Standby Energy Analysis and Optimization for Smartphones

Chengke Wang, Yao Guo, Yunnan Xu, Peng Shen, Xiangqun Chen
Key Laboratory of High-Confidence Software Technologies (Ministry of Education)
School of EECS, Peking University, Beijing, China
{wangchk11, yaoguo, xuynl4, shenpengl3, cherry} @sei.pku.edu.cn

Abstract—As smartphones become more and more powerful
and complex, many research works have focused on the
analysis and optimization of smartphone energy consumption.
Most works are focused on the cases when smartphones are
actively used. However, one major issue with smartphones is
that the standby time has become much shorter compared
with traditional feature phones. Many users have to recharge
their phones everyday even though they are not using the
phones very often. In order to understand what happens
with smartphone battery while the phone is not in use, we
combine current measurements with user trace analysis to
reveal how smartphones consume energy in the standby mode.
We have identified several factors that cause energy wastes in
the standby mode. Then we propose a series of optimization
methods to demonstrate the potential of energy reduction on
smartphone standby energy. Results based on user traces show
that we can extend the standby time by as much as 87% with
the proposed optimizations.

Keywords-Smartphones, energy consumption, standby en-
ergy, energy optimization, Android

I. INTRODUCTION

Nowadays, smartphones are becoming more and more
popular. Compared with traditional feature phones, smart-
phones are equipped with more powerful hardware com-
ponents. Applications on smartphones are also more and
more complex and powerful. However, the battery life of
smartphones is reduced to as short as several hours for many
heavy users. As a result, many users have to charge their
smartphones every day.

To understand the energy consumption of smartphones,
many research works have made efforts to analyze and
optimize energy consumption of smartphones. Based on our
observations, besides the energy consuming, heavy func-
tions, another big issue with smartphones is that the standby
time has become shorter and shorter, with many mainstream
phones requiring recharges every day even for the light users.

While the advertised standby time for most smartphones
are still in the range of several hundred hours, our expe-
riences with different types of smartphones show that it is
absolutely impossible to reach even close to a hundred hours.

Our previous work on energy estimation and evaluation
on a large number of smartphones showed that many users
spent more battery in the standby mode than when the phone
is running apps in the foreground [22]. The average current
in the standby mode reaches up to 50mA, which is one

magnitude higher than the measured current of around 5SmA
in real standby mode.! Moreover, our statistical results show
that standby mode accounts for 81% of the total using time
and 58% of the total battery capacity.

What happens when the phone is not in use? How is the
battery consumed? What causes the energy surges? Is there
any way to optimize the standby power? These are the
questions we tried to answer in this paper.

In order to perform energy analysis in the standby mode,
we first conduct a series of hardware measurements. Accord-
ing to our experimental results, the battery consumption of
a smartphone while not in use is dependent on the actual
context. We have observed the following factors that affect
standby energy consumption in various contexts:

o When we switch off the screen, the phone takes several
seconds to reach a stable low-power mode.

o More energy is consumed when we switch the smart-
phone apps to the background instead of terminating
them explicitly.

« More energy is consumed when many hardware com-
ponents are not turned off, such as Wi-Fi.

« Many background services wake up the phone periodi-
cally in the background, causing frequent power surges.

Some of the factors are also significant consumers in
non-standby mode. However, we want to focus on how
they consume the standby energy. To quantify the effects
of these context factors on the standby energy, we have
also developed a lightweight tool to collect event traces
consisting of important system events on smartphones of
9 volunteers. After analyzing the user traces, we are able to
obtain the following results:

o In the user traces, 85% of the total CPU time, 16.7%
of the Wi-Fi traffic and 2.8% of the cellular traffic are
consumed in the standby mode. Thus, the majority of
CPU resource is consumed in the standby mode, while
the majority of network resource is consumed in the
non-standby mode.

o In all types of resource usages in the standby mode,
system services use the most CPU, online and down-
loading apps use the most of Wi-Fi network, while chat

For a smartphone equipped with a standard 1500mAH battery, SmA
standby power means 300 hours standby, while 50mA means the standby
time is roughly 30 hours.



apps and SNS apps use the most of cellular network.

Based on our analysis and estimation, with all these
activities, standby energy has been dominated by these extra
energy consumption in many cases, suggesting potential
opportunities for optimization. We propose several methods
to optimize the standby energy:

o Apply fast dormancy to reduce tailing energy spent after
screen-off. We can apply fast dormancy scheme (similar
to the techniques for the 3G network) to the screen off
tails to shorten the tail time.

o Turn off unused hardware components (e.g. Wi-Fi mod-
ule). According to our measurements, Wi-Fi connection
with no traffic is also a big consumer of standby energy.
We can switch off Wi-Fi in the standby sessions that
do not need it.

o Delay network packages to group them. Small traffic
wastes a lot of energy in the standby mode due to the
tail energy of network transmission. We can delay some
of the packages to group them together to reduce the
tail energy.

o Automatically terminate or notify the users to termi-
nate the apps that consume significant energy in the
background.

We apply these methods to our measurement data and usage

traces, the result shows that we can potentially extend the

standby time by as much as 87.3% on a typical smartphone.
The main contributions of our work are as following:

o We have performed hardware measurements of current
traces of a standby smartphone in various contexts
and identified the main factors that affect the standby
energy. These factors include screen off tails, hardware
status, background applications and services.

e We have performed a user study of 9 volunteers for
about one week. According to the resource usage
information of these users, we calculate and compare
the main factors affecting standby energy.

« We have presented several optimization methods to
extend the standby time of smartphones and estimate
the effect of each approach based on our measurement
data and user traces. The result shows that we can
extend the standby time by as much as 87.3% with
these methods.

II. METHODOLOGY

In order to understand what happens when a smartphone is
not in use, we have taken an approach combining hardware
measurement with trace analysis.

A. Hardware Measurement

Hardware measurement is applied to measure the pa-
rameters of a smartphone via external hardware tools at
runtime. Our hardware measurement includes power meter
and network monitor.

1) Power Meter: We use the Monsoon Power Monitor
[12] in our study to measure the current value in various
stages. The Power Monitor also supplies a stable voltage to
the smartphone. Since the voltage is a constant, we simply
use the current value to denote the power consumption.

Due to the huge amount of data generated by the Power
Monitor, we are unable to perform analysis on a long trace
such as several hours. Instead, based on our analysis on
traces, we selectively monitor the current traces for short
periods on various representative contexts.

With the current traces, we have identified some power
consumption patterns when the smartphone is in the standby
mode. Furthermore, when we compare the power patterns
with the event traces collected on user smartphones, we are
able to determine the causes of these power patterns.

2) Wi-Fi Traffic Monitor: During hardware measurement
experiments, we have not plugged-in a SIM card into the
smartphone. Thus all the network traffic is through Wi-Fi.

Our approach for monitoring the Wi-Fi traffic is to set
up a Wi-Fi AP on a laptop, then connect the smartphone to
this AP. When the smartphone sends or receives a network
package, we monitor the packages on the laptop using the
WinPcap [21] tool.

With Wi-Fi traffic traces and power traces, we can identify
the power consumption caused by Wi-Fi traffic in the current
traces. We are then able to analyze network-related power
consumption in different contexts.

B. User Trace Collection

We developed a light-weight tool to collect event traces
and resource usage information on actual smartphones used
by some volunteers. The tool consists of two parts:

« An event-driven collector that records the event traces.
When the mobile operating system broadcasts an event,
our tool catches the occurrence of the event and its
timestamp.

o A polling collector that reads the information on re-

source usage such as CPU and network. This part reads
CPU time and network traffic of each running app and
service every 10 seconds.
In order to determine the polling frequencies, we have
tried various frequencies. We conclude that a time
interval of 10 seconds could be accurate enough for
our following analysis, and the overhead is tolerable
according to the feedback of our volunteers.

Please note that the user traces collected with this tool are
only used to record user behaviours. The energy values are
calculated based on our hardware measurement. Thus the
overhead of the data collection tool would not impact our
results.

1) Event Trace: Our tool runs as a background service
on the smartphone and listens to the following events:

o Screen events: Screen is turned on/off. We denote

standby mode as the time periods with the screen



of smartphones off. With the screen events, we can
distinguish the standby periods.

o Network events: including events when network is
enabled/disabled, or network state is changed.

With these events, we can divide the smartphone usage
into many sessions. Each session runs in a relatively stable
context.

2) Resource Usage: The background service of the tool
also reads the CPU and network usages, and summarize the
usage information for each session.

o CPU usage: CPU usage is denoted using CPU time for
each running app and service.

o Network usage: We denote the network usage by the
number of traffic bytes for each running app and ser-
vice. Since we collect the trace when the user actually
uses the phone, we also need to distinguish between
different network environments for Wi-Fi or cellular
(3G/4G).

We can read the CPU time and network transmission bytes
of each app from the file in the “/proc” directory.

III. POWER TRACE ANALYSIS

In this section, we introduce our experimental setup and
present standby energy consumption patterns observed in
different contexts.

A. Experimental Setup

We use a Google Nexus S smartphone to perform hard-
ware measurement. The power numbers are measured with
the Monsoon Power Monitor, which also supplies a stable
4.2 V voltage to the smartphone.

We install popular apps including Wechat, UCbrowser and
AngryBirds on the phone and measure the power numbers
in different contexts.

B. Observations from Current Measurement

Based on our experiments, we have identified several
factors of standby energy consumption in different contexts.

1) Tail Energy during Screen Switch-Off: One interesting
aspect in our observations is that each time when the screen
is off, the smartphone will keep in a high power stage for
several seconds even after the screen is off, before it enters
the real standby mode with a low-level current.

Figure 1 shows the measured current when the system
turns off the screen automatically after a specified period
with no user operations. The screen is turned off at around
1.5s. It is obvious that the current increases at first. After
about 10 seconds, the current falls to about 5 mA, which is
the norm for a phone in standby. The result suggests that
the power consumption of the smartphone usually could not
fall down to the lowest level immediately (or real fast) after
the screen is turned off. There exists “tail energy”, which is
similar to previous studies on network traffic. [1]
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Figure 1. Power measurement of turning off the screen by the system
(Wi-Fi on).
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Figure 2. Power measurement of turning off the screen by the system

(Wi-Fi off).

When measuring with Wi-Fi off, we observe a much
shorter “tail time” in Figure 2. Compared with the tail time
of about 6.6 seconds with Wi-Fi on, the tail time is only
0.7 seconds when Wi-Fi is off. The average current values
of the two situations are almost the same, at about 82.02
mA. Thus the tail energy would be much less if Wi-Fi was
disabled before the screen is off.

During these “tail times” above, we do not observe any
Wi-Fi traffic of the smartphone on the notebook Wi-Fi AP.
We are still investigating exactly what happened during
this period. Our best guess is that the smartphone may
be preparing for the standby mode, but it may keep some
resources (such as Wi-Fi connection) alive for a while in
case the user would turn on the screen in a short time.

According to this guess, the system may perform some
optimization if the screen is turned off by the power key,
which suggests the phone probably not used in a short time.
Then we test this situation and the result is presented in
Figure 3. It shows that there would be no significant “tail
energy”’. Thus, the system do optimize the “tail energy”
when it “assumes” the user might not use the phone for
a while.

This suggests that if the system is able to detect user
intentions, it could also apply the fast dormancy approach
when system switches off screen due to inactivity.

2) Effect of Hardware Status: Another observation
(which has been exploited by many energy management
tools) is that the standby energy could be kept at a minimum
in the flight mode, when all communication channels/devices
are turned off.

In order to show how the status of hardware components
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Figure 3. Power measurement of turning off the screen by the user (Wi-Fi
on).
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Figure 4. Power measurement of flight mode with no background

applications.

could affect the background power, we first measure the
baseline current curve in the flight mode (with screen off
and no background applications and services), as shown in
Figure 4. The average current is only 1.15 mA.

Then we measured the current curves in the standby mode
with Bluetooth and Wi-Fi enabled (but no traffic), shown
in Figure 5 and 6 respectively. Although when Bluetooth is
enabled, it shows only small energy waves, little extra energy
increase. We see that when Wi-Fi is enabled, the base current
is increased to 1.39 mA, while the average current value is
5.72 mA.

The results shows that the hardware components would
consume significant energy in the standby mode even they
are not used. We should turn off them to save the battery if
not using them for a long period of time.

3) Effect of Background Applications: When turning to a
new task, many smartphone users may simply switch the old
app to the background instead of terminating it (especially
for iPhone/iPad apps). For example, when the user receives
a phone call while playing a game, he might simply switch
the game to the background and may not use it again in a
long time.

Do the applications remaining in the background cost
energy? Figure 7 shows the current curve in the flight
mode with many applications running in the background.
In most of the time, the current value is the close to the
baseline current in Figure 4. But occasionally, it may jump
to a high value of about 90 mA for a short period. Since

Current(mA)
N
5 &5 8 B 8 @

«

0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Time(s)

Figure 5. Power measurement of standby mode with Bluetooth on but no
background applications.
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Figure 6. Power measurement of standby mode with Wi-Fi on but no
background applications.

the phone is in the flight mode in this test, the energy can
not be consumed by network traffic. It may be related to the
background applications and system scheduling.

4) Effect of Background Services: Even with no back-
ground applications, many smartphones also run multiple
services in the standby mode.

Do these services consume the battery? Figure 8 shows
the current curve in the standby mode with Wi-Fi enabled.
We can see the current curve periodically rises up for about
every 2 seconds. We find that each time the current rises, one
or more Wi-Fi packages would occur on our notebook AP.
It suggests that the energy is related to the Wi-Fi traffic. We
test the Wi-Fi traffic for about 50 times. The average time of
a single current pattern of Wi-Fi traffic is about 1.98 seconds
with an average energy consumption of about 53.82 uAh.

Are there any other components consume the energy in
these current patterns? Figure 9 shows the current curve
when we perform a similar experiment without Wi-Fi. The
current patterns disappear and the average current decreases
to about 5.31 mA. Thus, the Wi-Fi traffic consumes almost
all the energy in these current patterns.

The results suggest that many applications would run
services on the smartphone. Some of these services always
produce network traffic periodically in the standby mode
if network is available. We believe this is one of major
contributors to standby energy that decreases smartphone
standby time significantly.
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IV. USER TRACE ANALYSIS

In order to study the standby energy in real usage sce-
narios, we collected user traces from 9 volunteers for about
one week.

A. Data Collection

We collected the user traces when the volunteers used
their phones normally. All the users have installed our
collection tool on their smartphones. Once they click the
“start” button in our tool, the background service starts and it
restarts automatically when the smartphones are powered on.
The tool records the traces and resource usage information,
then writes it to a data file. After a week, we asked the
volunteers to submit their data files.

B. Smartphone Usage in User Traces

We first study the basic information of smartphone usage
of these users, as shown in Table I.

We denote each user with a number from 1 to 9. Among
different users, the number of apps ranges from 46 to 142,
which includes the actual apps, services of apps, and also
system services. The average trace time of all users is about
86 hours during the week, since we would not collect any
data when the smartphones are powered off.? The light users
use their smartphones only for 9% of the time, while heavy
users use their phones for 30% of the time. As a results,
even the smartphones of heavy users have spent more time
in the standby mode than in non-standby mode.

>The trace time of User 5 is abnormal. Because of our collection tool
has a bug, it could not always start automatically when the phone of User
5 is powered on.
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Figure 10. Resource usage of apps: screen-off vs. screen on.

C. Application Usage in User Traces

The root causes of standby energy are software behaviors.
Besides the five parts of standby energy we have observed
and analyzed, we also want to know how the background
apps and services behave in the standby mode and which
apps consume the most energy.

1) Application Behaviors: Standby vs. Non-standby: As
we know, main energy consumers of smartphones are CPU,
network and screen. In the standby mode, during which the
screen is turned off, the main energy consuming components
would be CPU and network.

We add up the CPU and network usage of all the apps
in the standby/non-standby mode. The result is shown in
Figure 10.

Compared with non-standby mode, more CPU time is
consumed in the standby mode. The main reason is that the
standby mode accounts for 87% of all the trace time. The
average CPU utilization in the standby mode is 23.9%, while
the number is 29.8% in the non-standby mode. It suggests
that, the majority of CPU time is consumed in the standby
mode, but the consumption rate is smaller than that in the
non-standby mode. Wi-Fi and cellular network traffic in the
standby mode is much less than in the non-standby mode.

2) Major Applications of Standby Energy Consumer:
Table II shows the top apps and services consuming most
of CPU, Wi-Fi and cellular network in the standby mode.

We can see among the top ten CPU consumers, six of
them are system services including phone calls, system
media and system UI. The top Wi-Fi consumers are network
apps, for example the Wandoujia app store, Youdao online
dictionary and Huawei network drive. The top cellular net-



Table T
USER TRACE STATISTICS.

User ID | Total Trace Time(h) | Standby Time(%) | Using Time(%) | App Number
1 137.9 85.2% 14.8% 142
2 96.8 83.8% 16.2% 47
3 126.1 91.0% 9.0% 140
4 62.1 90.5% 9.5% 112
5 3.6 69.9% 30.1% 48
6 112.7 86.9% 13.1% 99
7 92.2 91.6% 8.4% 99
8 45.3 79.2% 20.8% 76
9 104.3 87.0% 13.0% 46

Table II

TOP APPS AND SERVICES REGARDING THEIR RESOURCE USAGES.

Top CPU consumers

Top Wi-Fi consumers

Top Cellular Consumers

com.android.phone

com.wandoujia.phoenix2

com.android.email

android.process.acore

info.matthewwardrop.scholarley

cn.com.fetion:service

android.process.media

com.youdao.dict

cn.com.fetion

com.android.systemui

com.youdao.dict:yddictclip

com.tencent.mobileqq:MSF

com.taobao.taobao

android.process.media

com.sina.weibo

com.taobao.taobao:pushservice

com.estrongs.android.pop

com.sina.weibo.servant

com.android.mms

cn.wiz.note

com.tencent.mobileqq

com.android.email

com.huawei.hidisk

com.tencent. mm:push

com.baidu.appsearch:bdservice_v1

com.ting.mp3.android

com.evernote.world

com.baidu.BaiduMap:bdservice_v1

com.ideashower.readitlater.pro

com.xiaomi.xmsf

work consumers are SNS apps and chat apps, such as Fetion,
QQ and Weibo. It suggests that the top consuming apps of
different resources in the standby mode is also different.
When optimizing the standby energy of each resource, we
should mainly focus on the corresponding groups of apps
that consume more energy.

D. Energy Usage in User Traces

In Section III we present several factors of standby energy
including hardware causes and software causes. With the
user traces of smartphone usage collected from users, we
can compare the factors of standby energy consumption.

1) Calculating Energy Usage with User Traces: Since the
user devices are different, we just take some statistical results
of smartphones usage from user traces and adapt them to our
hardware measurement numbers of Nexus S to calculate the
approximate energy consumption. For example:

o Screen-off tail: We denote the energy consumption for
one screen-off tail by the average energy of the “tail
time” according to our measurement on Nexus S, while
the frequency of screen-off is counted from the screen-
off events in our user traces.

o Network traffic: We model the traffic energy based on
traffic bytes with our measurement results on Nexus S,
while the total traffic bytes is counted from the network
usage information of our user traces.

2) Energy Distribution in the Standby Mode: According
to our observations of standby energy in Section III-B, we
divide the standby energy into five parts:

« Flight mode base power: As we have measured, flight
mode with no running apps can be used as the baseline
of the standby power.

o Screen off tail: Another part is the energy consumed
during the “tail time” after the screen is turned off.

o Background apps: The apps running in the background
can cause occasional rises of standby energy.

o Wi-Fi connection: Even though with no traffic, only the
Wi-Fi connection consumes extra energy.

o Wi-Fi traffic: When background services communicate
with servers or other devices, the Wi-Fi traffic con-
sumes energy.

Combining the user traces with power measurements, we
are able to calculate these components to form a big picture
of the actual standby energy.

According to Figure 4, the baseline current in the flight
mode is 1.15 mA. When Wi-Fi is enabled, the average
current is increased by 4.67 mA, as Figure 6 shows. This
corresponds to the Wi-Fi connection power. According to
Figure 7, if several apps are running in the background, the
current would occasionally rises up to about 90 mA and
last about 1.1 second. We have not found the reason or a
pattern. However, we tested this context for 10 minutes and
the current rises up for 24 times. Thus we roughly regard it
as rising up every 25 seconds. It is equivalent to a 3.96mA
current throughout the standby time.

To calculate the screen off tail energy, we count the
frequency of screen off events in our trace data. In the
traces of all the 9 users, the number of screen off events
is 1,987 during the 681.2 hour total using time. Thus the



flight mode
base

wifi traffic
40%

N 7%
wifi connection
‘ 28%

screen off tail background
2% apps
23%

Figure 11. The distribution of standby energy.

frequency is turning off the screen every 0.39 hours. We do
not distinguish whether the screen is turned off by the user
or by the system. If all the screen-off events were caused by
the system with Wi-Fi enabled, then each screen-off event
would have a 6.6-second “tail time” with 82.02 mA average
current. Thus, the screen tail is equivalent to a 0.38mA
current throughout the standby time.

According to Figure 8, the average energy consumption
of one traffic pattern is 53.82 uAh and the average time
is 1.98 seconds. The average traffic bytes is 6.4K bytes
as we monitored on our notebook AP. Thus we modeled
the average energy of 1K byte traffic at 8.35 uAh. In our
user traces, the standby Wi-Fi traffic is 547 MB during
681.1 hours. The average is 233 bytes per second, which
consumed 1.9 uAh according to our model. On average, the
traffic power is equivalent to a 6.87mA current throughout
the standby time.

We have summarized the calculation results and shown
the distribution of standby energy in Figure 11.

From the distribution of standby energy, we observed the
following conclusions:

o The baseline energy in the flight mode is a very small
part of the total standby energy.

e Wi-Fi network (Wi-Fi connection and Wi-Fi traffic)
consumes the most energy in the standby mode with
a percentage of about 70%. However, the number of
standby Wi-Fi traffic bytes only accounts for 16.7% of
all the Wi-Fi traffic. It suggests that the network energy
in the standby mode has a large optimization space.

o The screen off tail energy seems to consume a very
significant energy of 150.4 uAh per tail. However,
this part accounts for a very small percentage in the
total standby energy. Since the standby time is a very
long period, persistent energy consumption such as Wi-
Fi connection and periodically Wi-Fi traffic would be
much more significant.

o Background apps also consume a significant part of
standby energy. Thus, terminating unused apps explic-
itly can help extending the standby time.
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Figure 12. Distribution of screen off duration.

V. STANDBY ENERGY OPTIMIZATION

In this section, we propose several optimization methods
to extend the standby time based on our analysis above, and
show the effectiveness of these methods based on our user
traces.

A. Fast Dormancy

In Section III-B1, we observe the tail energy after the
screen is turned off. We can also see that if users turn off
the screen manually, the system would apply a mechanism
similar to the fast dormancy of 3G network to reduce the
“tail energy”. Thus, a straightforward method to optimize
the tail energy is to apply the mechanism to more screen-
off sessions that the users were not going to turn on the
screen in a short period.

We analyze the screen off sessions in our user traces
and show the duration distribution of screen off sessions
in Figure 12.

The result shows that the number of screen off sessions
that last more than 1 minute is 1,299 out of the total number
1,987. If we apply fast dormancy to these sessions, we can
save about 65% of the screen off tail energy.

According to our calculation in Section IV-D2, the “tail
energy”’ accounts for about 2% of the standby energy, thus
“fast dormancy” could save 1.3% of the total standby energy.

B. Turn off Unused Hardware Components

As the results in Section III-B2, the hardware components
would consume energy when they are even not used. For
example, the Wi-Fi module consumes about 28% of the
standby energy even when no bytes are sent or received
via Wi-Fi. It is a significant part of the standby energy.

According to our user study in Section IV-C, we know that
the traffic in the standby mode is much less than in the non-
standby mode. The main network consumers in the standby
mode is network apps such as app stores, online notes,
SNS apps and chat apps. Network usage of network apps
usually happens if the screen was turned off while the apps
are downloading files or updating data. After the ongoing
traffic of downloading or updating is over, these network
apps would produce little network traffic. The SNS apps and
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chat apps, however, always need to receive messages from
their server. Thus they need a persistent network connection.

We can use different optimization strategies in different
contexts. If none of the running apps require a long period
network connection, we could simply disable the network
module after all the ongoing traffic is over. Otherwise, we
must hold the connection. However, we can still save energy
with other methods in this situation. For example, we can
turn to a more energy saving network type (e.g. disable Wi-
Fi and turn to the 3G network.)

To estimate the effect of this method, we focus on the
most popular chat apps and SNS apps among our volunteers:
QQ, Weibo, Wechat and Fetion. We analyze the traffic of
all the screen-off sessions. The result is shown in Figure 13.
It shows that 1,381 sessions (422.7 hours) have no Wi-Fi
traffic. It suggests that we can switch off Wi-Fi during these
sessions which last for 422.7 hours out of the total 681.2
hours of standby. It could save about 14.3% of the total
standby energy! Furthermore, if we switch off Wi-Fi in the
1,585 sessions (596.4 hours) with no traffic for chat apps,
we could save about 20.1% of the total standby energy!

C. Group or delay the network traffic

In the results of Section III-B4, we can see that the
network traffic in the standby mode is small and periodical.
The traffic is mainly caused by the SNS apps or chat apps,
because they have to communicate with their servers to
check messages. The small traffic can cause a lot of tail
energy for network accesses. On the other hand, users can
tolerate a much larger latency in the standby mode than in
the non-standby mode. Thus, we can find more opportunities
to perform traffic grouping or delaying to reduce network tail
energy.

According to the previous study of network tail energy
[1], we can divide the current pattern of network traffic in
Figure 8 into two periods. The first period, during which the
packages are transferred, has a higher average current. The
second period with a stable and lower current is the “tail
time” of network accesses. We can see the tail time lasts
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Figure 14. Number of network tails with different delay time.

about 1 seconds with a relatively stable current of 70 mA,
consuming about 19.4 uAh energy.

In our user traces, we can find the tail time by network
usage traces. We have recorded a total of 44,761 tails.
Thus the tail energy accounts for 18.6% of the Wi-Fi traffic
energy, therefor accounts for 7.4% of the standby energy.

If we delay some of the packages to group them together,
then the tail time could be reduced. Figure 14 shows the
number of tails if we group the traffic in the standby mode
in every 10 seconds, 20 seconds, etc. For example, if we
group the traffic in every 1 minute, the number of tails would
decrease to 15,225. Thus, we could save 66% of the tail
energy, which accounts for 4.9% of the total standby energy.

D. Terminate background applications

When leaving a foreground app, many smartphone users
may simply switch the app to background, but forget to
terminate it. According to our measurement data in Section
III-B3, that could waste a lot of energy if the smartphone
turns into the standby mode with these background apps
running. To reduce the standby energy of background appli-
cations, we could provide some warning messages to users
when they switch from the foreground application to system
home page or other applications. In a more complicated
measure, we can also try to predict user behaviors and habits
to terminate background applications automatically.

We analyze our user data to find out how many apps
running in standby mode could be terminated. We focus on
the apps that run in a standby session, but are not used (i.e.
switched to foreground) in the next non-standby session.’
Figure 15 shows the distribution of these apps. The result
suggests that about 80% of standby sessions runs more than
7 apps that are not used in the next session. If we terminate
these apps, the time of background apps running in the
standby session could be reduced by 760,251s. As the total
time of background apps in the standby sessions is 860,815s,

3We notice that some apps and services have never run in the foreground,
thus we only analyze the apps that might run in the foreground.
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we could save 88.3% of the energy consumed by background
apps, which accounts for 20.3% of the total standby energy.

E. Overall Optimization Results

If we combine these optimizations present above, we are
able to save about 46.6% of the standby energy. Thus we
can extend the standby time for a smartphone by as much
as 87.3%.

Please note that although we use only rough calculations,
it shows that these optimizations are promising. Further-
more, as the optimizations we have proposed are all straight-
forward techniques, there exists more potential to reduce
standby energy and extend battery life if we investigate the
issue more extensively and apply more complicated context-
aware optimizations.

VI. RELATED WORKS

Smartphone energy is a hot topic in recent years. Many
research works have been focus on analyzing the energy
consumption on smartphones.

At the level of hardware components, Dong et. al [5]
modeled the power consumption of OLED screen by the
color (average RGB value) of the display content. CA-
BLI [26] modeled the quantitative relation between sys-
tem context attributes and the battery discharge rate based
on multiple linear regressions. TailEnder [1] developed a
model for the energy consumed by network activity for
each network technology. They also presented a method to
reduce the tail energy of the smartphone network. Li et. al.
[15] analyzed the energy consumption of storage stacks of
mobile devices. At the software level, Eprof[19] modeled
the power consumption of smartphone system by system
call trace. Appscope[24] modeled the power consumption of
smartphone apps by their resource usage. eLens[9] estimated
the energy consumption of source code lines. Lee et. al.
[13] looked into the applications to analyze the energy
consumption of each UI states. Dong et. al. [6] proposed

a method to calculate the energy of each app in the system
which several apps are running at the same time.

Many other works make efforts to optimizing the power
consumption. For example, E-MiLi [25] reduces the power
consumption in idle listening by sleep scheduling in the
time spent in idle listening, Catnap [4] optimizes energy
consumption of mobile devices by allowing them to sleep
during data transfers. Deng et. al. [3] uses a traffic-aware
technique to reduce the tail energy of network traffic by
impact the network traffic and fast dormancy. Hsiu et. al
[10] reduces the energy of video player by turning down
the backlight. Li et. al. [14] optimizes the display energy
of web apps on smartphone by change their color scheme.

User study is also a commonly used approach to analyze
smartphone usage and energy consumption. Falaki ez. al [7]
studied 255 smartphone users, characterized user activities
and applications, and the impact of those activities on
network and energy usage. Ferreira er. al [8] presented a
4-week study of more than 4,000 people to assess their
smartphone charging habits to identify power intensive op-
erations. Oliver et. al [18] conducted one of the largest-
scale study to measure the energy consumption of 20,100
BlackBerry smartphone users, and predicted energy level
within 72% accuracy in advance. Carat et. al [17] proposed
a collaborative method to diagnose abnormal energy drains
of smartphone applications with about 400,000 users.

Some research works have studied background energy. For
example, Xu et. al. [23] optimized the energy consumption
of email sync in the standby mode. Huang et. al. [11]
analyzed the screen-off network traffic. Pathak et. al. [20]
found a category of energy bugs of mobile apps which
keeps the CPU or screen awake abnormally. Bolla et. al.
optimized the energy of background apps by an Applica-
tion State Proxy which suppresses/stops the applications on
smartphones and maintains their presence on other network
device. Martins et. al. [16] optimized background energy
by instrumented Android system to interpose on signals that
cause task wakeups. Chen et. al. [2] analyzed the energy of
background apps. However, no existing work has attempted
to provide a detailed analysis on what causes the energy
wastes while the phone is not in use.

VII. CONCLUDING REMARKS

Understanding the energy consumption of smartphones
is very important for both users and application develop-
ers. This paper presents an analysis on standby energy of
smartphones through power measurement and collected user
traces. We have identified several main energy consumers in
the standby mode and proposed several methods to optimize
the standby energy. The results show that we can extend the
standby time by more than 87.3% with these methods.

Although our study is based on estimation and calcula-
tions, the observations from our experiments reveal many
aspects of the standby energy consumption of smartphones.



We believe standby energy consumption is an important
issue and investigating the issue further can help many
smartphone users, developers and researchers.
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