
Characterizing the Global Mobile App Developers:
A Large-scale Empirical Study

Haoyu Wang1, Xupu Wang2, Yao Guo2
1 Beijing University of Posts and Telecommunications 2 MOE Key Lab of HCST, Peking University

Abstract—The rapid growth of the mobile app ecosystem has
attracted a great number of mobile app developers. However, few
previous studies have analyzed app developers comprehensively
at a large scale, and little is known of the characteristics of mobile
app developers. In this work, we take the first step to understand
global app developers from the view of mobile app life-cycle.
We have created a repository of over 1.03 million Android
app developers distributed at Google Play and 16 popular
alternative markets, along with over 6.2 million Android apps
(including apks and metadata) they created. We then explored
various characteristics of these app developers from different
angles including developing behaviors, releasing behaviors, app
maintenance behaviors and malicious behaviors. The experimental
results have revealed various interesting findings, as well as
insights for future research directions. Our efforts can contribute
to different stakeholders of the mobile app ecosystem.

I. INTRODUCTION

Mobile apps have seen widespread adoption in recent years.

There were more than 2.5 million Android apps on Google

Play by January 2019 [1], and the app economy was estimated

to achieve more than 6.3 trillion US dollars by 2021 according

to a recent report from App Annie [2]. The great success of

the mobile app ecosystem has attracted a large number of app

developers. It is reported that there are over 12 million mobile

app developers worldwide and almost half of them focus on

the Android app ecosystem [3].
The great potential of the mobile app ecosystem has attracted

a large number of researchers in recent years. One line of

research studies focuses on app store mining [4], [5]. Typically,

after crawling a large amount of data (including metadata

and apks) from app markets first, they then measure the

ecosystem from different angles including app popularity

analysis [6], [7], user comment analysis [8], [9], privacy policy

violation [10], [11], market evolution and comparison [12]–[15],

and developer misbehaviors (e.g., app promotion, spam apps

and malware) [16], [17], etc. The other line of work is focused

on mobile app analysis, mainly relying on program analysis

techniques, including security and privacy analysis [18]–[20],

mobile app testing [21], [22], app repackaging detection [23],

[24], third-party library analysis [25], [26], etc.
App developers are the keystones in the mobile ecosystem,

ranging from individual developers (both professional and ama-

teur), mobile app development companies (e.g., Hedgehog Lab

and Algoworks) [27], to large-scale IT companies (e.g., Google

and Facebook). App developers take part in the whole life cycle
of mobile apps. They create apps with numerous features (app
development phase), upload them to Google Play and third-

party markets (app release phase), maintain their apps to

fix bugs or introduce new functionalities (app maintenance
phase), and promote their apps (via advertisement, app store

optimization and pay-per-install services) in order to attract

mobile users and boost their profit. App developers arguably

play the most important roles in the mobile app ecosystem, and

almost all the issues (e.g., security, privacy and vulnerabilities)

can be traced back to developers (either benign or malicious).

However, app developers have not received extensive at-

tention from our research community. Only limited research

studies [28]–[31] were focused on app developers. For example,

Wang et al. [28] have studied the distribution of app developers

on Google Play and proposed to analyze spam developers.

Balenako et al. [29] have studied how app developers make

security and privacy decisions. Wang et al. [32] have studied

the evolution of developers in the mobile app ecosystem.

To the best of our knowledge, no previous work has
characterized the behaviors of app developers comprehensively
at a large scale. Our research community knows little on the

diverse behaviors of mobile app developers, for example, their

development behaviors (e.g., behavior on code reuse), release
behaviors (e.g., releasing apps to different markets), mainte-
nance behaviors (e.g., updating apps actively or never updating

them), and malicious behaviors (e.g., creating malicious apps).

Specially, when considering millions of developers distributed

in the official and many third-party markets (globally or region-

based), it is unknown to our community the characteristics of

these (millions of) global mobile app developers.

This paper. We take the first step in this work to understand

the diverse behaviors of global app developers across multiple

markets at a large scale. We have crawled more than 6.2

million apps from 17 Android app markets (including Google

Play and 16 popular Chinese app markets), and created an

index of over 1.03 million Android app developers based

on developers’ unique signatures (cf. Section II). To explore

different characteristics of app developers, we seek to answer

the following main research questions:

• RQ1: What is the distribution of developers across app
markets? (Section III). Although previous work [28] has

investigated the distribution of app developers in Google

Play, considering that there are potentially hundreds of

third-party markets beyond Google Play (especially in

regions where Google Play is blocked), how the app

developers are distributed across the global app ecosystem
is still unknown. It is interesting to analyze the differences

between the official and alternative app markets.

• RQ2: What are the development behaviors of massive
app developers? (Section IV). The development behaviors

of app developers have not been well explored. As

developers may release more than one app, it is interesting

to see whether they reuse code when developing apps and

analyze the differences between popular developers and

unpopular ones.

• RQ3: What are the release behaviors of millions of app
developers? (Section V). As there are hundreds of app

release channels around the world, it will be interesting to

investigate whether app developers have different release

strategies and whether/how they release apps to multiple

markets.

• RQ4: What are the maintenance behaviors of app de-
velopers? (Section VI) For the millions of app developers,

how many of them are active developers that may update

their apps timely? Are the maintenance behaviors related

to app/developer popularity?

• RQ5: Developer misbehaviors (Section VII). Since pre-

vious studies mostly focus on analyzing malware, how

many developers have displayed misbehaviors such as

distributing malicious apps? What is the distribution of

malicious developers across multiple markets?

Among a number of interesting findings, the following are

the most prominent:

• The distribution of app developers is very diverse across

different markets, as over 50% of developers in our dataset

do not release apps to Google Play. The download patterns

of mobile app developers follow the typical Pareto Effect,
as the top 1% of developers account for over 83% (Google

Play) to 92% (alternative markets) of total app downloads.

• Although over 80% of developers have only created

one app, we found that many developers have released

thousands of apps (e.g., the most aggressive one released

over 41K apps). Our investigation has revealed that this

seemingly unexpected phenomenon is actually mainly

introduced by app generators and publicly known signing

keys (i.e., multiple developers using the same signature).

• Code reuse is a common practice among many developers.

In general, the more apps one developer created, the higher

percentage of code has been reused. We also observed that

most developers do not target the most recent API levels

(target SDK version), while they may try to accommodate

more low-end users (minimum SDK version).

• Roughly 50% of the developers only release apps to one

single market. These single-market developers are mainly

vendor-specific developers, incentive-driven developers,

developers with language barriers and amateur developers

with little experience. Roughly 10% of the developers

release channel-specific apps to different markets.

• We observed poor app maintenance practices for most of

the developers. In general, more than 80% of developers

were not active since January 2017, which is 7 months

before our crawling process. This finding indicates that

most apps in the markets are not maintained timely.

• We analyzed the presence of malware and malicious

developers across markets. Roughly 8% of the developers

in our dataset have released at least one malicious app.

Some developers are found with the tendency to release

malicious apps, i.e., 0.08% of the developers in our dataset

are responsible for more than 50% of all the (potential)

malware, while 0.8% of the developers are responsible

for over 70% of all the malware.

To the best of our knowledge, our work is the first large-

scale study focusing on app developers across different markets.

We believe that our research efforts can positively contribute

to bring user and developer awareness, boost the focus of

the research community and regulators, and promote best

operational practices across app store operators.

II. DATA COLLECTION

To the best of knowledge, no existing studies have released

datasets regarding app developers1. Thus, We first make efforts

to implement different crawlers to harvest mobile apps from

Google Play and 16 alternative Android app stores in August

2017, as listed in Table I. We seek to understand the global

developer distribution and compare it with Google Play, as

Google Play is restricted in several countries (e.g., China) and

Android users have to resort to alternative app markets for

searching and installing apps.

A. Crawler Design

1) App Markets: Besides the official Android app market,

Google Play, We cover the app stores for the top five

smartphone vendors in China, three well-known Chinese web

companies, and eight specialized Android app markets. For each

app, besides the Android apk files, we also collected publicly

available information as provided by the app markets, including

the (1) app name, (2) app category, (3) app description, (4)

app version name, (5) app release (update) note, (6) developer

name, (7) the number of aggregated app downloads, and (8)

user ratings.

2) Crawling Strategy: We used different strategies to crawl

each market. In the case of Google Play, we use a list of

1.5 million package names provided by the PrivacyGrade

project [34] as the searching seeds, and then use a breadth-

first-search (BFS) approach to crawl (1) additional related apps

recommended for each app of our seeds by Google Play and (2)

other apps released by the same developer. Note that Google

Play could be accessed in different world regions, we have

instrumented our crawler to support both English and Chinese

languages. For crawling the alternative app markets, we use

two different strategies to harvest as many apps as possible:

an enumerating-based approach and a BFS-based approach.

These two strategies are used simultaneously to complement

each other in each app store. For instance, some markets

index apps by using incremental integers. This is the case of

Baidu’s app market, which indexes apps with the following

1Although several work [16], [33] shared large-scale mobile app dataset,
most of them have incomplete information on app developers and app metadata
(e.g., app description and app installs).

TABLE I
DISTRIBUTION OF APPS AND DEVELOPERS IN OUR DATASET.

App Market Type #Apps #Developers Unique
Developer

Google Play Official 2,031,946 538,283 307,047
Tencent Myapp Web Company 636,265 294,950 31,283
Baidu Market Web Company 227,454 107,698 16,267
360 Market Web Company 163,121 90,226 6,134
Huawei Market Vendor 51,303 32,927 1,865
Xiaomi Market Vendor 91,190 55,669 3,216
OPPO Market Vendor 426,419 209,197 30,054
MeiZu Market Vendor 80,573 50,451 295
Lenovo MM Vendor 37,716 24,565 195
Wandoujia Specialized 554,138 291,114 2,819
HiApk Specialized 246,023 115,191 4,204
AnZhi Market Specialized 223,043 74,145 16,262
25PP Specialized 1,013,208 470,073 89,594
Sougou Specialized 128,403 66,759 2,700
LIQU Specialized 179,147 101,336 6,180
App China Specialized 42,435 23,699 764
PC Online Specialized 134,863 65,225 1,680
Total - 6,267,247 1,035,992

syntax: http://shouji.baidu.com/software/INTEGER.html. This

feature eases notably our APK collection process by using an

enumerating approach.

Parallel Search. Note that we use a “parallel search”

optimization in our crawler. As long as we have identified a new

app (package name) in either of the 17 markets, we will search

this app in all the remaining markets immediately to make sure

that we could crawl this app/developer simultaneously.

Crawling Process. The crawlers have been launch in parallel

via 50 Aliyun Cloud Servers [35] (with 8 crawler processes

running in parallel for each server) during August 2017. This

allows us to obtain a temporal screen-shot of the mobile app

ecosystem at a given time.

B. Dataset

Our crawled dataset is shown in Table I. We have crawled

6.2 million app items in total, which were created by more

than 1 million app developers (signatures). Note that we use

developer signatures as the identifier to count developers, rather

than using the App Creator names listed on app markets as

previous work did [28], mainly due to two reasons. On one

hand, the creator names shown on each market varies (e.g.,

different languages, abbreviate Vs. full name, etc), it is hard to

figure out whether two developer names are identical, while one

developer signature may always correspond to several creator

names. On the other hand, previous work [12] and reports [36]

suggested that fake apps and fake developers usually use the

same or similar names to cheat app users, as some markets do

not have strict regulations on app metadata, while the leakage

of the developers’ private keys (signatures) are not a common

case in practices.

We believe our dataset has covered a large portion of Android

developers in the world. As one developer signature may

corresponds to more than one “real developer” (especially for

mobile app development companies), it is reasonable to estimate

that our dataset contains several millions of Android developers.

As a recent report [3] suggested that there are roughly 6 million

Android developers around the world, we believe our dataset

is representative and large enough to investigate developers’

diverse behaviors.

Fig. 1. The overlapped app developers across the 17 app markets. For each
cell (row X, column Y), the color represents the percentage of developers in
market X that also published apps in market Y.

General overview of our dataset. It is interesting to see

that, although Google Play holds the largest number of app

developers (over 538K), roughly 50% of app developers in

our dataset do not release apps on Google Play. This figure

suggests that a large portion of the mobile app ecosystem (over

50% of app developers, and the apps they created) has been

overlooked by our community, as most previous studies only

focus on Google Play. On average, a developer releases 1.54

(Lenovo MM market) to 3.77 apps (Google Play) to different

markets, which suggests that our dataset is diverse enough to

study the behaviors of app developers.

III. APP DEVELOPER STATISTICS

We now study high-level characteristics of app developers. In

this Section, we seek to answer the first research question. We

first analyze the distribution of app developers on Google Play

and the 16 alternative app stores, then we analyze the developer

popularity based on the app downloads, and we further define

popular developers, which will be used for further comparison

in the following Sections.

A. Developer Distribution

As shown in Table I, more than 50% of app developers

release their apps to Google Play, and more than 70% of

developers release apps to Chinese alternative app markets.

Overlapped Developers. We analyzed the overlapped devel-

opers across the 17 markets, as shown in Figure 1. It is obvious

that Chinese markets share more similarity. For example, more

than 80% of developers on Wandoujia, Meizu and Lenovo MM

markets also release apps to 25PP market. The 25PP market

hosts the most number of developers among Chinese third-

party markets, however, it only covered roughly 30% of the

developers in Google Play. Several markets have shown great

difference with Google Play when considering app developers.

For example, less than 1% of the developers in Google Play

are active on Huawei and Xiaomi markets, and roughly 10%

of app developers in Huawei and Xiaomi markets release apps

0-10 10-100 100-1K 1K-10K 10K-100K 100K-1M >1M
Google Play
Tencent Myapp
Baidu Market
360 Market
Huawei Market
Wandoujia
HiApk
AnZhi Market
OPPO Market
25PP
Sougou
MeiZu Market
LIQU
Lenovo MM
PC Online

TOTAL

Fig. 2. The distribution of app downloads per developer.

to Google Play conversely. This result further indicates the

diverse app ecosystem across the global app markets.

Unique Developers (Single-market Developers). We fur-

ther investigate the distribution of unique developers. We

define “unique developers” as the ones who only release

apps to one market2. Google Play hosts the most number of

unique developers, roughly 60% of developers on Google Play

are unique. The percentage of unique developers in Chinese

markets vary from 0.5% (Meizu market) to 21% (Anzhi market).

In general, to gain more app downloads and attack more users,

a developer may want to release their apps to as many markets

as possible. We will further analyze the unique developers and

investigate the underlying reasons in Section V.

B. Developer Popularity

We calculate the aggregated app downloads at the per-

developer level. Then we analyze whether the popularity of

app developers follows the Pareto Effect.

1) Distribution of App Downloads Per Developer: For each

market, we first aggregate the app downloads for all the apps

released by each developer (cf. Figure 2). The average number

of downloads per developer varies greatly across markets, from

over 3K (PC Online) to over 2.5 million (Huawei Market).

Considering all the markets, we further aggregate the

downloads for each developer signature (cf. the last row of

Figure 2). In general, 90% of the developers have aggregate app

installs less than 100K. Subtle differences arise when looking

at the details on a per-market basis. For example, the app

downloads of developers in Google Play mainly fall into the

range of 100 to 1 Million. Huawei Market follows the similar

pattern with Google Play. However,over 56% of app developers

in the Tencent market have only fewer than 10 app downloads

in total. Over 80% of developers in the PC Online market

have achieved fewer than 100 app installs. It suggests that the
popularity of app developers (and apps) are significant
different across markets, as we will investigate later.

2) Pareto Effect: Previous studies have shown that web

content downloads and mobile app downloads [28] usually

follow the Pareto principle [37]: 20% of the objects are

2Note that it is possible that the “unique developers” would appear in other
markets that are not covered in this paper. This, however, does not affect our
comparative study of the 17 markets and the investigation of app developers.

responsible for 80% of the downloads. Thus we further analyze

whether the Pareto effect exists when analyzing app developers,

especially when comparing Google Play with Chinese third-

party markets. As shown in Figure 3(1), the result clearly

suggests that the download pattern of mobile app developers
follows a typical Pareto Effect, as a few developers account
for most of the downloads. Top 1% of developers in Google

Play account for 83.87% of total app downloads, while the

number in Chinese markets is 92.43%.

C. Popular Developers

As the popularity of app developers follows Pareto effect,

we regard the top 1% developers for each market as popular
developers, who have occupied over 80% of app downloads in

total. We have identified 8,963 popular developers, more than

60% of them (5,382) have released apps to Google Play, and

over 65% of them (5,902) have released apps to third-party

app markets. In the following studies, we will characterize

the differences between popular developers and non-popular

developers on various behaviors.

IV. DEVELOPMENT BEHAVIORS

In this Section, we seek to answer the second research

question, i.e., understanding the development behaviors of

diverse developers. We first investigate the number of apps each

developer created, and then classify developers into different

categories. We further analyze the development behaviors from

two aspects: (1) to what extent they reuse code when developing

apps, and (2) the SDK versions (API levels) they focused on.

A. The Number of Created Apps

Figure 3(2) shows the distribution of the number of created

apps per developer. Note that we count the unique package

names (app IDs) released by each developer. As one developer

may release multiple app versions to different markets, we will

investigate it further in Section V.

It is obvious that, over 80% of developers only created one

app. More than 94% of the developers created fewer than 5

apps. However, many of them (1,561) have released more
than a hundred apps, while 4 developers have released even
over 20 thousand apps. Table II shows the top 10 developers

who created the most number of apps. It is surprising to see

that the top developer has created 41,287 apps. In general, a

normal developer would not release so many apps. Therefore,

we further analyzed these developers in detail.

1) Analyzing the frequent app developers: We first analyze

the creator names shown on app stores in order to know who

they are. To our surprise, we found that all of the top 10

developers have multiple creator names, and most of them
have thousands of different names, which means that these
developers use the same signature to create apps and then
release apps to markets under different creator names.

Thus we further analyzed the CN (Common Name) and OU

(Organization Unit) fields in the developers’ signatures and

searched them with Google. We found that 6 of them are app
generation tools, including Qbiki Networks [38], Andromo

������ ������ ������ ������ ����� ������

�1�R�U�P�D���H�G �'�H�Y�H�R�S�H�U �5�D�Q���Q�

�������

�������

�������

�������

�������

�������

��������
�3
�H�U

�F�H
�Q
�W�D

�
�H

�R
�I
�'

�R
!

�Q
�R

�D
�G
�V
#�&

�'
�)
&

'�R�R��H �3�D(

�$

�&*��Q�H�V�H �0�D�U��H�W�V

�� ������������������������������������

������

�����

������

�� ���� ���� ���� ���� ���� �!����

�7��H �1�X�P�E�H�U �R�I �$�S�S�V �&�U�H�D�W�H�G

������

������

����(

�����

����)

������

�3
�H�U
�F�H
�Q
�W�D
�
�H
�R
�I
�'
�H�Y
�H�
�R
�S
�H�U
�V
!�&
�'
�)
#

�$��

�S�R�S�X��D�U

������ ������ ������ ������ ����� ������

�1�R�U�P�D��*�H�G �'�H�Y�H��R�S�H�U �5�D�Q,��Q� �E�D�V�H�G �R�Q �&�U�H�D�W�H�G �$�S�S�V

������

������

������

������

�����

������

�3
�H�U
�F�H
�U�W
�D
�
�H
�R
�I
�$
�S
�S
�V
!�&
�'
�)
#

!������. (����#

!����. ������#

Fig. 3. The distribution of app downloads per developer and the number of created apps per developer .

TABLE II
TOP 10 DEVELOPERS RANKED BY THE NUMBER OF RELEASED APPS.

Developer (signature) # Created
Apps

Creator
Names # Market # Avg

Installs (Median) Who is the developer and Why

5de9d45fed20f9db2033e5803704d156 41,287 3,263 16 3,825 (495) Qbiki Network (App generator)
e89b158e4bcf988ebd09eb83f5378e87 34,964 9,422 17 107,004 (1,000) Android Release Key
f478b46338b428770da4137545f40d74 30,998 3,060 17 9,720 (933) Andromo App (App generator)
e03db148616053a4c7bd317b09a28700 27,196 3,046 16 541 (100) Bizness Apps (App generator)
5dc8201f7db1ba4b9c8fc44146c5bcc2 19,789 182 15 2,394 (1,000) Theme Apps (moxiu.com)
5b120e96b20f5b4ec695d79b20d18753 15,027 277 17 41,993 (500) Theme Apps (Panda Theme)
c228fd74f0175aa72c871167407cac92 14,275 7,897 15 1,249 (100) Conduit (App generator)
8a1a4b3824b35dc964cfa7565904b49c 10,464 3,783 16 2,980 (233) BestToolbars (App generator)
c385b82bdf173cd94e2893283ac6099c 8,887 720 16 2,782 (1,000) Dzs.mobi (App generator)
c584e3992c76706541a59975caabd127 8,858 2,895 16 2,525 (100) DigiCert

App [39], Bizness Apps [40], Conduit [41], BestToolbars [42]

and Dzs.mobi, which provide app frameworks for users without

developing knowledge to create apps. The second largest

signature is Android Release Key, which is a publicly known

key that embedded in the Android framework. Apps signed

with publicly known keys will lead to great security issues,

i.e., allowing attackers to modify the apps without developers’

knowledge. Two signatures are related to theme apps (Panda

theme and Moxiu theme), and the developers created thousands

of theme apps with identical code while only replacing the

resource files. Besides, we also found a signature that is signed

by DigiCert, a leading SSL certificate authority, which we were

unable to know who created the apps.

To further understand the apps they created, we use

Wukong [24] and Boreas [43] to compare the code-level

similarity of the apps per-developer released. It is interesting

to see that, for the top 10 developers, all of the apps they

created have almost the same code (similarity higher than

95%). Furthermore, these developers release apps to almost

all the markets we studied in this paper, but they generally

do not have much app downloads on average (cf. Column 5).

As Google Play does not allow developers release apps with

repetitive contents [44] (copying content from other apps or

creating multiple apps with highly similar content), most of

the apps should actually be removed, especially for those apps

with little or no downloads.

2) Developer Classification: We further classify developers

into different groups based on the number of apps they created.

In this paper, we followed the classification criteria provided

in Wang et al. [28]. They have categorized the developers into

aggressive developers (created more than 50 apps), active

Conservative
(1 app)

Moderate
(2-9 apps)

Active
(10-49 apps)

Aggressive
(>= 50 apps)

Google Play 0.73 0.22 0.04 0.01
Tencent 0.70 0.24 0.05 0.01
Baidu 0.62 0.27 0.09 0.02
360 0.58 0.30 0.10 0.02
Huawei 0.69 0.25 0.04 0.01
Xiaomi 0.71 0.23 0.05 0.01
Wandoujia 0.69 0.25 0.05 0.01
HiAPK 0.64 0.27 0.08 0.02
AnZhi 0.73 0.21 0.05 0.01
OPPO 0.69 0.24 0.06 0.01
25PP 0.75 0.20 0.04 0.01
SOUGOU 0.63 0.27 0.08 0.02
Meizu 0.62 0.27 0.08 0.03
LIQU 0.63 0.27 0.07 0.02
App China 0.52 0.32 0.12 0.04
Lenovo MM 0.61 0.29 0.07 0.03
PC Online 0.60 0.28 0.10 0.03

Fig. 4. The distribution of different developer groups across markets.

developers (created 10 to 49 apps), moderate developers
(created 2 to 9 apps) and conservative developers (created only

one app). Based on this taxonomy, we further investigate the

distribution of different developer groups on various markets.

As shown in Figure 4, the distribution of different developer

groups follows the similar patterns across markets. Roughly

60% to 70% of developers are conservative developers that

only released only 1 app, while moderate developers who

created 2 to 9 apps have occupied 20% to 30% of them. Active

developers account for roughly 5% to 10% of them, while only

1% to 4% of developers across markets belong to aggressive

developers that created over 50 apps.

B. Code Reuse

Although a large number of previous studies have investi-

gated the code reuse behaviors across a large number of apps

������ ������ ������ ������ ����� ������

�3�H�U�F�H�Q�W�D��H �R�I �5�H�X�V�H�G �&��D�V�V

������

������

������

������

�����

������
�3
�H�U
�F�H
�Q
�W�D
�
�H
�R
�I
�'
�H�Y
�H�
�R
�S
�H�U
�V
��&
�'
�)
�

�����

������

��!��

������

�F�U�H�D�W�H�G �� �D�S�S�V

�F�U�H�D�W�H�G ���� �D�S�S�V

�F�U�H�D�W�H�G ���� �D�S�S�V

�F�U�H�D�W�H�G ������ �D�S�S�V

Fig. 5. CDF of developers vs. the percentage of reused code (class-level).

(e.g., repackaged/similar apps [23], [24], [45], and third-party

libraries [25], [26], [46], [47]), we still do not know the code

reuse behaviors within the same developer in large scale.

Developer Sampling. We sample developers who created 5

apps (moderate developers, with 12,267 developers in total),

10 apps (active developers, with 3,185 developers in total),

50 apps (aggressive developers, with 75 developers in total)

and 100 apps (aggressive developers, with 1,561 developers in

total), and analyze the proportion of reused code within all the

apps each developer created. We seek to explore and compare

the code reuse behaviors across different developer groups.

Method. We use a simple but effective approach to conduct

this comparison. We first decompiled each app and parsed each

decompiled Smali file into an AST (Abstract Syntax Tree).

Then, we extracted features from ASTs including the number

of different kinds of nodes in the AST, and further represented

each Smali (class) as a feature vector. Here, we perform class-

level code reuse analysis. For each developer, we extracted

the features for each class they created and then enforce strict

comparison to analyze the percentage of reused code classes.

The result is shown in Figure 5. In general, code reuse is

a common behavior across different developer levels. It is a

trend that the more apps one developer created, the higher

percentage of code he will reused. For the the developers who

created 5 apps, over 40% of them have more than 80% of the

code in their apps reused more than once. For the developers

who created 100 apps, more than 84% of them have reused

at least 80% of the code in their apps. Even over 40% of the

developers who created 100 apps have all of the classes in

their apps being reused at least once, which further indicates

our observation that some developers use app generation tools

to create a large number of similar apps.

C. Target/Minimum API Level

Android app developers can declare in the app manifest

the Target SDK Version and the Minimum SDK Version
supported by their apps. Configuring the apps to target a

recent API level could ensure that app users can benefit the

improvements introduced in the new system versions (e.g.,

security and performance improvements), while still allowing

it to run on older Android versions for compatibility reasons. It

is reported [48] that Google Play requires that new apps target

at least Android 8.0 (API level 26) from August 2018, and

that app updates target Android 8.0 from November 2018. The

declared Minimum SDK Versions could offer insights about

whether app developers are trying to maximize app customers,

or whether they try to target top-end users.

For each developer, we first extract the declared target/mini-

mum API levels from Android Manifest files for all the released

apps, and then we could get the primary target/minimum API
levels for every developer, i.e., the API levels that occupy the

largest proportion. Figure 6 shows the distribution of primary

target/minimum API levels for all the 1 million developers.

Although the newest Android API level is 26 by the time of

our dataset crawling, almost 67% of developers mainly target

API levels prior to 19. Over 16% of developers have primary

target API level of 19, and over 14% of developers have

primary target API level of 17. For the minimum API levels,

over 31% of them primarily focus on API level 8. This result

suggested that most developers do not target a recent API
level, which means that the apps they created cannot benefit

the improvements introduced in the new API levels. At the

same time, most developers primarily declared minimum
SDK versions prior to API level 10, which means that they

try to accommodate more low-end users, as many Android

devices have embedded out-dated system versions.

V. RELEASE STRATEGY

In this Section, we seek to answer the third research question,

i.e., exploring the release behaviors of app developers. We first

analyze the number of target markets for each developer. Then

we classify them into “single-market release developer” and

“multi-market release developer”, and further compare their

characteristics from various aspects. At last, we analyze the

primary market for each developer to understand whether each

market has its own target developers and target user groups.

A. Target Markets

Figure 7 (1) shows the distribution of the number of

target markets for each developer. In general, roughly 50% of

developers (520,559) only release apps to one market, while the

percentage decreases to 5% for popular developers. Over 19%

of developers and 81% of popular developers release apps to

more than 5 markets. 696 developers in total release their apps

to all the market, while 62% of them are popular developers.

B. Single-market Developers vs. Multi-market Developers

We then compare the single-market release developers with

multi-market release developers on app downloads and the

number of created apps.

App Downloads. As shown in Table III, over half of

the multi-market developers could get more than 10K app

installs, while the percentage of single-market developers is

roughly 10%. 8,542 out of 8,943 popular developers are multi-

market developers, while only 421 of them are single-market

developers. We further compare the popularity of single-market

0

0.1

0.2

0.3

0.4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 >=26

Pe
rc

en
ta

ge
 o

f D
ev

el
op

er
s

Android API Level

Target API Level Minimum API Level
Fig. 6. The distribution of main target/minimun API level per developer.

�� �� �� �� �� �� � � 	 �������������������������������
�7��H �1�X�P�E�H�U �R�I �5�H��H�D�V�H�G �0�D�U��H�W�V

������

������

������

�����

������

�3
�H�U

�F�H
�Q
�W�D
"
�H
�R
�I
�'
�H�Y

�H�
�R
�S
�H�U

�V
&�&

�'
�)
)

�$��

�3�R�S�X��D�U

�� ������ ��� ����� ������� ���0 �����0�������0
�$�S�S �'�R
�Q��R�D�G�V

������

������

������

������

�����

������

�3
�H�U

�F�H
�Q
�W�D

�
�H

�R
�I
�'

�H�Y
�H�

�R
�S
�H�U

�V
��&

�'
�)

�6�R��R���0�D�U#�H�W �'�H�Y�H��R�S�H�U

�0�X��W%���0�D�U#�H�W �'�H�Y�H��R�S�H�U

�� ���� ���� ���� ��� ������
�7��H �1�X�P�E�H�U �R�I �5�H��H�D�V�H�G �$�S�S�V

�������

�������

�������

�������

�������

��������

�3
�H�U

�F�H
�Q
�W�D

!
�H

�R
�I
�'

�H�Y
�H�

�R
�S
�H�U

�V
$�&

�'
�)
'

�6�R��R���0�D�U+�H�W �'�H�Y�H��R�S�H�U

�0�X��W,���0�D�U+�H�W �'�H�Y�H��R�S�H�U

Fig. 7. The Release behavior of app developers.

TABLE III
CATEGORIZATION OF APP DEVELOPERS BASED ON THE NUMBER OF

RELEASED MARKETS.

type developers
#number

total
#Downloads

avg
#Downloads

single market developer 520,559 13,856,386,024 16,381
multi market developer 514,737 406,367,252,890 96,372
all market developer 696 288,637,454,403 855,942

developers and multi-market developers (we further split “all-

market” developers from it) in Table III. It is interesting to see

that, the app downloads of multi-market developers (besides all

market developers) could achieve six times as much as those

of single-market developers, while the app downloads of all

market developers could be roughly 9 folds of that number

of multi-market developers, and 50 folds of the downloads of

single-market developers. It further indicates that, in general,

the more markets a developer releases to, the more app installs

one developer could get.

The number of created apps. We then compared the

number of created apps for single-market and multi-market de-

velopers, as shown in Figure 7 (3). In general, the multi-market

developers create more apps than single-market developers.

More than 87% of single-market developers only created one

app, while the percentage for multi-market developers is 73%.

Single-market developers create 1.6 apps on average, while the

number for multi-market developers is 3.9.

As our empirical study suggested that multi-market develop-

ers are more popular than single-market developers, it is strange

that over half of the developers choose to be single-market
developers. Thus, we further investigate the reasons.

Characterizing the single-market developers. By analyz-

ing developers’ meta information we crawled from the markets

and the apps they released, we further categorize the single-

market developers into three categories. First, some single-

market developers are vendor-specific developers, who are

very popular in our dataset. They only release apps to the

vendor specific markets. For example, the developer signature

“7bf32cb332a1789f4744b18d38703c79” belongs to Huawei

company, and it only releases apps to the Huawei market

(e.g., com.huawei.smarthome), as the apps they designed

are explicitly developed for Huawei handsets. Second, most

of the app markets we studied in the work have incentive
mechanisms for encouraging app developers to publish their

apps. For example, most of the markets encourage developers

to publish exclusive apps in their own markets in order to target

at potential market users, in exchange, they promise to actively

taking measures to promote the apps (e.g., recommending the

apps on the start page to make them more visible to users).

As a result, some developers are signed by app markets to

publish exclusive apps. Third, we found that a number of the

single-market developers in Google Play may have language-
barriers (based on the regions specified in these developers’

signatures), which stops them from publishing apps in markets

beyond Google Play. Furthermore, we believe the remaining

single-market developers are mostly amateur developers that
have no experiences in releasing apps, as most of these

developers have almost no downloads. We can assume that

they do not have much time and efforts to maintain apps across

multiple markets.

C. Primary Market for Each Developer

We further seek to investigate the primary market for each

multi-market developer. We define one’s primary market as

Fig. 8. The distribution of primary-market developers.

TABLE IV
AN EXAMPLE SHOWING THE APP “COM.KUGOU.ANDROID” (WITH

IDENTICAL SIGNATURE “FE4A24D80FCF253A00676A808F62C2C6”).

Market Version APK MD5 kgchannel
360 Market 8798 (8.7.0) 0ff50f0874567e0715c9b98e85b5b715 kgchannel_15
Wandoujia 8798 (8.7.0) e39c9f8b6d76de9152a78bcc1a6fe692 kgchannel_5
25PP 8798 (8.7.0) 6eaa922cb97d559812b2b45d15247870 kgchannel_62
Lenovo 8798 (8.7.0) d39af2f9733efdbbb18e9128c38a1331 kgchannel_39
Tencent 8798 (8.7.0) b2c3a00f2c5763cf9a0bdf220e5760a9 kgchannel_14

the market that the developer gained the most number of app

downloads from. As a result, for developers in each market,

we could further classify them into solo-market developers,

primary market developers and non-primary market developers.
Figure 8 shows the comparison result across markets. It is

interesting to see that, over half of the developers in Google

Play are single-market developers, and Google Play is also

the primary market for over 30% of app developers hosted on

it. For alternative markets, the percentage of primary-market

developers are relative high in markets including LIQU (47.4%),

Wandoujia (38.7%), and 25PP (27.5%). As a contrast, PC

Online and Meizu markets hosted the least percentages of

primary-market developers, with 0.4% and 1.4% respectively.

This result shows the diversity of developer popularity across

markets, which also indicates that the mobile app users of

different markets may have diverse characteristics. That is to

say, each market has its own target developers and target
user groups. This result could offer insights to developers

when choosing the desired markets to release their apps.

D. Releasing Channel Specific Apps

Our investigation further discloses that many developers

release plausibly “different” apps (with same app version)

to multiple markets. For example, there are 14 different

“com.kugou.android” apks in our dataset, although they have

the identical package names, version code and developer

signature. Table 5 lists five of them. By manually comparing the

decompiled code, we find that the DEX files (i.e., main function

code) are identical for all of them, while only the META-

INF/kgchannel file is different. The suffix of the file name is

labeled with a different number, which indicates the market

that it released though. This finding somehow demonstrates
that “different” apps do appear in the Android ecosystem
as developers may leverage this means to distinguish the
source of their app users, i.e., from which market the app

is installed. Moreover, our manual investigation also reveals

another possibility where “different” apps exist due to some

Fig. 9. The distribution of developer active time.

certain market regulations. For instance, 360 market requires

Android developers to pack and obfuscate their apps with

360 Jiagubao (a packing tool) before uploading. It is hence

reasonable that apps with the same package name, version

code and signature could be “different” in terms of hash value.

We group the apks in our dataset based on their package

names, version codes and developer signatures. At last, we

have identified 113,003 developers (10.9%) who have released

channel specific apps to different markets.

VI. MAINTENANCE BEHAVIORS

In this Section, we seek to explore the app maintenance

behaviors and answer the fourth research question. Previous

work suggested that some popular developers usually update

their apps every one week or two [49], [50], it is interesting to

study how often do app developers update their apps in large-

scale, especially when considering that roughly 50% of them

are multiple-market developers. However, as our dataset only

covers one snapshot of the app ecosystem across 17 markets, it

is not feasible for us to study the app updating behaviors across

different developers. As a result, we resort to an alternative

way to investigate the maintenance behaviors.

For each developer, we first calculate the “active time”, the

latest time that he releases/updates the apps in our crawled

dataset across markets. The we analyze the distribution of

active time, as shown in Figure 10. It is surprising to see that,

in general, more than 30% of developers were only active

before 2016, and more than 80% of developers were not active

since January 2017 (7 months before our crawling process).

This result suggested the poor app maintenance practices
for most of the developers in our dataset.

The popular developers and the non-popular ones have great

diversity. For the popular developers, over 90% of them are

still active after 2016, while roughly 40% of them are active

by the month of our crawling (August 2017).

We further analyze the correlations of developers’ active

time with the number of downloads, the number of released

markets, and the number of created apps separately, as shown

in Figure 10. Most of the popular developers (with high

downloads) are active recently, although the distribution of

Fig. 10. Developer’s active time vs. (1) the number of downloads, (2) the number of released markets, and (3) the number of created apps.

different developer downloads are scattered across the timeline

(cf. Figure 10 (1)). Developers that release apps to more markets

are more active than those who release apps to fewer markets

(cf. Figure 10 (2)). Developers who created large number of

apps are likely to be active than those who only release fewer

apps (cf. Figure 10 (3)).

VII. MALICIOUS DEVELOPERS

In this Section, we seek to answer the fifth research question

and study the prevalence of malicious developers. Specifically,

we resort to VirusTotal3, a widely used online service that

aggregates over 60 anti-virus engines, to measure the potential

malicious behaviors of mobile apps.

A. The Distribution of Malicious Apps and Developers

We first upload all the apps in our dataset to VirusTotal4.

Previous studies have suggested that some anti-virus engines

may not always report reliable results. In order to deal with

such potential false positives, we analyzed the results grouped

by how many engines (AV-score) flag an app as malware.

We analyzed the distribution of malicious apps and malicious

developers (the developers who created at least one malicious

app) across markets under different AV-scores, as shown in

Figure 11. Previous work suggested that the threshold of 10

engines is a robust choice [51], [52]. Based on the threshold

of AV-score>= 10, around 2% of the apps in Google Play are

labeled as malware, while the percentage in Chinese markets

is much higher, e.g., for 11 out of the 16 Chinese markets

the percentage of malware exceeds 10%. As to malicious

developers, roughly 2% of developers in Google Play has

released at least one app exceeds the AV-Score threshold, for

14 out of the 16 Chinese markets the percentage of malicious

developers exceeds 10%. It is surprising to see that over 20% of

developers in App China and PC Online markets have released

at least one possible malware. According to the threshold of

10 engines, there are 87,691 malicious developers, accounting

for 8.46% of developers in our dataset.

3https://www.virustotal.com
4Note that the maximum apk size accepted by VirusTotal using API interface

is 32MB. As a result, we did not upload apps with larger size than 32MB.

AV-Score>=10 AV-Score>=20
App Developer App Developer

Google Play 2.09% 2.37% 0.32% 0.61%
Tencent 11.16% 11.82% 3.45% 4.32%
Baidu 12.24% 14.09% 3.30% 5.83%
360 12.35% 16.24% 3.10% 6.36%
Huawei 16.43% 9.41% 6.00% 2.28%
Xiaomi 9.12% 13.71% 1.82% 4.38%
Wandoujia 10.70% 10.14% 3.14% 3.67%
HiApk 4.71% 14.43% 0.57% 5.65%
AnZhi 7.53% 18.09% 1.52% 6.48%
OPPO 8.26% 14.80% 2.06% 5.91%
25PP 7.98% 8.75% 2.19% 2.98%
Sougou 11.12% 18.72% 2.72% 8.15%
MeiZu 11.37% 16.75% 2.41% 6.42%
LIQU 13.00% 16.42% 4.27% 6.96%
App China 24.01% 24.43% 8.37% 11.47%
Lenovo MM 16.53% 15.32% 4.59% 5.11%
PC Online 14.13% 27.93% 4.27% 11.43%

Fig. 11. Malicious distributions.

������ ������ ������ ������ ����� ������
�1�R�U�P�D���H�G �'�H�Y�H�R�S�H�U �5�D�Q���Q�

�E�D�V�H�G �R�Q �W��H �1�X�P�E�H�U �R�I �5�H�H�D�V�H�G �0�D��F��R�X�V �$�S�S�V

������

������

������

�����

������

�3
�H�U
�F�H
�Q
�W�D
�
�H
�R
�I
�0
�D
�
�F�
�R
�X
�V
�$
�S
�S
�V
$�&
�'
�)
'

�$

(�R�R��H�3�D)

�&���Q�H�V�H �0�D�U��H�W�V

Fig. 12. Developer ranking based on the number of created malware.

B. Top Malicious Developers

We then analyzed the malicious developers who released

the most number of malware, as shown in Table V. It is

surprising to see that, based on the threshold of “AVscore >=
10”, some developers released over 10K malicious apps. We

further analyzed the proportion of released malicious apps

out of all the created apps for each developer, and the top 5

developers are shown in Table V too. Almost all of the apps

they released are supposed to be malware. It suggests that some

TABLE V
TOP 5 DEVELOPERS RANKED BY THE NUMBER OF CREATED MALICIOUS

APPS AND THE PORTION OF CREATED MALICIOUS APPS SEPARATELY.

Top 5 developers ranked by the number of created malicious apps
Signature # Apps # Malware % Malware
5B120E96B20F5B4EC695D79B20D18753 24,390 11,734 48.1%
E89B158E4BCF988EBD09EB83F5378E87 72,882 11,493 15.8%
5DE9D45FED20F9DB2033E5803704D156 51,408 10,527 20.5%
43D6BFCD0EEB50F103E20DF6EDBDDC72 5,013 4,172 83.2%
00469D701B96B9FCD9F6AA4C1A8044FB 7,150 2,760 38.6%

Top 5 developers ranked by the percentage of created malicious apps
1E987918B5365AF83A8A3E654AE0406C 102 102 100%
5042474ED55FEBF96155906FC75A8584 117 116 99.1%
3FED5340FBA5461E0CB414B0A943ADD8 115 114 99.1%
AB53865CDFD609E6F9BFB9C781FB964D 240 237 98.8%
B9CAD7C695ED11B8A93992353C69EEBE 206 203 98.5%

developers have the tendency to release malicious apps.
We further rank developers based on the number of released

malicious apps. As shown in Figure 12, roughly 1% of
malicious developers (0.08% of all the developers) created
more than 50% of potential malicious apps, roughly 10%
of malicious developers (0.8% of all the developers) created
over 70% of potential malicious apps. For the Chinese app

markets, the distribution of malicious apps is more concentrated

than that of Google Play, i.e., a few developers have created a

large mount of malware.

VIII. DISCUSSIONS

A. Limitations

Signature vs. developer. We have tried to distinguish

developers using the app signatures, as we assume that each

developer will use the same signature to sign their apps

and developers’ privacy keys will not be leaked, which is

a commonsense adopted by the research community. However,

this assumption sometimes is not true as we have identified

during the study. Some developers may use different signatures

to sign the different versions of their apps, while some

developers may use public app keys or app generator keys

to sign their apps. This obviously bad practice may affect

our study, however most of the developers are still using a

single key for all of their apps and different releasing versions.

Furthermore, it is also an interesting topic to investigate further

on how developers sign their apps based on our results.

Completeness of the dataset. Although we have tried our

best to crawl a complete snapshot of all the available apps in the

studied markets, it is obviously impossible to achieve perfect

coverage. However, according to the released data from third-

party sources (AppBrain [1] and several ASO markets [53],

[54]), we believe our dataset contains most of the popular apps

and it is by far the largest dataset with the most number of apps

and developer information. Nevertheless, our work still faces

several limitations when studying the maintenance behaviors,

as we only crawled one snapshot.

B. Implication

We believe that our efforts and the revealed insights can

contribute to different stakeholders of the mobile app ecosystem.

For app developers, the practices we revealed in this paper could

help them make better decisions when developing and releasing

apps. For app markets, we observed that some spam developers

that release thousands of low-quality and repetitive apps, which

may cause disruption to the mobile app ecosystem and should

be removed. Besides, we also revealed that malicious developers

are widespread across markets and some developers have the

tendency to release malicious apps. As a result, it is urgent

for market maintainers to identify and further monitor these

developers and the apps they released.

IX. RELATED WORK

A. Analyzing App Ecosystem and Mobile Apps
A large number of research efforts have been focused on

analyzing the mobile app ecosystem from various dimensions.

AndroZoo [33] project focused on crawling a large-scale

dataset of APKs, which has enabled a number of studies

focusing on malware analysis and app repository mining [55].

PlayDrone [16] is the first work that performed large-scale

characterization of 1.1 million apps published in Google Play,

with exploring issues such as app evolution and authentication

schemes. A few studies focus on analyzing market evolution

and comparing app markets [12], [13], [17]. Besides, many

studies proposed to analyze/optimize app ecosystem from user

comments [8], [9], [56]–[60], privacy policy [10], [11], app

ratings [61]–[65], app updates [14], [50], [66], [67], and app

descriptions [68]–[70], etc.

B. Understanding Mobile App Developers
A limited number of research studies [28]–[31], [71]–[74]

focus on analyzing mobile app developers. For example, Nayebi

et al. [71] conducted surveys with users and developers to

understand the release strategies adopted by app developers and

found that an app’s release strategy affects its success. Wang

et al. [28] investigated over 320K app developers in Google

Play, and analyzed developers’ distribution and proposed to

identify spam developers and developers with privacy-risks.

Dong et al. [75], [76] studied developers’ fraudulent behaviors

on using mobile advertisement. To the best of our knowledge,

no previous work has characterized app developers’ behaviors

from different phases in app life-cycle. Besides, our work is

the first paper that cover over 1 million Android developers

from 17 app markets.

X. CONCLUDING REMARKS

In this paper, we take the first step to understand the diverse

behaviors of app developers. We first created a dataset of

over 1 million app developers and over 6 million app items

crawled from 17 app markets including Google Play. Then

we characterize app developers from development behaviors,

release behaviors, app maintenance behaviors and malicious

behaviors. We believe that our research efforts can positively

contribute to bring user and developer awareness, attract the

focus of the research community and regulators, and promote

best operational practices across app store operators.

ACKNOWLEDGEMENT

This work is supported by the National Natural Science

Foundation of China (grants No.61702045 and No.61772042).

Yao Guo is the corresponding author.

REFERENCES

[1] “Android and Google Play statistics,” 2019, https://www.appbrain.com/
stats.

[2] “App economy to grow to $6.3 trillion in 2021, user base to
nearly double to 6.3 billion,” 2017, https://techcrunch.com/2017/06/27/

app-economy-to-grow-to-6-3-trillion-in-2021-user-base-to-nearly-double\

\-to-6-3-billion/.
[3] “There are 12 million mobile developers worldwide, and nearly

half develop for android first,” 2016, http://www.businessofapps.com/
12-million-mobile-developers-worldwide-nearly-half-develop-android-first/.

[4] M. Harman, Y. Jia, and Y. Zhang, “App store mining and analysis: Msr
for app stores,” in Proceedings of the 9th IEEE Working Conference on
Mining Software Repositories (MSR ’12), 2012, pp. 108–111.

[5] W. Martin, M. Harman, Y. Jia, F. Sarro, and Y. Zhang, “The app sampling
problem for app store mining,” in Proceedings of the 12th Working
Conference on Mining Software Repositories (MSR ’15), 2015, pp. 123–
133.

[6] T. Petsas, A. Papadogiannakis, M. Polychronakis, E. P. Markatos, and
T. Karagiannis, “Measurement, modeling, and analysis of the mobile app
ecosystem,” ACM Transactions on Modeling and Performance Evaluation
of Computing Systems (TOMPECS), vol. 2, no. 2, p. 7, 2017.

[7] ——, “Rise of the planet of the apps: A systematic study of the mobile
app ecosystem,” in Proceedings of the 2013 Internet Measurement
Conference (IMC ’13), 2013, pp. 277–290.

[8] N. Chen, J. Lin, S. C. Hoi, X. Xiao, and B. Zhang, “Ar-miner:
mining informative reviews for developers from mobile app marketplace,”
in Proceedings of the 36th International Conference on Software
Engineering (ICSE ’14), 2014, pp. 767–778.

[9] B. Fu, J. Lin, L. Li, C. Faloutsos, J. Hong, and N. Sadeh, “Why people
hate your app: Making sense of user feedback in a mobile app store,”
in Proceedings of the 19th ACM SIGKDD international conference on
Knowledge discovery and data mining, 2013, pp. 1276–1284.

[10] R. Slavin, X. Wang, M. B. Hosseini, J. Hester, R. Krishnan, J. Bhatia,
T. D. Breaux, and J. Niu, “Toward a framework for detecting privacy
policy violations in android application code,” in Proceedings of the 38th
International Conference on Software Engineering (ICSE ’16), 2016, pp.
25–36.

[11] L. Yu, X. Luo, X. Liu, and T. Zhang, “Can we trust the privacy
policies of android apps?” in Proceedings of the 46th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN
’16), 2016, pp. 538–549.

[12] H. Wang, Z. Liu, J. Liang, N. Vallina-Rodriguez, Y. Guo, L. Li,
J. Tapiador, J. Cao, and G. Xu, “Beyond google play: A large-scale
comparative study of chinese android app markets,” in Proceedings of
the Internet Measurement Conference (IMC ’18), 2018, pp. 293–307.

[13] M. Ali, M. E. Joorabchi, and A. Mesbah, “Same app, different app
stores: A comparative study,” in Proceedings of the 4th International
Conference on Mobile Software Engineering and Systems (MobileSoft
’17), 2017, pp. 79–90.

[14] V. F. Taylor and I. Martinovic, “To update or not to update: Insights from
a two-year study of android app evolution,” in Proceedings of the 2017
ACM on Asia Conference on Computer and Communications Security
(AsiaCCS ’17), 2017, pp. 45–57.

[15] B. Carbunar and R. Potharaju, “A longitudinal study of the google app
market,” in Proceedings of the 2015 IEEE/ACM International Conference
on Advances in Social Networks Analysis and Mining 2015, 2015, pp.
242–249.

[16] N. Viennot, E. Garcia, and J. Nieh, “A measurement study of google
play,” in ACM SIGMETRICS Performance Evaluation Review, vol. 42,
no. 1, 2014, pp. 221–233.

[17] H. Wang, H. Li, L. Li, Y. Guo, and G. Xu, “Why are android apps
removed from google play?: a large-scale empirical study,” in Proceedings
of the 15th International Conference on Mining Software Repositories
(MSR ’18), 2018, pp. 231–242.

[18] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, K. Rieck, and
C. Siemens, “Drebin: Effective and explainable detection of android
malware in your pocket.” in Proceedings of the Network and Distributed
System Security Symposium (NDSS ’14), vol. 14, 2014, pp. 23–26.

[19] M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang, “Riskranker: scalable
and accurate zero-day android malware detection,” in Proceedings of
the 10th International Conference on Mobile systems, Applications, and
Services, 2012, pp. 281–294.

[20] H. Wang, J. Hong, and Y. Guo, “Using text mining to infer the purpose
of permission use in mobile apps,” in Proceedings of the 2015 ACM
International Joint Conference on Pervasive and Ubiquitous Computing,
2015, pp. 1107–1118.

[21] K. Mao, M. Harman, and Y. Jia, “Sapienz: multi-objective automated
testing for android applications,” in Proceedings of the 25th International
Symposium on Software Testing and Analysis (ISSTA ’16), 2016, pp.
94–105.

[22] D. Amalfitano, A. R. Fasolino, P. Tramontana, B. D. Ta, and A. M.
Memon, “Mobiguitar: Automated model-based testing of mobile apps,”
IEEE Software, vol. 32, no. 5, pp. 53–59, 2015.

[23] K. Chen, P. Liu, and Y. Zhang, “Achieving accuracy and scalability
simultaneously in detecting application clones on android markets,”
in Proceedings of the 36th International Conference on Software
Engineering (ICSE ’14), 2014, pp. 175–186.

[24] H. Wang, Y. Guo, Z. Ma, and X. Chen, “Wukong: a scalable and accurate
two-phase approach to android app clone detection,” in Proceedings of
the 2015 International Symposium on Software Testing and Analysis
(ISSTA ’15), 2015, pp. 71–82.

[25] M. Backes, S. Bugiel, and E. Derr, “Reliable third-party library detection
in android and its security applications,” in Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security
(CCS ’16), 2016, pp. 356–367.

[26] Z. Ma, H. Wang, Y. Guo, and X. Chen, “Libradar: fast and accurate
detection of third-party libraries in android apps,” in Proceedings of
the 38th International Conference on Software Engineering Companion
(ICSE-C), 2016, pp. 653–656.

[27] “Top mobile app development companies,” 2019, https://clutch.co/
directory/mobile-application-developers.

[28] H. Wang, Z. Liu, Y. Guo, X. Chen, M. Zhang, G. Xu, and J. Hong,
“An explorative study of the mobile app ecosystem from app developers’
perspective,” in Proceedings of the 26th International Conference on
World Wide Web (WWW ’17), 2017, pp. 163–172.

[29] R. Balebako, A. Marsh, J. Lin, J. I. Hong, and L. F. Cranor, “The privacy
and security behaviors of smartphone app developers,” in Proceedings
of the Workshop on Usable Security, 2014.

[30] A. I. Wasserman, “Software engineering issues for mobile application
development,” in Proceedings of the FSE/SDP workshop on Future of
software engineering research, 2010, pp. 397–400.

[31] A. Holzer and J. Ondrus, “Mobile application market: A developer’s
perspective,” Telematics and informatics, vol. 28, no. 1, pp. 22–31, 2011.

[32] H. Wang, H. Li, and Y. Guo, “Understanding the evolution of mobile
app ecosystems: A longitudinal measurement study of google play,” in
Proceedings of the Web Conference 2019 (WWW ’19), 2019.

[33] L. Li, J. Gao, M. Hurier, P. Kong, T. F. Bissyandé, A. Bartel, J. Klein, and
Y. Le Traon, “Androzoo++: Collecting millions of android apps and their
metadata for the research community,” arXiv preprint arXiv:1709.05281,
2017.

[34] “Privacygrade: Grading the privacy of smartphone apps,” 2018, http:
//privacygrade.org/.

[35] “Aliyun,” 2019, www.aliyun.com.
[36] “Fake apps in google play get over half a million installs,”

2018, https://www.bleepingcomputer.com/news/security/
fake-apps-in-google-play-get-over-half-a-million-installs/.

[37] “Pareto principle,” 2019, https://en.wikipedia.org/wiki/Pareto_principle.
[38] “Qbiki Networks,” 2019, www.apptism.com/entertainment/

qbiki-networks/.
[39] “Andromo,” 2019, https://www.andromo.com/.
[40] “Bizness Apps,” 2019, https://www.biznessapps.com/.
[41] “Conduit,” 2019, mobile.conduit.com.
[42] “BestToolbars,” 2019, https://besttoolbars.net/.
[43] Y. Yuan and Y. Guo, “Boreas: an accurate and scalable token-based

approach to code clone detection,” in Proceedings of the 27th IEEE/ACM
International Conference on Automated Software Engineering (ASE ’12),
2012, pp. 286–289.

[44] “Spam and minimum functionality,” 2019, https://play.google.com/intl/
en-US/about/spam-min-functionality/.

[45] I. J. Mojica, B. Adams, M. Nagappan, S. Dienst, T. Berger, and A. E.
Hassan, “A large-scale empirical study on software reuse in mobile apps,”
IEEE software, vol. 31, no. 2, pp. 78–86, 2014.

[46] H. Wang and Y. Guo, “Understanding third-party libraries in mobile
app analysis,” in Proceedings of the 2017 IEEE/ACM 39th International
Conference on Software Engineering Companion (ICSE-C), 2017, pp.
515–516.

[47] H. Wang, Y. Guo, Z. Ma, and X. Chen, “Automated detection and
classification of third-party libraries in large scale android apps,” Journal
of Software, vol. 28, no. 6, pp. 1373–1388, 2017.

[48] “Meet google play’s target api level requirement,” 2019, https://developer.
android.com/distribute/best-practices/develop/target-sdk.

[49] S. Hassan, W. Shang, and A. E. Hassan, “An empirical study of emergency
updates for top android mobile apps,” Empirical Software Engineering,
vol. 22, no. 1, pp. 505–546, 2017.

[50] S. McIlroy, N. Ali, and A. E. Hassan, “Fresh apps: an empirical study
of frequently-updated mobile apps in the google play store,” Empirical
Software Engineering, vol. 21, no. 3, pp. 1346–1370, 2016.

[51] M. Ikram, N. Vallina-Rodriguez, S. Seneviratne, M. A. Kaafar, and
V. Paxson, “An analysis of the privacy and security risks of android
vpn permission-enabled apps,” in Proceedings of the 2016 Internet
Measurement Conference, 2016, pp. 349–364.

[52] M. Zheng, P. P. Lee, and J. C. Lui, “Adam: an automatic and extensible
platform to stress test android anti-virus systems,” in Proceedings of the
2012 International Conference on Detection of Intrusions and Malware,
and Vulnerability Assessment, 2012, pp. 82–101.

[53] “App Store Optimization - Chandashi,” 2019, https://www.chandashi.
com/.

[54] “App Store Optimization - qimai,” 2019, https://www.qimai.cn/.
[55] Y. Ishii, T. Watanabe, F. Kanei, Y. Takata, E. Shioji, M. Akiyama,

T. Yagi, B. Sun, and T. Mori, “Understanding the security management
of global third-party android marketplaces,” in Proceedings of the 2nd
ACM SIGSOFT International Workshop on App Market Analytics. ACM,
2017, pp. 12–18.

[56] L. Villarroel, G. Bavota, B. Russo, R. Oliveto, and M. Di Penta, “Release
planning of mobile apps based on user reviews,” in Proceedings of the
38th International Conference on Software Engineering (ICSE ’16), 2016,
pp. 14–24.

[57] L. Guerrouj, S. Azad, and P. C. Rigby, “The influence of app churn
on app success and stackoverflow discussions,” in Proceedings of the
22nd International Conference on Software Analysis, Evolution and
Reengineering (SANER ’15), 2015, pp. 321–330.

[58] W. Maalej and H. Nabil, “Bug report, feature request, or simply praise?
on automatically classifying app reviews,” in Proceedings of the 23rd
International Requirements Engineering Conference (RE ’15), 2015, pp.
116–125.

[59] C. Iacob and R. Harrison, “Retrieving and analyzing mobile apps feature
requests from online reviews,” in Proceedings of the 10th Working
Conference on Mining Software Repositories (MSR ’13), 2013, pp. 41–
44.

[60] S. Panichella, A. Di Sorbo, E. Guzman, C. A. Visaggio, G. Canfora,
and H. C. Gall, “How can i improve my app? classifying user reviews
for software maintenance and evolution,” in Proceedings of the 2015
IEEE International Conference on Software Maintenance and Evolution
(ICSME ’15), 2015, pp. 281–290.

[61] I. J. M. Ruiz, M. Nagappan, B. Adams, T. Berger, S. Dienst, and A. E.
Hassan, “Examining the rating system used in mobile-app stores,” IEEE
Software, vol. 33, no. 6, pp. 86–92, 2016.

[62] Y. Tian, M. Nagappan, D. Lo, and A. E. Hassan, “What are the charac-
teristics of high-rated apps? a case study on free android applications,” in

Software Maintenance and Evolution (ICSME), 2015 IEEE International
Conference on, 2015, pp. 301–310.

[63] R. Chandy and H. Gu, “Identifying spam in the ios app store,” in
Proceedings of the 2nd Joint WICOW/AIRWeb Workshop on Web Quality,
2012, pp. 56–59.

[64] I. M. Ruiz, M. Nagappan, B. Adams, T. Berger, S. Dienst, and A. Hassan,
“On the relationship between the number of ad libraries in an android
app and its rating,” IEEE Software, no. 1, pp. 1–1, 2014.

[65] H. Hu, C.-P. Bezemer, and A. E. Hassan, “Studying the consistency of
star ratings and the complaints in 1 & 2-star user reviews for top free
cross-platform android and ios apps,” Empirical Software Engineering,
pp. 1–34, 2016.

[66] M. Linares-Vásquez, “Supporting evolution and maintenance of android
apps,” in Proceedings of the 36th International Conference on Software
Engineering Companion, 2014, pp. 714–717.

[67] Y. Tian, B. Liu, W. Dai, B. Ur, P. Tague, and L. F. Cranor, “Supporting
privacy-conscious app update decisions with user reviews,” in Proceedings
of the 5th Annual ACM CCS Workshop on Security and Privacy in
Smartphones and Mobile Devices, 2015, pp. 51–61.

[68] A. Gorla, I. Tavecchia, F. Gross, and A. Zeller, “Checking app behavior
against app descriptions,” in Proceedings of the 36th International
Conference on Software Engineering (ICSE ’14), 2014, pp. 1025–1035.

[69] K. Kuznetsov, V. Avdiienko, A. Gorla, and A. Zeller, “Checking app user
interfaces against app descriptions,” in Proceedings of the International
Workshop on App Market Analytics, 2016, pp. 1–7.

[70] A. A. Al-Subaihin, F. Sarro, S. Black, L. Capra, M. Harman, Y. Jia,
and Y. Zhang, “Clustering mobile apps based on mined textual features,”
in Proceedings of the 10th ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement, 2016, p. 38.

[71] M. Nayebi, B. Adams, and G. Ruhe, “Release practices for mobile
apps–what do users and developers think?” in Proceedings of the
23rd International Conference on Software Analysis, Evolution and
Reengineering (SANER ’16), 2016, pp. 552–562.

[72] H. J. Kim, I. Kim, and H. Lee, “Third-party mobile app developers’
continued participation in platform-centric ecosystems: An empirical
investigation of two different mechanisms,” International Journal of
Information Management, vol. 36, no. 1, pp. 44–59, 2016.

[73] C. Rosen and E. Shihab, “What are mobile developers asking about? a
large scale study using stack overflow,” Empirical Software Engineering,
vol. 21, no. 3, pp. 1192–1223, 2016.

[74] S. Barnett, R. Vasa, and J. Grundy, “Bootstrapping mobile app develop-
ment,” in Proceedings of the 37th International Conference on Software
Engineering (ICSE ’15), 2015, pp. 657–660.

[75] F. Dong, H. Wang, L. Li, Y. Guo, T. F. Bissyandé, T. Liu, G. Xu, and
J. Klein, “Frauddroid: Automated ad fraud detection for android apps,” in
Proceedings of the 2018 26th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering. ACM, 2018, pp. 257–268.

[76] F. Dong, H. Wang, L. Li, Y. Guo, G. Xu, and S. Zhang, “How do
mobile apps violate the behavioral policy of advertisement libraries?” in
Proceedings of the 19th International Workshop on Mobile Computing
Systems & Applications, 2018, pp. 75–80.

