mobile
browser passes through the clouds. The cloud can preprocess
and compress the web contents before sending the results to web

583

browsers. Some current browsers use this approach, such as
Deepfish [26], Opera mini [27] and Amazon Silk [25]. Besides,
web browsers can also offload heavy computations in webpage
processing to a cloud. Many researches have studied computation
offloading [11, 10], which can also be applied to web browsers.

9. CONCLUSIONS
As webpages become more and more complex, the performance

of browsers has become critical for users to have a satisfactory
browsing experience. In this paper, we explore the potential
to improve webpage processing performance by exploiting the
similarities between webpages.

We propose a new similarity-based style reuse technique in order
to reduce the redundant calculations between webpages. A style
graph structure is proposed to cache the style calculation results
efficiently. We also propose a heuristic algorithm to search for style
reuse possibilities in the style graph.

Experiments on webpages from popular websites show that the
proposed method can achieve a speedup of up to 68% (27% on
average) on the whole page loading time and reduce the redundant
style calculations by up to 77% for the first visit to a webpage.
Besides, we also perform a user study and analyze traces generated
by real users, which shows that our approach could work effectively
in a real environment.

Acknowledgment
This work is supported in part by the National Basic Research Pro-
gram of China (973) under Grant No. 2011CB302604, the National
High-Tech R&D Program (863) under Grant No.2011AA01A202,
the National Natural Science Foundation of China under Grant
No.61103026, 61121063, 91118004 and the Key Program of
Ministry of Education, China under Grant No.313004.

10. REFERENCES
[1] Firefox. http://en.wikipedia.org/wiki/Firefox.
[2] Oprofile. http://en.wikipedia.org/wiki/OProfile.
[3] Qtwebkit. http://trac.webkit.org/wiki/QtWebKit#.
[4] The top 500 sites on the web. http://www.alexa.com/topsites.
[5] Web template. http://en.wikipedia.org/wiki/Web_template.
[6] The webkit open source project. http://www.webkit.org/.
[7] C. Badea, M. R. Haghighat, A. Nicolau, and A. V.

Veidenbaum. Towards parallelizing the layout engine of
firefox. In Proceedings of the 2nd USENIX conference on
Hot topics in parallelism, HotPar’10, 2010.

[8] C. Bouras and A. Konidaris. Predictive prefetching on the
web and its potential impact in the wide area. World Wide
Web, 7:143–179, 2004.

[9] R. B. Christopher Grant Jones, Rose Liu, Leo Meyerovich,
Krste Asanovic. Parallelizing the web browser. In First
USENIX Workshop on Hot Topics in Parallelism (HotPar
’09), 2009.

[10] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti.
Clonecloud: elastic execution between mobile device and
cloud. In Proceedings of the sixth conference on Computer
systems (EuroSys ’11), pages 301–314, 2011.

[11] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman,
S. Saroiu, R. Chandra, and P. Bahl. Maui: making
smartphones last longer with code offload. In Proceedings of
the 8th international conference on Mobile systems,
applications, and services (MobiSys ’10), pages 49–62, 2010.

[12] T. Hottelier, J. Ide, R. Bodik, and D. Kimelman. Parallel web
scripting with reactive constraints. In Technical Report No.
UCB/EECS-2010-16, 2009.

[13] J. Kim, R. A. Baratto, and J. Nieh. pthinc: a thin-client
architecture for mobile wireless web. In Proceedings of the
15th international conference on World Wide Web, WWW
’06, pages 143–152, 2006.

[14] A. M. Lai, J. Nieh, B. Bohra, V. Nandikonda, A. P. Surana,
and S. Varshneya. Improving web browsing performance on
wireless pdas using thin-client computing. In Proceedings of
the 13th international conference on World Wide Web (WWW
’04), pages 143–154, 2004.

[15] D. Lymberopoulos, O. Riva, K. Strauss, A. Mittal, and
A. Ntoulas. Pocketweb: instant web browsing for mobile
devices. SIGARCH Comput. Archit. News, 40(1):1–12, Mar.
2012.

[16] L. A. Meyerovich and R. Bodik. Fast and parallel webpage
layout. In Proceedings of the 19th international conference
on World wide web (WWW ’10), pages 711–720, 2010.

[17] L. A. Meyerovich and R. Bodik. Fast and parallel webpage
layout. In Proceedings of the 19th international conference
on World wide web (WWW ’10), pages 711–720, 2010.

[18] K. Muralidhar and N. Geethanjali. Fuzzy Replacement
Algorithm for Browser Web Caching. International Journal
of Engineering Research and Applications (IJERA),
2(3):3017–3023, 2012.

[19] S. Podlipnig and L. Böszörmenyi. A survey of web cache
replacement strategies. ACM Comput. Surv., 35(4):374–398,
Dec. 2003.

[20] K. Vieira, A. L. Costa Carvalho, K. Berlt, E. S. Moura, A. S.
Silva, and J. Freire. On finding templates on web collections.
World Wide Web, 12(2):171–211, June 2009.

[21] K. Vieira, A. S. da Silva, N. Pinto, E. S. de Moura, J. a.
M. B. Cavalcanti, and J. Freire. A fast and robust method for
web page template detection and removal. In Proceedings of
the 15th ACM international conference on Information and
knowledge management, CIKM ’06, pages 258–267, New
York, NY, USA, 2006. ACM.

[22] H. Wang, J. Kong, Y. Guo, and X. Chen. Mobile web browser
optimizations in the cloud era: A survey. In Proceedings of
the 2013 IEEE Seventh International Symposium on
Service-Oriented System Engineering, pages 527–536, 2013.

[23] Z. Wang, F. Lin, L. Zhong, and M. Chishtie. How effective is
mobile browser cache? In Proceedings of the 3rd ACM
workshop on Wireless of the students, by the students, for the
students (S3 ’11), pages 17–20, 2011.

[24] Z. Wang, F. X. Lin, L. Zhong, and M. Chishtie. How far can
client-only solutions go for mobile browser speed? In
Proceedings of the 21st international conference on World
Wide Web (WWW ’12), pages 31–40, 2012.

[25] Wikipedia. Amazon silk.
http://en.wikipedia.org/wiki/Amazon_Silk.

[26] Wikipedia. Microsoft live labs deepfish.
http://en.wikipedia.org/wiki/Microsoft_Live_Labs_Deepfish.

[27] Wikipedia. Opera mini.
http://en.wikipedia.org/wiki/Opera_Mini.

[28] Wikipedia. Skyfire (web browser).
http://en.wikipedia.org/wiki/Skyfire_(web_browser).

[29] K. Zhang, L. Wang, A. Pan, and B. B. Zhu. Smart caching
for web browsers. In Proceedings of the 19th international
conference on World wide web (WWW ’10), pages 491–500,
2010.

584

