
Using Text Mining to Infer the Purpose
of Permission Use in Mobile Apps

Haoyu Wang∗, Jason Hong†, Yao Guo∗
∗Key Laboratory of High-Confidence Software Technologies (Ministry of Education),

School of Electronics Engineering and Computer Science, Peking University
†Carnegie Mellon University

{howiepku@pku.edu.cn, jasonh@cs.cmu.edu, yaoguo@pku.edu.cn}

ABSTRACT
Understanding the purpose of why sensitive data is used
could help improve privacy as well as enable new kinds of
access control. In this paper, we introduce a new technique
for inferring the purpose of sensitive data usage in the
context of Android smartphone apps. We extract multiple
kinds of features from decompiled code, focusing on
app-specific features and text-based features. These features
are then used to train a machine learning classifier. We have
evaluated our approach in the context of two sensitive
permissions, namely ACCESS FINE LOCATION and
READ CONTACT LIST, and achieved an accuracy of about
85% and 94% respectively in inferring purposes. We have
also found that text-based features alone are highly effective
in inferring purposes.

Author Keywords
Permission; purpose; mobile applications; Android; privacy

ACM Classification Keywords
H.5.m. Information Interfaces and Presentation (e.g. HCI):
Miscellaneous

INTRODUCTION
Mobile apps have seen widespread adoption, with over one
million apps in both Google Play and the Apple App Store,
and billions of downloads [5, 18]. Mobile apps can make use
of the numerous capabilities of a smartphone, including many
kinds of sensors (e.g., GPS, camera, and microphone) and
a wealth of personal information (e.g., contact lists, emails,
photos, and call logs).

Android currently requires developers to declare what
permissions an app uses, but offers no mechanisms to
specify the purpose of how the sensitive data will be used.
Knowing the purpose of a permission request could help
with respect to privacy, for example offering end-users more

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
UbiComp ’15, September 7-11, 2015, Osaka, Japan.
Copyright 2015 c© ACM 978-1-4503-3574-4/15/09...$15.00.
http://dx.doi.org/10.1145/2750858.2805833

insights as to why an app is using a specific sensitive data.
Having a clear purpose of a request could also offer
fine-grained access control, for example, disallowing
geotagging in sensitive locations (e.g. government or
military facilities) while still allowing map searches.

Our specific focus is on developing better methods to infer
the purpose of a permission request. Various techniques have
been proposed to bridge the semantic gap between users’
expectations and app functionality. For example, WHYPER
[34] and AutoCog [40] apply natural language processing
techniques to an app’s description to infer permission use.
CHABADA [19] clusters apps by their descriptions to
identify outliers in each cluster with respect to the API
usage. RiskMon [23] builds a risk assessment baseline for
each user according to the user’s expectations and runtime
behaviors of trusted applications, which can be used to
assess the risks of sensitive information use and rank apps.
Amini et al. introduced Gort [3], a tool that combines
crowdsourcing and dynamic analysis, which could help
users understand and flag unusual behaviors of apps.

Our research thrust is closest to Lin et al. [26, 27], who
introduced the idea of inferring the purpose of a permission
by analyzing what third-party libraries an app uses. For
example, if a location data is only used by an advertising
library, then they can infer that it is used for advertising. Lin
et al. [27] categorized the purposes of several hundred
third-party libraries (advertising, analytics, social network,
etc), used crowdsourcing to ascertain people’s level of
concern for data use (e.g. location for advertising versus
location for social networking), and clustered and analyzed
apps based on their similarity.

In this paper, we evaluate the effectiveness of using text
analysis techniques on decompiled code for inferring the
purpose of a permission use. We focus on custom written
code as opposed to third-party libraries, though our
techniques should also work for libraries. One of the core
insights underlying our work is that, unless an app has been
obfuscated, compiled Java class files still retain the text of
many identifiers, such as class names, method names, and
field names. These strings offer a hint as to what the code is
doing. As a simple example, if we find custom code that
uses the location permission and has method or variable

1107

UBICOMP '15, SEPTEMBER 7–11, 2015, OSAKA, JAPAN

names such as “photo”, “exif”, or “tag”, it is likely that it
uses location data for the purpose of “geotagging”.

In our approach, we first decompile apps and search the
decompiled code to determine where sensitive permissions
are used. Then we extract multiple kinds of features from the
decompiled code, including both app-specific features (e.g.,
API calls, the use of Intent and Content Provider) and
text-based features (TF-IDF results of meaningful words
extracted from package names, class names, interface
names, method names, and field names). We use these
features to train a classification model for inferring the
purpose of permission uses.

We created a taxonomy for purposes on how apps use two
sensitive permissions, namely ACCESS FINE LOCATION
(location for short) and READ CONTACTS (contacts for
short). We use this taxonomy to manually examine and label
the behavior of 460 instances using location (extracted from
305 apps), and 560 instances using contacts (extracted from
317 apps). Here, an instance is defined as a directory of
source code, thus a single app may yield more than one
instance. We use this data to train a machine learning
classifier. Using 10-fold cross validation, experiments show
that we can achieve about 85% accuracy in inferring the
purpose of location use, and 94% for contact list use.

This paper makes the following research contributions:
• We introduce the idea of using text analysis and machine

learning techniques on decompiled code to infer the
purpose of permission uses. To the best of our knowledge,
our work is the first attempt to infer purposes for custom
written code (as opposed to third-party libraries or app
descriptions).
• We evaluate our approach for two frequently-used

permissions (location and contact lists) on 1020 labeled
instances (permission-related directories) that belong to
622 different apps. The results of 10-fold cross validation
show that we can achieve a purpose inference accuracy of
about 85% for location and 94% for contacts.
• We investigate the effectiveness of different kinds of

features extracted from decompiled Android apps,
showing that text-based features offer a very high gain,
with other features offering marginal improvements.

BACKGROUND AND RELATED WORK
Our study is mainly related to three bodies of work: research
on detecting where permissions are used in code; research on
detecting and bridging the semantic gap between users’
expectations and app functionalities; and inferring the
purpose of permission uses.

Detecting Where Permissions Are Used in Code
One challenge in our work is determining what parts of an
app use sensitive permissions, so that we know where to
apply feature extraction. There is a body of work that solve a
different problem, namely determining the precise set of
permissions an app needs, which we leverage in our work.

Android uses install-time permissions to control access to
system resources. Permissions are declared in manifest files

by developers, and users must accept this list of permissions
at install time. However, not all the permissions an app
requests are essential for it to run properly. Past studies have
found that some apps request more permissions than they
actually use, which is called permission overprivilege. One
recent work [50] showed that more than 85% of the apps
pre-installed on vendor customized smartphones suffer from
permission overprivilege. According to another study [8],
the permission gap could be leveraged by malware to
achieve malicious goals in several ways, such as code
injection and return-oriented programming.

Various approaches [16, 6, 8, 9] have been proposed to
determine the precise set of permissions that an app needs.
These approaches typically involve first building a
permission map that identifies what permissions are needed
for each API call, then performing static analysis to identify
permission-related API calls.

For example, STOWAWAY [16] uses automated testing
techniques to generate unit test cases for API calls, Content
Providers, and Intents. It also instruments the code points in
Android where permissions are checked, to log permission
checks and generate the permission map. PScout [6] and
COPES [8, 9] perform call-graph based analysis on the
Android framework to build the permission map. Permission
specifications are generated for API calls that can be reached
from a permission check.

Our work uses the permission map built by PScout [6] to
identify which permissions are actually used in the code and
where they are used. Then we extract features to infer the
purpose of the permission-related code.

The Gap Between User Expectations and App Behaviors
Past studies [17, 11, 14] have shown that mobile users have a
poor understanding of permissions. They cannot correctly
understand the permissions they grant, while current
permission warnings are not effective in helping users make
security decisions. Meanwhile, users are usually unaware of
the data collected by mobile apps [17, 43]. Several studies
[2, 20, 25] have been proposed to focus on raising users’
awareness of the data collected by apps, informing them of
potential risks and help them make decisions.

Furthermore, previous studies [7, 24] suggested that there is
a semantic gap between users’ expectations and app
behaviors. Recent research [34, 40, 48, 19, 23, 51, 3] has
looked at ways to incorporate users’ expectations to assess
the use of sensitive information, proposing new techniques
to bridge the semantic gap between users’ expectations and
app functionalities.

For example, WHYPER [34] and AutoCog [40] use natural
language processing (NLP) techniques to infer permission
use from app descriptions. They build a permission semantic
model to determine which sentences in the description
indicate the use of permissions. By comparing the result
with the requested permissions, they can detect
inconsistencies between the description and requested
permissions. ASPG [48] has proposed generating semantic
permissions using NLP techniques on the app descriptions.

1108

UBICOMP '15, SEPTEMBER 7–11, 2015, OSAKA, JAPAN

apps decompile Purpose of Contacts Permission
(1) Backup and Synchronization
(2) Contact Management
(3) Blacklist
(4) Call and SMS
(5) Contact-based Customization
(6) Email
(7) Find Friends
(8) Recording
(9) Fake Calls and SMS
(10) Remind

Identify
Permission

Related
Code

Extract
Features

Train
Classifier

Purpose of Location Permission
(1) Nearby Places Searching
(2) Location-based Customization
(3) Traffic Information
(4) Recording
(5) Map and Navigation
(6) Geosocial Networking
(7) Geotagging
(8) Location Spoofing
(9) Alert and Remind
(10) Location-based Game

Custom
Code

Figure 1. The overall architecture of our approach. We first decompile each app and filter out third-party libraries using a list of the most popular
libraries. We then use static analysis to identify where permission-related code is located. We extract several kinds of features from this code and then
train the classifier. The classifier outputs 10 different purposes for location and for contacts.

It then tailored the requested permissions that are not listed
in the semantic permissions to get the minimum set of
permissions an app needs. CHABADA [19] uses Latent
Dirichlet Allocation (LDA) on app descriptions to identify
the main topics of each app, and then clusters apps based on
related topics. By extracting sensitive APIs used for each
app, it can identify outliers which use APIs that are
uncommon for that cluster. All of these approaches have
attempted to infer permission use or semantic information
from app description, and bridge the gap between app
description and functionalities.

Ismail et al. [21] have leveraged crowdsourcing to find the
minimal set of permissions to preserve the usability of the
app for diverse users. RiskMon [23] builds a risk assessment
baseline for each user according to the user’s expectations
and runtime behaviors of trusted applications, which can be
used to assess the risks of sensitive information use and rank
apps. Amini et al. have introduced Gort [3], a tool that
combines crowdsourcing and dynamic analysis to help help
users understand and flag unusual behaviors of apps.
AppIntent [51] uses symbolic execution to infer whether a
transmission of sensitive data is by user intention or not. Past
research [42, 30, 47] has also measured users’ privacy
preferences in different contexts. For example, Shih et al.
[42] found that the purpose of data access is the main factor
affecting users’ choices.

Our work contributes to this body of knowledge, looking
primarily at using text mining technique on decompiled code
to infer the purpose of permission uses. Our approach is also
static, so we do not have to run an app, offering good
potential for scalability.

Determining the Purpose of Permission Uses
Lin et al. [26, 27] first introduced the idea of inferring the
purpose of a permission request by analyzing what
third-party libraries an app uses. They categorized the
purposes of 400 third-party libraries (advertising, analytics,

social network, etc.), and used crowdsourcing to ascertain
people’s level of concern for data use (e.g. location for
advertising versus location for social networking). Then they
clustered and analyzed apps by similarity. Their results
suggest that both users’ expectations and the purpose of
permission use have a strong impact on users’ subjective
feelings and their mental models of mobile privacy.

However, a major gap in this existing work is how to infer
the purpose of a permission request in custom-written code,
which turns out to be a much more difficult problem.
According to the results of a recent work [1] that analyzed
1.2 million apps from Google Play, most permission requests
occur in custom code. Specifically, for apps that use the
location permission, more than 55.7% of them use the
location permission in their custom code. For apps that use
the contacts permission, more than 71.2% of them use the
contacts permission in their custom code.

Our work focuses on addressing this gap to infer the purpose
of permission uses in custom code, relying primarily on text
mining and machine learning techniques. As such, while our
overall goal is similar to past work, we focus on a different
part of the problem space and use very different techniques.

INFERRING PURPOSES
Overview
As shown in Figure 1, we first use static analysis to identify
parts of custom code that uses location or contacts
permission. Then, we extract various kinds of features from
the custom code using text-mining (e.g., splitting identifier
names and extracting meaningful text features) and static
analysis (identifying important APIs, Intents and Content
Providers). In the training phase, we manually label
instances to train a classifier. The classifier outputs the
purpose of an instance as one of ten different purposes for
location or one of ten different purposes for contacts.
Note that we opted not to examine third-party libraries here,
partly because there was no previous work for custom code,

1109

SESSION: UNDERSTANDING AND PROTECTING PRIVACY

Table 1. The purpose of the location permission uses in custom code.
Purpose Description #Instances Example Apps

Search Nearby Places Find nearby hotels, restaurants, bus stations,
bars, pharmacies, hospitals, etc. 50 Booking

Location-based Customization Provide news, weather, time, activities
information based on current location 50 Weather Channel

Transportation Information Taxi ordering, real-time bus and metro
information, user-reported bus/metro location 50 Easy Taxi

Recording Real-time walk/run tracking, location logging
and location history recording, children tracking 50 RunKeeper

Map and Navigation Driving route planning and navigation 50 OsmAnd

Geosocial Networking Find nearby people/friends,
social networking check-in 50 Badoo

Geotagging Add geographical identification metadata to
various media such as photos and videos 30 TagMe

Location Spoofing Sets up fake GPS location 30 Fake GPS

Alert and Remind Remind location-based tasks,
disaster alert such as earthquake 50 GeoTask

Location-based game Games in which the gameplay evolves
and progresses based on a player’s location 50 Tidy City

Table 2. The purpose of the contacts permission uses in custom code.
Purpose Description #Instances Example Apps
Backup and Synchronization Backup contacts to the server, restore and sync contacts 61 MCBackup
Contact Management Remove invalid contacts, delete/merge duplicate contacts 30 Naver Contact
Blacklist Block unwanted calls and SMS 52 EasyBlacklist
Call and SMS Make VoIP/Wifi calls using Internet, send text message 54 Viber

Contact-based Customization Add contacts to a custom dictionary for input methods,
change ringtone and background based on contacts 51 Sogou Input Method

Email Send Email to contacts 78 Gmail

Find friends Add friends from contacts,
find friends who use the app in contact list 46 Instagram

Record Call Recorder, call log and history 93 Call Recorder

Fake Calls and SMS Select a caller from contact list and give yourself a fake
call or SMS to get out of awkward situations 49 Fake Caller

Remind Missed call notification, remind you to call someone 46 WillCall

and partly because we found that many third-party libraries
were obfuscated, which makes static analysis and text
mining more difficult.

We focus on inferring the purpose for two sensitive
permissions: location and contacts. We created a
taxonomy of the purpose of location permission use and the
purpose of contacts permission use, as shown in Table 1 and
Table 2. Note that we did not find any purposes such as
“advertisement” or “analytics” in custom code, because apps
usually use third-party libraries for these functionalities.
Decompiling Apps
For each app, we first decompile it from DEX (Dalvik
Executable) into intermediate Smali code using Apktool [4].
Smali is a kind of register-based language, and one Smali file
has exactly one corresponding Java file. We use this format
because we found that it is easier to identify
permission-related code based on this format.

We then decompile each app to Java source code using
dex2jar [13] and JD-Core-Java [22]. We use this decompiled
Java source code to extract features. Previous research [15]

found that more than 94% of classes could be successfully
decompiled. One potential issue, though, is that DEX can be
obfuscated. In practice, we found that roughly 10% of the
apps are obfuscated in our experiment. We will discuss this
issue further in the Discussion section.

Because our work focuses on custom code, we first filter
third-party libraries before we identify the
permission-related code and extract features. We use a list of
several hundred of third-party libraries built by past work
[26] to remove libraries. While this list is not complete, it
works reasonably well in practice.
Identifying Permission-Related Code
For Android apps, three types of operations are
permission-related: (1) explicit calls to standard Android
APIs that lead to the checkPermission method, (2)
methods involving sending/receiving Intents, and (3)
methods involving management of Content Providers.

We leverage the permission mapping [35] provided by
PScout [6] to determine which permissions are actually used
in the code and where they are used. More specifically, we

1110

UBICOMP '15, SEPTEMBER 7–11, 2015, OSAKA, JAPAN

Table 3. The features used in classification model.
Type Kind Features Description Counts Method

App
Specific
Features

Android API Call frequency of each
permission-related API

A 680 dimension vector, each value represents the
number of occurrences of corresponding API.

Static AnalysisAndroid
Intent

Call frequency of each
permission-related Intent

A 97 dimension vector, each value represents the
number of occurrences of corresponding Intent

Content
Provider

Call frequency of each
permission-related Content
Provider Uri

A 78 dimension vector, each value represents the
number of occurrences of corresponding
Content Provider

Text-based
Features

Package-level
Features

Key words extracted from
current package names

Calculate TF-IDF for all the key words,
with each instance represented as a TF-IDF vector

Text Mining

Class-level
Features

Key words extracted from
class and interface names

Method-level
Features

Key words extracted from
defined and used method
and parameter names

Variable-level
Features

Key words extracted from
defined and used variable
names

created a lightweight analyzer for searching for sensitive
API invocations, Intents, and Content Providers in Smali
code. For example, if we find the Android API string
“Landroid/location/LocationManager;->get
LastKnownLocation” in the code, we know it uses the
location permission. Since Smali code preserves the
original Java package structure and has a one-to-one
mapping with Java code, we can pinpoint which decompiled
source file uses a given permission.

Code Granularity for Inferring Purposes
An important question here is: what is the granularity of
code that should be analyzed? One option is to simply
analyze the entire app; however, this is not feasible since an
app might use the same permission for several purposes in
different places. For example, the same app might use
location for geo-tagging, nearby searches, and
advertisement, but a coarse-grained approach might not find
all of these purposes. Another option is a fine-grained
approach, such as at the method level or class level.
However, in our early experiments, we found that there was
often not enough meaningful text information contained in a
single method or class, making it hard to infer the purpose.

In our work, we decided to use all of the classes in the same
directory as our level of granularity. In Java, a directory
(or file folder) very often maps directly to a single package,
though for simplicity we chose to use directories rather than
packages. Conceptually, a directory should contain a set of
classes that are functionally cohesive, in terms of having a
similar goal. We assume that a directory will also only have
a single purpose for a given permission, which we believe is
a reasonable starting point. Thus, we use static analysis to
identify all the directories that use a given sensitive
permission, and then analyze each of those directories
separately. Note that we only consider the classes in a
directory, without considering code in subdirectories.

Feature Extraction
A number of features are used for inferring different kinds of
purposes. We group the features into two categories:

app-specific features and text-based features, as shown in
Table 3. App-specific features are based on app behaviors
and code functionality, while text-based features rely on
meaningful identifier names as given by developers.
App-Specific Features
App-specific features include permission-related APIs,
Intents and Content Providers. We use these features since
they should, intuitively, be highly related to app behaviors.
For example, for the contacts permission, we find that API
“sendTextMessage()” is often used for the “Call and
SMS” purpose, but very rarely so for other purposes.

We use static analysis to extract these features. For each kind
of API, Intent, and Content Provider, the feature is
represented by the number of calls (rather than a binary
value of whether the API was used at all), allowing us to
consider weights for different features. We scale these
features to [0, 1] before feeding them to the classifier.
Features with higher values mean they are used more in the
code than features with lower values.

Due to the large number of APIs in Android (more than
300,000 APIs according to previous research [6]), it is not
feasible to take all of them as features, thus we choose to use
documented permission-related APIs. Besides, we also use
permission-related Intents and permission-related Content
Providers as features. For Android 4.1.1, there are a total of
680 kinds of documented permission-related APIs [37], 97
kinds of Intents associated with permissions [39], and 78
kinds of Content Provider URI Strings associated with
permissions [38]. In total, we use 855 kinds of app-specific
features. We represent each instance as a feature vector, with
each item in the vector recording the number of occurrences
of the corresponding API, Intent or Content Provider.
(1) Permission-related APIs
This set of features are related to APIs that require an
Android permission. During our experiment, we found that
some distinctive APIs could be used to differentiate
purposes. For example, some Android APIs in the package
“com.android.email.activity” are related to

1111

SESSION: UNDERSTANDING AND PROTECTING PRIVACY

contacts permission, and they are often used for “email”
purpose. Thus for instances that use such APIs, it is quite
possible that it uses contacts for “email” purpose.

We use a list of 680 documented APIs that correlate to 51
permissions provided by Pscout [37], and search for API
strings such as “requestLocationUpdates” in the
decompiled code. Each instance corresponds to a 680
dimension vector, while each item in the vector represents
the number of occurrences of the corresponding API.
(2) Intent and Content Providers
We also extract features related to permission-related Intent
and Content Provider invocations. Intents can launch other
activities, communicate with background services, and
interact with smartphone hardware. Content Providers
manage access to a structured set of data. For example,
Intents such as “SMS RECEIVED” and Content Providers
such as “content://sms” mostly appear in instances
with the “Call and SMS” purpose.

We use a list of 97 Intent [39] and 78 Content Provider URI
strings [38]. We search for Android Intent strings such as
“android.provider.Telephony.SMS RECEIVED”
and Content Provider URI strings such as
“content://com.android.contacts” in the
decompiled code. Each instance corresponds to a 97
dimension Intent feature vector and a 78 dimension Content
Provider feature vector, respectively. Each item in the vector
represents the number of occurrence of the corresponding
Intent or Content Provider.
Text-based Features
We extract text-based features from various identifiers in
decompiled Java code. Package names, class names, method
names, and field names (instance variables, class variables,
and constants) are preserved when compiling, though local
variables and parameter names are not. Our goal here is to
extract meaningful key words from these names as features.

However, there are several challenges in extracting these
features. First, naming conventions may vary widely across
developers. Second, identifiers in decompiled Java code are
not always words. For example, the method name
“findRestaurant” cannot be used as a feature directly. Rather,
we want the embedded word “restaurant”. Thus, we need to
split identifiers appropriately to extract relevant words.
Third, not all words are equally useful, and we should
consider weights for different words.

We extract text-based features as follows. First, we apply
heuristics to split identifiers into separate words. Then we
filter out stop words to eliminate words that likely offer little
meaning. Next, the remaining words are stemmed into their
respective common roots. Finally, we calculate the TF-IDF
vector of words for each instance.

(1) Splitting Identifiers
We use two heuristics to split identifiers, namely explicit
patterns and a directory-based approach.

By convention, identifiers in Java are often written in
camelcase, though underscores are sometimes used. For
identifiers with explicit delimitations, we use their

Algorithm 1 Dictionary-based Identifier Splitting Algorithm
Input: identifierI and wordlist
Output: a list of splitted keywords

1: initial keywords = NULL
2: subword← FindLongestWord(I, wordlist)
3: while subword 6= NULL and len(I) > 0 do
4: keywords.add(subword)
5: if len(I) = len(subword) then
6: break
7: end if
8: I ← identifier.substring(len(subword), len(I))
9: subword← FindLongestWord(I, wordlist)

10: end while

construction patterns to split them into subwords. The
identifier patterns we used are as listed as follows:

camelcase(1) : AbcDef → Abc,Def

camelcase(2) : AbcDEF → Abc,DEF

camelcase(3) : abcDef → abc,Def

camelcase(4) : abcDEF → abc,DEF

camelcase(5) : ABCDef → ABC,Def

underscore : ABC def → ABC, def

However, some identifiers do not have clear construction
patterns. In these cases, we use a dictionary-based approach
to split identifiers. We also use this dictionary to split
subwords extracted in the previous step. We use the English
wordlist provided by Lawler [49]. We also add some
domain-related and representative words into the list, such as
Wifi, jpeg, exif, facebook, SMS etc. For each
identifier, we find the longest subword from the beginning of
the identifier that can be found in the wordlist. Details of the
algorithm are shown in Algorithm 1.

(2) Filtering
We then build a list to filter out stop-words. In addition to
common English words, we also filter out words common in
Java such as “set” and “get”, as well as special Java keywords
and types, such as “public”, “string”, and “float”.

(3) Stemming
Stemming is a common Natural Language Processing
technique to identify the “root” of a word. For example, we
want both singular forms and plural forms, such as “hotel”
and “hotels”, to be combined. We use the Porter stemming
algorithm [36] for stemming all words into a common root.

(4) TF-IDF
After words are extracted and stemmed, we use TF-IDF to
score the importance of each word for each instance.
TF-IDF is good for identifying important words in an
instance, thus providing great support for the classification
algorithm. Common words that appear in many instances
would be scaled down, while words that appear frequently in
a single instance are scaled up. To calculate TF, we count the
number of times each word occurs in a given instance. IDF
is calculated based on a total of 7,923 decompiled apps.

1112

UBICOMP '15, SEPTEMBER 7–11, 2015, OSAKA, JAPAN

Classification Model
Since the ranges of feature values vary widely, we normalize
them by scaling them to [0, 1]. Then we apply machine
learning techniques to train a classifier. We have evaluated
three different algorithms for the classification: SVM [46],
Maximum Entropy [31], and C4.5 Decision Tree [10]. The
implementation of SVM is based on the python scikit-learn
[41] package. We use a SVM with linear kernel, and the
parameter C is set as 1 based on our practice. Maximum
entropy and C4.5 algorithms are based on Mallet [29]. We
compare different classifiers using various metrics.

EVALUATION

Dataset
We have downloaded 7,923 apps from Google Play in
December 2014, all of which were top-ranked apps across 27
different categories. For text-based features, we calculate
IDF based on a corpus of these apps.

To train the classifier, we use a supervised learning [45]
approach, which requires labeled instances. We focus on
apps that used location or contacts permissions. After
decompiling the apps and filtering out third-party libraries,
we use static analysis to identify permission-related custom
code. Each directory of code that uses location or contacts
permission is an instance.

To facilitate accurate classifications, we try to manually label
at least 50 instances for each purpose. However, for the
location permission, there are more than 3000 instances in
our dataset, so we stop once we get more than 50 examples
for a given purpose. As shown in Table 1, we have 50
labeled instances for most of the purposes, except for some
purposes that have fewer instances in our dataset (we labeled
30 instances for “geotagging” and “location spoofing”
purposes). In contrast, for contacts permission, we have
found only fewer than 800 instances in our dataset, so we
manually checked and labeled the purposes for all of these
instances (which is why the number of instances in Table 2
are not as uniform as those in Table 1).

Labeling Purposes
To label the purpose of an instance, we manually inspect the
decompiled code, especially the methods and classes that use
location or contacts permission. We examine the method and
variable names, as well as the parameters and sensitive APIs
used in methods to label purposes. For example, in one case,
we found custom code using location data and having
method and variable names containing “temperature” and
“wind”, which we labeled as “location-based
customization”. As another example, we found another
instance using photo files and location information
(longitude and latitude) by calling the API
“getLastKnownLocation()”, which we labeled as
“geotagging”. As a third example, we saw an instance
invoked API “sendTextMessage()” after getting
contacts, which we labeled as “Call and SMS” purpose.
These examples convey the intuition behind how we label
instances and why we these features for the machine
learning algorithms.

We also looked at the app descriptions from Google Play to
help us label purposes. However, for most of the apps we
examined, we could not find any indication of the purpose
of permission use. This finding matches previously reported
results [40], which found that for more than 90% of apps,
users could not understand why permissions are used based
solely on descriptions. It indicates the importance of inferring
the purpose of permission uses, which could offer end-users
more insight as to why an app is using sensitive data.

In total, we manually labeled the purposes of 1,020 instances
that belong to 622 different apps, with 460 instances for
location and 560 instances for contacts. Each purpose has 30
to 90 instances, which is shown in Table 1 and Table 2.

Note that our dataset is not comprehensive. For a few apps,
we could not understand how permissions are used: thus we
did not include them. Our dataset also does not include some
apps that have unusual design patterns for using sensitive
data. We will offer more details on this issue in the
discussion. However, these cases only account for a small
portion of our dataset. We feel that our data set is good
enough as an initial demonstration of our idea.

Evaluation Method
We used 10-fold cross validation [12] to evaluate the
performance of different classifiers. That is, we split our
dataset 10 times into 10 different sets for training (90% of
the dataset) and testing (10% of the dataset). We manually
split our dataset into 10 different sets to ensure that instances
of each purpose are equally divided, and that there was no
overlap between training and test sets across cross-validation
runs. To evaluate the performance of different classifiers, we
present metrics for each classification label and metrics for
the overall classifier.

Evaluation Metrics
For each class, we measure the number of true positives (TP),
false positives (FP), true negatives (TN), and false negatives
(FN). We also present our results in terms of precision, recall,
and f-measure. Precision is defined as the ratio of the number
of true positives to the total number of items reported to be
true. Recall is the ratio of the number of true positives to the
total number of items that are true. F-measure is the harmonic
mean of precision and recall.

To measure the overall correctness of the classifier, we use
the standard metric of accuracy as well as micro-averaged
and macro-averaged metrics [32, 33] to measure the
precision and recall. For micro-averaged metrics, we first
sum up the TP, FP, FN for all the classes, and then calculate
precision and recall using these sums. In contrast,
macro-averaged scores are calculated by first calculating
precision and recall for each class and then taking the
average of them. Micro-averaging is an average over
instances, and so classes that have many instances are given
more importance. In contrast, macro-averaging gives equal
weight to every class. We calculate micro-averaged
precision, micro-averaged recall, macro-averaged precision
and macro-averaged recall as follows, where c is the number
of different classes.

1113

SESSION: UNDERSTANDING AND PROTECTING PRIVACY

Table 4. The results of inferring the purpose of location uses.
Classification
Algorithm Accuracy Macro-average

Precision
Macro-average
Recall

SVM 81.74% 85.51% 83.20%
Maximum
Entropy

85.00% 87.07% 85.88%

C4.5 79.57% 83.26% 81.77%

Table 5. The results of inferring the purpose of location permission uses
for each category (Maximum Entropy).

Purpose Precision* Recall* F-measure*
L1 Search
Nearby Places 76.85% 84.58% 78.99%

L2 Location-based
Customization 96.67% 96.33% 95.98%

L3 Transportation
Information 100% 86.81% 92.02%

L4 Recording 80.33% 79.19% 77.04%
L5 Map and
Navigation 80.54% 93.85% 84.15%

L6 Geosocial
Networking 82.57% 87.31% 83.66%

L7 Geotagging 100% 77.67% 84.39%
L8 Location Spoofing 75.48% 90.00% 80.42%
L9 Alert and Remind 100% 76.63% 85.40%
L10 Location-based
Game 80.50% 86.38% 81.48%

* The results of precision, recall and f-measure are mean values
of 10-fold cross validation.

MicroAvgPrecision =

∑c
i=1 TPi∑c

i=1 TPi+
∑c

i=1 FPi
(1)

MicroAvgRecall =

∑c
i=1 TPi∑c

i=1 TPi+
∑c

i=1 FNi
(2)

MacroAvgPrecision =

∑c
i=1 Precisioni

c
(3)

MacroAvgRecall =

∑c
i=1 Recalli

c
(4)

Note that both micro-averaged precision and micro-averaged
recall are equal to the accuracy of the classifier in our
experiment. Thus, we only list the accuracy and
macro-averaged metrics in Table 4 and Table 7.
Results of Inferring Location Purposes
Our results in classifying the purpose of location is shown in
Table 4. The Maximum Entropy algorithm performs the best,
with an overall accuracy of 85%. The results of SVM and
C4.5 algorithms also perform reasonably well.

Table 5 presents more detailed results for each specific
purpose. The results across different categories vary greatly.
The category “location-based customization” achieves the
best result, with precision and recall both higher than 96%.
The categories “search nearby places” and “location
spoofing” have the lowest precision, both under 80%. The
purposes “geotagging” and “alert and remind” have 100%
precision, but recall under 80%.

Table 6. The confusion matrix of inferring the purpose of location
permission use (Maximum Entropy). The purpose number corresponds
to that listed in Table 5. Each value is the sum of 10-fold cross validation.
Each column represents the instances in a predicted class, while each
row represents the instances in an actual class.

Label L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 Total
L1 42 - - - 2 1 - 3 - 2 50
L2 1 48 - - - - - 1 - - 50
L3 2 - 44 - 1 1 - 1 - 1 50
L4 3 - - 38 2 3 - 3 - 1 50
L5 - 1 - 1 46 - - - - 2 50
L6 4 - - 2 - 43 - - - 1 50
L7 - - - 4 3 - 21 2 - - 30
L8 - - - - 2 - - 28 - - 30
L9 1 - - 2 1 2 - 2 39 3 50
L10 3 - - 2 1 2 - - - 42 50
Total 56 49 44 49 58 52 21 40 39 52 460

Table 7. The results of inferring the purpose of contacts permission uses
Classification
Algorithm Accuracy Macro-average

Precision
Macro-average
Recall

SVM 93.94% 94.38% 92.94%
Maximum
Entropy

94.64% 94.42% 93.96%

C4.5 92.86% 91.36% 89.59%

Table 6 shows more details about misclassifications. The
category “search nearby places” has the most false positives
(see column L1, 14 of 56 classified instances), and 4
misclassified instances belong to “geosocial networking”
category. The category “recording” has the most false
negatives (see row L4, 12 of 50 labeled instances), and most
of them are misclassified as “search nearby places”,
“geosocial networking” and “location spoofing”.
Results of Inferring Contacts Purposes
Our results for inferring the purpose of contacts is shown in
Table 7. All three classification algorithms have achieved
better than 90% accuracy, with the Maximum Entropy
classifier still performing the best at 94.64%.

Table 8 presents details on each category. Our results show
that we can achieve high precision and recall for most
categories, especially “contact-based customization”,
“record” and “fake calls and SMS”, which have both the
precision and recall higher than 95%. However, “contact
management” category is not as good, with both precision
and recall under 85%.

Table 9 shows the confusion matrix. The category “call and
SMS” has the most false positives (see column C4, 9 of 61
classified instances), and “find friends” has the most false
negatives (see row C7, 6 of 46 labeled instances). Three
instances that belong to “find friends” category are
misclassified as “call and SMS” purpose.
Qualitative Analysis of Classification Results
Here, we examine why some categories performed well,
while others did not. We inspected several instances and
found two factors that play important role in the
classification: distinctive features and the number of
features.

1114

UBICOMP '15, SEPTEMBER 7–11, 2015, OSAKA, JAPAN

Table 8. The results of inferring the purpose of contacts permission use
for each category (Maximum Entropy).

Purpose Precision* Recall* F-measure*
C1 Backup and
Synchronization 98.75% 94.92% 96.52%

C2 Contact
Management 84.33% 84.17% 81.83%

C3 Blacklist 94.17% 93.14% 92.81%
C4 Call and SMS 84.58% 97.08% 89.56%
C5 Contact-based
Customization 98.75% 98.33% 98.42%

C6 Email 94.87% 97.09% 95.77%
C7 Find Friends 93.50% 84.17% 87.06%
C8 Record 96.87% 100% 98.35%
C9 Fake Calls
and SMS 98.33% 96.67% 97.42%

C10 Remind 100% 94.07% 96.69%
* The results of precision, recall and f-measure are mean values
of 10-fold cross validation.

Table 9. The confusion matrix of inferring the purpose of contacts
permission use (Maximum Entropy). The purpose number corresponds
to that listed in Table 8. Each value is the sum of 10-fold cross validation.
Each column represents the instances in a predicted class, while each
row represents the instances in an actual class.

Label C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 Total
C1 57 1 - 1 - 1 1 - - - 61
C2 1 25 - 1 - - 2 1 - - 30
C3 - - 48 1 - 2 1 - - - 50
C4 - 1 1 52 - - - - - - 54
C5 - - - - 50 - - 1 - - 51
C6 - 2 - 1 - 75 - - - - 78
C7 - - 1 3 1 1 40 - - - 46
C8 - - - - - - - 93 - - 93
C9 - 1 - - - - - 1 47 - 49
C10 - - - 2 - - - - 1 43 46
Total 58 30 50 61 51 79 44 96 48 43 560

Categories with high precision and recall tend to have
distinctive features. For example, instances in
“location-based customization” had words like “weather”,
“temperature” and “wind”, which were very rare in other
categories. In contrast, misclassified instances had more
generic words. For example, the labeled instance
“com.etech.placesnearme” used location
information to search nearby places, and its top key words
were “local”, “search”, “place”, and “find” etc., which also
frequently appeared in other categories. In our experiment, it
was misclassified as the “geosocial networking” purpose.

On the other hand, most misclassified instances have fewer
features, meaning that there is less meaningful text
information that we could extract. For example,
“com.flashlight.lite.gps.passive” uses
location information for “recording”. However, it only has
19 kinds of word features and 6 kinds of API features, which
is far less than other instances that have hundreds of features.
This instance was misclassified as “map and navigation”
category in our experiment.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

16 32 64 128 256 512 1024 >1024

C
D

F

number of non-empty keyword features per instance

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2 4 8 16 32 64 128 256 >256

C
D

F

number of non-empty app specific features

Figure 2. The distribution of the number of non-empty app-specific
features per instance

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

16 32 64 128 256 512 1024 >1024

C
D

F

number of non-empty keyword features per instance

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2 4 8 16 32 64 128 256 >256

C
D

F

number of non-empty app specific features

Figure 3. The distribution of the number of non-empty text-based
features per instance

Feature Comparison
We are also curious how well text-based features alone are
able to perform in the process, since that is the most novel
aspect of our work. We train our classifiers using text-based
features only and compare the results against classifiers
trained by both text-based and app-specific features. The
results are shown in Table 10.

We can see that text-based features alone can achieve an
accuracy of 81.97% and 93.57% for location and contacts
permissions respectively. Incorporating all the features, the
performance has only 1.07% to 4.22% improvement. This
result suggests text-based features are quite good, while
app-specific features play a supporting role.

Figures 2 and 3 offer one possible explanation. These figures
show the number of non-empty app-specific features and
non-empty text-based features for each instance. We can see
that instances almost always have more text-based features
than app-specific features, which may be the main reason
why text-based features play the leading role in the classifier.
The number of text-based features for each instance is about
4 times higher than the number of app-specific features on
average (270 and 62 respectively). More than 90% of the
instances have fewer than 256 kinds of app-specific features,
and in particular, 3% of them have only fewer than 16 kinds
of app-specific features. In contrast, more than 74% of the
instances have over 256 text-based features, and roughly
10% have over 1024.

One possible implication, and an area of future work, is to
develop more app-specific features that can help capture the
essence of how sensitive data is used.

1115

SESSION: UNDERSTANDING AND PROTECTING PRIVACY

Table 10. Using text-based features vs using all features. Text-based
features achieve very good accuracy alone, with app-specific features
offering marginal improvements.

Permission Algorithm Accuracy
(words)

Accuracy
(total)

Diff

Location
SVM 80.00% 81.74% 1.74%
Maximum
Entropy

81.97% 85.00% 3.03%

C4.5 75.38% 79.57% 4.19%

Contacts
SVM 92.32% 93.94% 1.62%
Maximum
Entropy

93.57% 94.64% 1.07%

C4.5 91.79% 92.86% 1.07%

DISCUSSION
In this section, we examine the limitations of our work and
potential future improvements.
Code Obfuscation
In our experiments, we found that about 10% of apps contain
obfuscated code, with much of it belonging to third-party
libraries. Previous research [28] found that only about 2% of
apps have obfuscated custom code. Our approach cannot
handle these cases since we are unable to extract meaningful
text-based features from the obfuscated identifier names.

More sophisticated program analysis techniques might
mitigate this problem. For example, it may be possible to
identify samples of code with similar purposes and structure.
However, this is beyond the current scope of this paper.
Indirect Permission Use
We have also found that some apps use sensitive data
through a level of indirection rather than directly accessing
it. For example, the social networking app “Skout” has a
package called “com.skout.android.service”,
containing services such as “LocationService.java”
and “ChatService.java”. In this design pattern, these
services access sensitive data, with other parts of the app
accessing these services. In this case, there was very little
meaningful text information in the directory these services
are located in, and our approach would simply fail.

One approach would be expanding the static analysis to look
for this kind of design pattern. Another approach would be
expanding the granularity of analysis from a directory to the
entire app, and changing the classification from single-label
classification to multi-label classification.

The Diversity of Developer Defined Features
Our approach is mainly based on text-based features.
However, developers do not always use good identifier
names, for example “v1” for a variable name. Developers
also use abbreviations, for example using “loc” instead of
“location”. Our current splitting method does not work well
for these cases.

One option is to manually label some known abbreviations.
Another option is to use techniques such as approximate
string matching [44] to infer abbreviated words.

Note that our approach also assumes that developers do not
deliberately use misleading identifiers. If our approach

becomes popular, a malicious developer could rename
identifiers to confuse our classification. For example, a
developer could rename identifiers to contain words such as
“weather” or “temperature” to mislead how location data is
used. Fortunately, we did not find any instances of this in our
experimental data. It is also not immediately clear how to
detect these kinds of cases either.

Incomplete List of Purposes
We have created a taxonomy of 10 purposes for the location
permission and 10 purposes for the contacts permission, and
used this taxonomy to manually label 1,020 instances. While
our taxonomy is good enough for our purposes, it is possible
that there are other purposes that we cannot find.
Furthermore, depending on how purposes are used, our
taxonomy might be too fine-grained or too coarse-grained.

However, we believe that our approach should generalize for
new purposes and for other sensitive permission. For
example, if there are more purposes for location data or
contact list, we can simply add more training instances.

Inferring the Purpose of Third-Party Libraries
In this work, we only focused on the purpose of custom
code, since past work [26, 27] has already looked at how to
infer the purpose of third-party libraries (using a mapping
from third-party library to purpose), and because many
libraries are obfuscated. However, this past work only
looked at the most popular third-party libraries, and there is
a long-tail of third-party libraries that do not have a labeled
purpose. Furthermore, some third-party libraries have
multiple purposes.

It may be possible to apply our approach to infer the purpose
of third-party libraries. However, we would need to expand
the set of purposes (for example, location data would require
“advertising” and “mobile payment” as a purpose) and
rigorously evaluate the effectiveness of the approach.

CONCLUSION
In this paper, we have proposed a new technique to infer the
purpose of sensitive information usage in custom written
code. We extract different kinds of features from decompiled
code, including both app-specific features and text-based
features. These features are used to train a machine learning
classifier. We evaluated our approach on two sensitive
permissions, location and contacts. Experiments on 1,020
labeled instances show that our approach can successfully
infer the purposes for about 85% of location permission uses
and 94% of contacts permission uses. We also present a
qualitative analysis on where our classifier works well and
where it does not.

Acknowledgment
This work is supported by the High-Tech Research and
Development Program (863) of China under Grant
No.2015AA01A203, the National Natural Science
Foundation of China under Grant No.61421091, 61103026.
This work is based upon work supported by the National
Science Foundation under Grant No.CNS-1228813.

1116

UBICOMP '15, SEPTEMBER 7–11, 2015, OSAKA, JAPAN

REFERENCES
1. PrivacyGrade: Grading The Privacy of Smartphone

Apps. http://privacygrade.org/.

2. Almuhimedi, H., Schaub, F., Sadeh, N., Adjerid, I.,
Acquisti, A., Gluck, J., Cranor, L. F., and Agarwal, Y.
Your location has been shared 5,398 times!: A field
study on mobile app privacy nudging. In Proceedings of
the 33rd Annual ACM Conference on Human Factors in
Computing Systems (CHI ’15) (2015), 787–796.

3. Amini, S., Lin, J., Hong, J. I., Lindqvist, J., and Zhang,
J. Mobile application evaluation using automation and
crowdsourcing. In Proceedings of the PETools (2013).

4. Apktool: a tool for reverse engineering Android apk
files. https://code.google.com/p/android-apktool/.

5. Wikipedia App Store (iOS). http:
//en.wikipedia.org/wiki/App_Store_%28iOS%29.

6. Au, K. W. Y., Zhou, Y. F., Huang, Z., and Lie, D. Pscout:
Analyzing the Android permission specification. In
Proceedings of the 2012 ACM Conference on Computer
and Communications Security (CCS ’12) (2012),
217–228.

7. Balebako, R., Jung, J., Lu, W., Cranor, L. F., and
Nguyen, C. “little brothers watching you”: Raising
awareness of data leaks on smartphones. In Proceedings
of the Ninth Symposium on Usable Privacy and Security
(SOUPS ’13) (2013), 12:1–12:11.

8. Bartel, A., Klein, J., Le Traon, Y., and Monperrus, M.
Automatically securing permission-based software by
reducing the attack surface: An application to Android.
In the 27th IEEE/ACM Intl Conf on Automated Software
Engineering (ASE ’12) (2012).

9. Bartel, A., Klein, J., Monperrus, M., and Le Traon, Y.
Static analysis for extracting permission checks of a
large scale framework: The challenges and solutions for
analyzing Android. IEEE Transactions on Software
Engineering (TSE) (2014).

10. Wikipedia C4.5 Algorithm.
http://en.wikipedia.org/wiki/C4.5_algorithm.

11. Chin, E., Felt, A. P., Sekar, V., and Wagner, D.
Measuring user confidence in smartphone security and
privacy. In Proceedings of the Eighth Symposium on
Usable Privacy and Security (SOUPS ’12) (2012).

12. Wikipedia Cross-validation.
http://en.wikipedia.org/wiki/Cross-validation_
%28statistics%29#k-fold_cross-validation.

13. dex2jar. https://code.google.com/p/dex2jar/.

14. Egelman, S., Felt, A. P., and Wagner, D. Choice
architecture and smartphone privacy: Theres a price for
that. In Workshop on the Economics of Information
Security (WEIS) (2012).

15. Enck, W., Octeau, D., McDaniel, P., and Chaudhuri, S.
A study of Android application security. In Proceedings
of the 20th USENIX Conference on Security (SEC ’11)
(2011).

16. Felt, A. P., Chin, E., Hanna, S., Song, D., and Wagner,
D. Android permissions demystified. In the 18th ACM
Conference on Computer and Communications Security
(CCS ’11) (2011), 627–638.

17. Felt, A. P., Ha, E., Egelman, S., Haney, A., Chin, E., and
Wagner, D. Android permissions: User attention,
comprehension, and behavior. In Proceedings of the
Eighth Symposium on Usable Privacy and Security
(SOUPS ’12) (2012), 3:1–3:14.

18. Wikipedia Google Play.
http://en.wikipedia.org/wiki/Google_Play.

19. Gorla, A., Tavecchia, I., Gross, F., and Zeller, A.
Checking app behavior against app descriptions. In
Proceedings of the 36th International Conference on
Software Engineering (ICSE ’14) (2014), 1025–1035.

20. Harbach, M., Hettig, M., Weber, S., and Smith, M.
Using personal examples to improve risk
communication for security and privacy decisions. In
Proceedings of the 32Nd Annual ACM Conference on
Human Factors in Computing Systems (CHI ’14) (2014).

21. Ismail, Q., Ahmed, T., Kapadia, A., and Reiter, M.
Crowdsourced exploration of security configurations. In
Proceedings of the ACM SIGCHI Conference on Human
Factors in Computing Systems (CHI ’15) (2015).

22. JD-Core-Java. http://jd.benow.ca/.

23. Jing, Y., Ahn, G.-J., Zhao, Z., and Hu, H. Riskmon:
Continuous and automated risk assessment of mobile
applications. In Proceedings of the 4th ACM Conference
on Data and Application Security and Privacy
(CODASPY ’14) (2014), 99–110.

24. Jung, J., Han, S., and Wetherall, D. Short paper:
Enhancing mobile application permissions with runtime
feedback and constraints. In Proceedings of the Second
ACM Workshop on Security and Privacy in Smartphones
and Mobile Devices (SPSM ’12) (2012), 45–50.

25. Kelley, P. G., Cranor, L. F., and Sadeh, N. Privacy as part
of the app decision-making process. In Proceedings of
the SIGCHI Conference on Human Factors in
Computing Systems (CHI ’13) (2013), 3393–3402.

26. Lin, J., Amini, S., Hong, J. I., Sadeh, N., Lindqvist, J.,
and Zhang, J. Expectation and purpose: Understanding
users’ mental models of mobile app privacy through
crowdsourcing. In Proceedings of the 2012 ACM
Conference on Ubiquitous Computing (UbiComp ’12)
(2012), 501–510.

27. Lin, J., Liu, B., Sadeh, N., and Hong, J. I. Modeling
users’ mobile app privacy preferences: Restoring
usability in a sea of permission settings. In Proceedings
of the 2014 Symposium On Usable Privacy and Security
(SOUPS ’14) (2014).

1117

SESSION: UNDERSTANDING AND PROTECTING PRIVACY

http://privacygrade.org/
https://code.google.com/p/android-apktool/
http://en.wikipedia.org/wiki/App_Store_%28iOS%29
http://en.wikipedia.org/wiki/App_Store_%28iOS%29
http://en.wikipedia.org/wiki/C4.5_algorithm
http://en.wikipedia.org/wiki/Cross-validation_%28statistics%29#k-fold_cross-validation
http://en.wikipedia.org/wiki/Cross-validation_%28statistics%29#k-fold_cross-validation
https://code.google.com/p/dex2jar/
http://en.wikipedia.org/wiki/Google_Play
http://jd.benow.ca/

28. Linares-Vásquez, M., Holtzhauer, A., Bernal-Cárdenas,
C., and Poshyvanyk, D. Revisiting Android reuse studies
in the context of code obfuscation and library usages. In
Proceedings of the 11th Working Conference on Mining
Software Repositories (MSR ’14) (2014), 242–251.

29. Mallet: machine learning for language toolkit.
http://mallet.cs.umass.edu/.

30. Mancini, C., Thomas, K., Rogers, Y., Price, B. A.,
Jedrzejczyk, L., Bandara, A. K., Joinson, A. N., and
Nuseibeh, B. From spaces to places: Emerging contexts
in mobile privacy. In Proceedings of the 11th
International Conference on Ubiquitous Computing
(UbiComp ’09) (2009), 1–10.

31. Wikipedia Maximum Entropy.
http://en.wikipedia.org/wiki/Maximum_entropy.

32. Evaluation methods in text categorization.
http://datamin.ubbcluj.ro/wiki/index.php/
Evaluation_methods_in_text_categorization.

33. Macro- and micro-averaged evaluation measures.
http://digitalcommons.library.tmc.edu/cgi/
viewcontent.cgi?article=1026&context=uthshis_
dissertations.

34. Pandita, R., Xiao, X., Yang, W., Enck, W., and Xie, T.
Whyper: Towards automating risk assessment of mobile
applications. In Proceedings of the 22Nd USENIX
Conference on Security (SEC ’13) (2013), 527–542.

35. Permission Mappings.
http://pscout.csl.toronto.edu/.

36. The porter stemming algorithm.
http://tartarus.org/martin/PorterStemmer/.

37. Documented api calls mappings.
http://pscout.csl.toronto.edu/download.php?
file=results/jellybean_publishedapimapping.

38. Content provider (uri strings) with permissions. http:
//pscout.csl.toronto.edu/download.php?file=
results/jellybean_contentproviderpermission.

39. Intents with permissions.
http://pscout.csl.toronto.edu/download.php?
file=results/jellybean_intentpermissions.

40. Qu, Z., Rastogi, V., Zhang, X., Chen, Y., Zhu, T., and
Chen, Z. Autocog: Measuring the
description-to-permission fidelity in Android
applications. In Proceedings of the 2014 ACM SIGSAC

Conference on Computer and Communications Security
(CCS ’14) (2014), 1354–1365.

41. Scikit-learn machine learning in python.
http://scikit-learn.org/stable/index.html.

42. Shih, F., Liccardi, I., and Weitzner, D. Privacy tipping
points in smartphones privacy preferences. In
Proceedings of the 33rd Annual ACM Conference on
Human Factors in Computing Systems (CHI ’15) (2015),
807–816.

43. Shklovski, I., Mainwaring, S. D., Skúladóttir, H. H., and
Borgthorsson, H. Leakiness and creepiness in app space:
Perceptions of privacy and mobile app use. In
Proceedings of the 32Nd Annual ACM Conference on
Human Factors in Computing Systems (CHI ’14) (2014),
2347–2356.

44. Wikipedia Approximate String Matching. http://en.
wikipedia.org/wiki/Approximate_string_matching.

45. Supervised Learning. http:
//en.wikipedia.org/wiki/Supervised_learning.

46. Wikipedia Support Vector Machine. http:
//en.wikipedia.org/wiki/Support_vector_machine.

47. Toch, E., Cranshaw, J., Drielsma, P. H., Tsai, J. Y.,
Kelley, P. G., Springfield, J., Cranor, L., Hong, J., and
Sadeh, N. Empirical models of privacy in location
sharing. In Proceedings of the 12th ACM International
Conference on Ubiquitous Computing (UbiComp ’10)
(2010), 129–138.

48. Wang, J., and Chen, Q. Aspg: Generating Android
semantic permissions. In Proceedings of the IEEE 17th
International Conference on Computational Science and
Engineering (2014), 591–598.

49. English Wordlist. http:
//www-personal.umich.edu/˜jlawler/wordlist.

50. Wu, L., Grace, M., Zhou, Y., Wu, C., and Jiang, X. The
impact of vendor customizations on Android security. In
the 2013 ACM SIGSAC Conference on Computer
Communications Security (CCS ’13) (2013), 623–634.

51. Yang, Z., Yang, M., Zhang, Y., Gu, G., Ning, P., and
Wang, X. S. Appintent: analyzing sensitive data
transmission in Android for privacy leakage detection.
In Proceedings of the 2013 ACM SIGSAC conference on
Computer and communications security (CCS ’13)
(2013), 1043–1054.

1118

UBICOMP '15, SEPTEMBER 7–11, 2015, OSAKA, JAPAN

http://mallet.cs.umass.edu/
http://en.wikipedia.org/wiki/Maximum_entropy
http://datamin.ubbcluj.ro/wiki/index.php/Evaluation_methods_in_text_categorization
http://datamin.ubbcluj.ro/wiki/index.php/Evaluation_methods_in_text_categorization
http://digitalcommons.library.tmc.edu/cgi/viewcontent.cgi?article=1026&context=uthshis_dissertations
http://digitalcommons.library.tmc.edu/cgi/viewcontent.cgi?article=1026&context=uthshis_dissertations
http://digitalcommons.library.tmc.edu/cgi/viewcontent.cgi?article=1026&context=uthshis_dissertations
http://pscout.csl.toronto.edu/
http://tartarus.org/martin/PorterStemmer/
http://pscout.csl.toronto.edu/download.php?file=results/jellybean_publishedapimapping
http://pscout.csl.toronto.edu/download.php?file=results/jellybean_publishedapimapping
http://pscout.csl.toronto.edu/download.php?file=results/jellybean_contentproviderpermission
http://pscout.csl.toronto.edu/download.php?file=results/jellybean_contentproviderpermission
http://pscout.csl.toronto.edu/download.php?file=results/jellybean_contentproviderpermission
http://pscout.csl.toronto.edu/download.php?file=results/jellybean_intentpermissions
http://pscout.csl.toronto.edu/download.php?file=results/jellybean_intentpermissions
http://scikit-learn.org/stable/index.html
http://en.wikipedia.org/wiki/Approximate_string_matching
http://en.wikipedia.org/wiki/Approximate_string_matching
http://en.wikipedia.org/wiki/Supervised_learning
http://en.wikipedia.org/wiki/Supervised_learning
http://en.wikipedia.org/wiki/Support_vector_machine
http://en.wikipedia.org/wiki/Support_vector_machine
http://www-personal.umich.edu/~jlawler/wordlist
http://www-personal.umich.edu/~jlawler/wordlist

	Introduction
	Background and Related Work
	Detecting Where Permissions Are Used in Code
	The Gap Between User Expectations and App Behaviors
	Determining the Purpose of Permission Uses

	Inferring Purposes
	Overview
	Decompiling Apps
	Identifying Permission-Related Code
	Feature Extraction
	App-Specific Features
	Text-based Features

	Classification Model

	Evaluation
	Dataset
	Labeling Purposes

	Evaluation Method
	Evaluation Metrics

	Results of Inferring Location Purposes
	Results of Inferring Contacts Purposes
	Qualitative Analysis of Classification Results
	Feature Comparison

	Discussion
	Code Obfuscation
	Indirect Permission Use
	The Diversity of Developer Defined Features
	Incomplete List of Purposes
	Inferring the Purpose of Third-Party Libraries

	Conclusion
	REFERENCES

