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Abstract—As most mobile devices are capable of accessing
the Internet with a mobile web browser, the performance of
mobile web browsers has become an interesting research topic
recently. Due to network bandwidth and processing power
limitations, mobile web browsers are slower compared to
PC web browsers when dealing with large-size web contents
and computation-intensive operations. In order to improve
the performance of web browsers, researchers have attempted
different techniques, including parallel optimization, web page
prefetching, speculative loading, etc. With the introduction of
mobile cloud computing, the performance of mobile devices
can be augmented with the capability of the cloud. Mobile
web browsers can also benefit from mobile cloud computing
to improve the responsiveness and energy efficiency. This
paper surveys current issues of mobile web browsers and
approaches to optimize mobile web browsers, including client-
side approaches and cloud-based approaches. We also discuss
the challenges and future directions in mobile web browser
optimization.

Keywords-mobile web browser; cloud computing; mobile
cloud computing; optimization

I. INTRODUCTION

Mobile devices are very popular nowadays and people

frequently use them for daily tasks. According to a Cisco

forecast, the number of mobile devices will exceed the

number of human beings on the earth by the end of 2012,

and there will be 1.4 mobile devices per capita by 2016

[1]. Mobile phones and other mobile devices such as tablet

computers have become the main portal for people to access

the Internet.

The mobile web browser1 is one of the most important

applications on mobile devices. It is a critical channel con-

necting people with the Internet in ways that the PC browser

never did [2]. Though mobile applications develop rapidly in

recent years and many people would like to choose mobile

applications to access the Internet and obtain information

[3, 4], the mobile web browser is still dominant because

of its security, widely available services and standardization

[2].

However, mobile web browsers cannot totally fulfill users’

requirements even though the capability of mobile devices is

much stronger than ever. The CPU of current mobile devices

can achieve dual-core 1.2GHz and the storage capability

1In this paper, we use mobile web browser and mobile browser inter-
changeably.

can be extended to 32GB or more [5]. Nevertheless, current

mobile browsers bring much more inferior user experiences

compared to PC browsers.

As many people have experienced, it usually takes second-

s or even tens of seconds to open a web page on a mobile

browser [6]. While loading a site such as Slashdot costs

merely three seconds on a laptop, it takes 17 seconds on an

iPhone using the same wireless network [7]. Researches have

shown that, with the same network condition, the browsers

on iPhone are 9x slower than MacBook Pro [8]. This kind of

long delays may severely affect user experiences. According

to a previous study, a 200ms increase in the page load

latency time results in “strong negative impacts”, and the

delays of under 500ms may “impact business metrics” [9].

Many researchers have done plenty of works to identify

the key issues leading to the poor performance of the mobile

web browser. Studies have found that the long round-trip-
time is a lethal factor to slow down the mobile browser

[6, 10], which leads to longer resource loading time. Web

pages are becoming more and more complex, which de-

mands substantial computation resources to parse, format

and render them properly [11]. Moreover, web pages are

usually processed in a single thread manner, which cannot

employ the benefit from the multi-core processor of mobile

devices [12, 11].

We classify the recent studies on mobile browser opti-

mization into two categories: (1) client-side optimizations

and (2) cloud-based optimizations. Client-side optimizations

include caching optimization [13, 14, 12], browser paral-

lelization [15, 11, 8], web page prefetching [16, 17, 18, 19],

speculative loading [20], etc. Cloud-based optimizations

try to empower the mobile browser with the capabilities

of external cloud facilities. These optimizing approaches

largely enable the mobile web browser to utilize the power of

cloud computing in order to offload computation-intensive

or energy-consuming tasks to the cloud. The cloud-based

optimization approaches include cloud-based parallelization

[21], cloud-based preprocessing [22, 23, 24], computation

offloading to the cloud [25, 26, 27, 28], and cooperating in

the P2P mobile cloud computing [29].

This paper presents a comprehensive survey of the state-

of-the-art approaches to optimize the mobile web browser

in terms of improving performance and saving energy. The

rest of the paper is organized as follows: Section II presents
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the challenges and issues of the mobile web browser. Sec-

tion III summarizes the mobile web browsing architectures.

Section IV describes the client-side approaches to improve

performance of the mobile browser. In Section V, we present

the existing cloud-based approaches to augment mobile

web browsers. We analyze the future research directions in

Section VI. Finally, in Section VII, we conclude the whole

paper.

II. CHALLENGES IN MOBILE WEB BROWSERS

We first analyze the challenges and issues in mobile web

browsers. The mobile web browser is similar to the PC web

browser. Both of them have a similar framework and usually

the same procedure of processing web pages. Thus, some

challenges and issues exist in both mobile browsers and

PC browsers, such as computation-intensive operations, long

resource loading time, security and privacy. However, the

mobile browser has its unique characteristics because mobile

devices have limited computational resources, limited power

supply, and expensive network traffic. These limitations

force the mobile browser to carefully consider the network

traffic and energy consumption issues as well.

A. Computation-intensive Operations

A web browser is a large and complicated application.

It parses the HTML documents, calculates the styles and

layouts, executes the JavaScript codes, displays the pages

and interacts with users. Each process is complex and

important.

Web Server

Page
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web 
contents

Scripting

Style
Formatting

Layout
Calculation
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Render
Tree
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Bitmap

interactions

Figure 1. The procedure of opening a web page

Figure 1 shows the traditional work flow of the a we-

b browser. The browser retrieves the web contents from

the website server, including HTML documents, Cascading

Style Sheets (CSS), pictures, audio files and JavaScript files.

The web page is parsed into a DOM tree, which represents

the structure of the document. The style for each DOM

element is calculated by generating a render tree. With the

layout of each element being calculated incrementally, the

render tree becomes the render tree with layout. Then the

page is gradually drawn to the screen.

We should identify the places where heavy computations

take place. JavaScript is no longer the bottleneck thanks to

the development of JavaScript optimization techniques, such

as just-in-time compilation. Most popular web sites only

spend 3% of the CPU time inside the JavaScript runtimes

[7]. Most researchers agree that CSS formatting and layout

calculation are the most computation-intensive operations

and they account for more than half of the total computation

time during web page processing [30, 12, 8]. Besides, some

JavaScript methods change the DOM tree structure and CSS

style, which may cause the browser to reflow [31]. Reflow
affect a portion of or the whole page’s layout, which is

critical to browser performance [32].

B. Long Resource Loading Time

Besides the computation-intensive operations, the long

resource loading time is another key issue of the mobile

browser. The web contents need to be fetched first before

they can be processed. Thus, the resource loading time

affects the total loading time of the page. Wang et al. find

that resource loading contributes most to the browser delay.

With a 2x speedup of resource loading, we can improve the

browser performance by 70% [6].

Studies [6, 10] have observed that network RTT (round-

trip-time) is the key factor that leads to the long resource

loading time. RTT is the delay that consists of the trans-

mission time between the browser and the web server. It

is related to the size of the web contents and the network

bandwidth. In addition, a single access to a web page

may cause multiple network RTTs. Because the resource

loading is not fully parallelized, new resources can only be

discovered by parsing the HTML documents.

C. Network Traffic

Mobile users are always concerned about the amount of

network traffic, which is also one of the key differences

compared to PC users. The cost of 3G is typically expensive,

while Wi-Fi connectivity is not always present. But current

web pages are more and more complex to pursue rich

functions and delicate visual effects by introducing a lot

of CSS files, pictures, and JavaScripts. Recent studies have

shown that the average web page size has surpassed 1 MB

[33]. Some web sites have the mobile edition, which are

optimized for mobile users, such as Google and Sina. The

optimized pages have much smaller size and can be more

suitable for users to browse on mobile devices. However,

most web sites have not provided optimized mobile version,

thus we need to provide other techniques to reduce the

network traffic in order to release the burdens of mobile

users.

D. Energy Consumption

Energy supply is a major bottleneck for most current

mobile devices. On one hand, mobile devices have very

limited amount of energy available for a long period up

to one day, because they usually carry a small battery2

to supply power for driving the the whole system. On the

other hand, the screen of mobile devices becomes larger and

2The energy capacity of battery is proportional to the size of the battery,
whose size strictly depends on the size of the mobile device.
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larger, with the energy consumption becoming larger and

larger. Computation-intensive and I/O-intensive operations

also consume lots of energy. Thus, a modern mobile browser

not only should provide fast speed and quick responsiveness,

but also should be energy efficient.

Previous studies [34] have presented a detailed analysis

of the energy consumption of the mobile browser while

loading a web page. They find that resources downloading,

CSS parsing and JavaScript execution consume most of the

energy. A recommendation of how to design a web page to

minimize the energy needed is given. They also emphasize

the importance of building a mobile site optimized for

mobile devices, which can save both network traffic and

energy.

E. Security and Privacy

Security and privacy are the persistent issues in web

browsers. The browsing behavior is very private, and may

include plenty of personal information. Especially in the

cloud era, the private information is easy to leak. Thus, to

keep the security and privacy of browser users is a major

priority. Many efforts try to design a new browser to solve

the issues. The authors in [35] design a new web browser

by combining the operating system design principles with

formal methods. The browser is split into subsystems and

the communication between these systems are limited. The

secure web browser [36] is proposed to modularize the

web browser, and it utilizes different processes to isolate

modules. In this paper, we mainly focus on approaches to

improve the speed and energy efficiency of mobile browsers.

III. MOBILE WEB BROWSING ARCHITECTURES

The mobile web browsing architecture refers to the orga-

nization of the mobile browser, the web server and the cloud,

as well as how they interact with each other. In the cloud

computing era, the cloud plays an important role in improv-

ing the performance of mobile web browsers. The cloud and

the mobile browser can work together to provide a better

user experience. According to the interactions among the

mobile browser, the cloud, and the web server, we categorize

the mobile web browsing architecture into four schemes: (1)

client-server architecture, (2) cloud-based architecture, (3)

cloud-assisted architecture, and (4) cooperating architecture.

A. Client-Server Architecture

Figure 2(a) illustrates the client-server architecture, a

traditional architecture for mobile browsers. When a user

accesses a web page, the mobile browser in the user-side

retrieves the web contents from the remote web server. All

the parsing and calculations are completely done in the client

side. In this architecture, the mobile browser is a fat client.

This architecture possesses some benefits. On one hand, it

is easy and convenient to implement and deploy since it does

not need the help of external facilities. On the other hand, it

is more secure than the architecture with external supports,

in that the client browser communicates with the web server

directly, thus reducing the possibility of information leakage

in the transmission path.

The disadvantages of this architecture are also obvious:

because all the web contents fetching and computations

are performed in the client side, and all optimizations can

only be realized on the resource-limited mobile device, it is

impossible to take advantage of external infrastructures such

as the cloud.

B. Cloud-based Architecture

In Figure 2(b), we show the cloud-based architecture,

where the cloud acts as an agent/proxy for the mobile

browser. All the messages the browser interchanges with the

server go through the cloud agent. When a user accesses a

web page, the mobile browser sends the request to the cloud

instead of the remote web server. The cloud loads the web

page and downloads all the web contents. The cloud may

perform some optimizations on the data, such as resizing the

pictures. The cloud agent then sends the web contents back

to the user side mobile browser. In this way, the cloud agent

could compress the web contents and pre-calculate some

intermediate results. In this architecture, the mobile browser

acts as a thin client, in contrast to the above client-server

architecture.

The benefit of this architecture is that it fully takes

advantage of the ability of the cloud, which can reduce the

network traffic and local processing time. However, there

are two disadvantages of this architecture. First, it may

increase the network latency. In the traditional architecture,

the browser connects to the server directly while in this

architecture the browser connects to the server via the proxy.

Second, this architecture may increase the risk of privacy

leakage because all messages go through the cloud.

C. Cloud-assisted Architecture

In the cloud-assisted architecture, the cloud acts as an as-

sistant independent of the web server, which is illustrated in

Figure 2(c). The cloud offers auxiliary services to the mobile

browser. The mobile browser downloads web contents from

the web server, and heavy operations can be offloaded to the

cloud. This can substantially improve the user experience.

The main difference between this architecture and the cloud-

based architecture is that the messages carrying “fresh” web

contents do not go through the cloud.

The benefit of this architecture is that it can use the power

of the cloud to improve performance without changing its

main infrastructure.

D. Cooperating Architecture

In the cooperating architecture, mobile devices in the local

vicinity can act as the resource providers, thus forming a

mobile peer-to-peer network, which can also be called a
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Figure 2. An overview of mobile web browsing architectures

local mobile cloud [37]. They cooperate to download web

contents and/or process contents, as Figure 2(d) shows. The

benefit of this architecture is that it can use the power

of other mobile devices and cooperate to offer a faster

experience.

IV. CLIENT-SIDE OPTIMIZATIONS

Client-side optimization approaches are the optimizations

applied to the mobile browser itself. They are easy to deploy

and much secure than cloud-based optimization approaches.

A. Effective Caching

Resource loading contributes most to the browser delay

[6]. Web browsers can keep frequently used web resources

locally within the browser cache to save round-trip-time and

bandwidth, thus speeding up resource loading. Intuitively, a

good browser caching scheme may improve the performance

of the mobile browser.

One important way to improve the browser cache is to

reduce the miss rate. To achieve this, two basic approaches

are proposed: increasing the cache size [13, 14] and en-

hancing the replacement algorithm [38, 39]. Only increasing

the cache size will not improve the effectiveness of the

mobile browser greatly [40]. Even increasing the cache size

to infinite, it only can reduce 10% of the cache misses [40].

A study [40] finds that the process of re-validations greatly

reduces the effectiveness of the mobile browser cache. The

cached resources have two states, either fresh or expired.

If the state is fresh, the resource can be reused without

confirming with the server. If the state is expired, the browser

needs to connect to the server to confirm if the resource can

be reused. In this process, non-cached and expired resources

bring in at least one round-trip-time, which reduces the

effectiveness of the cache. As mentioned earlier, network

RTT is the key factor leading to the long resource loading

time. Thus the traditional caching scheme may not be effect.

Smart caching is proposed in [12] as a supplementary

of the traditional caching scheme. Though the research

focuses on the PC web browser, it can also be used in

the mobile browser. The traditional caching scheme stores

the raw resources such as pictures, CSS files, and so on.

It aims to reduce the resource loading time, but the smart

caching scheme intends to reduce the time of computation-

intensive operations. This research proposes to cache the

intermediate results of web page processing. Thus they cache

the CSS formatting results and layout calculation results,
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Table I
A COMPARISON OF CLIENT-SIDE OPTIMIZATIONS

Approaches Computation-
intensive
operations

Resource load-
ing time

Network traffic Energy
efficiency

Security&privacy Implementation
Complexity

Storage Over-
head

Increase Cache
Size ([13, 14])

/ Lowly
Effective

Lowly
Effective

/ / Easy depend on the
cache size

Enhance cache
replacement
algorithm
([38, 39])

/ Lowly
Effective

Lowly
Effective

/ / Easy /

Smart Caching
([12])

Highly
Effective

/ / / / Medium Low Overhead

Client-Side
Parallelization
([15],[11],[8])

Highly
Effective

/ / Highly
Effective

/ Difficult /

Traditional
Prefetching
([16],[17],[18])

Lowly
Effective

Lowly
Effective

High Overhead High Overhead / Medium /

PocketWeb
([19])

/ Highly
Effective

Low Overhead Low Overhead / Medium Low Overhead

Speculative
loading ([20])

/ Highly
Effective

/ / / Medium Low Overhead

called smart style caching and layout caching separately. The

smart style caching constructs a SSC tree that is similar to a

DOM tree, and records the corresponding style property of

each DOM element. A triple <ID, class, TagName>
is used to identify SSC element. Cached style properties

can be applied to the identical element in the subsequent

visits to the same page. Layout caching records the layout

operation results. During subsequent visits to the same

page, if the needed layout operation for the same render

object is calculated before and recorded in the cache, the

result can be reused. This approach can greatly reduce the

computation operations. It is not only effective for web page

revisit, but also can eliminate the duplicated or unnecessary

computations for the visit to a new web page. Meanwhile,

this approach only brings in very small storage overhead.

B. Client-side Parallelization

Web content is usually processed in a single thread

manner in order to get the proper result [11]. Google’s

Chrome browser [41] treats each tab as a separate process

to increase parallelism, while the web page in each tab

is still processed in a single thread manner. Parallelizing

the computation-intensive parts of the browser can improve

its performance. Jones et al. [11] analyze the browser and

discuss how parallelism can improve the browser to be

responsive and energy-efficient. They describe the design

of a parallel web browser, and analyze the possibility and

algorithms to parallelize each browser component, includ-

ing parallelizing the fronted, parallelizing page layout and

parallelizing the scripting. The parallel approaches suite for

both mobile browsers and PC browsers.

Badea et al. [15] claim that they find the CSS selec-

tors heavily biased towards descendant selectors and the

matching process for a CSS rule results in non-match

in most cases. Firefox [42] uses a sequential CSS rule-

matching mechanism. Thus they parallelize the CSS rule-

matching component of Firefox and focus on the non-

matching descendant selectors. The result shows that it can

achieve up to 1.84x page-load speedup with two worker

threads. Meyerovich et al. [8] propose a similar approach.

They parallelize the layout engine and introduce three new

algorithms for CSS selector matching, layout solving, and

font rendering respectively. They report that the performance

speedups are up to 80x based on their browser model. Fortu-

na et al. [43] propose a method to parallelize the JavaScript

functions, which can greatly increase JavaScript execution

speed. Considering that the execution of JavaScript is not

a bottleneck in mobile browsers, this method cannot make

obvious improvement for the total web page processing time.

C. Web Page Prefetching

Web page prefetching is the approach to predict which

web pages user will visit in the near future and download the

predicted web pages before actual visits. If the predictions

hit, the browser can use the resources preloaded locally.

The concept of prefetching is also included in the HTML5

specification.

In some cases, it’s possible to predict what a user is likely

to click next. For example, when a user is reading a multi-

page article, he/she is likely to click on the “Next Page” link

[16]. In this case, it would be great if the browser could begin

loading the page before the user clicks.

However, in many cases, it is difficult to know what a user

is likely to access next. The most simple and naive way is to

prefetch all the pages referenced by the current page. A page

may have many links. If the browser tries to fetch many links

at the same time, it would cause too much traffic and most

of the fetched contents may be useless. Many prefetching
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algorithms are proposed to optimize web prefetching [18, 44,

17]. Nevertheless, these approaches are not applicable to the

mobile browser because they don’t consider the constraints

of mobile devices, such as high network latency and limited

energy capacity.

PocketWeb [19] can accurately predict user’s web ac-

cesses by analyzing user’s access history. The authors of

PocketWeb analyze the web access traces from 8000 mobile

users over 3 months and find that users often visit a small set

of web pages from their phones. The small set of web pages

(i.e., URLs) account for more than 70% of a user’s web

accesses. User’s web access history is used to train the user’s

web access model. One feature vector for each history URL

is extracted, and these feature vectors can be used to train

the web access model using a machine-learning approach.

User’s action will trigger the prediction, such as opening

the web browser. Feature vectors for frequently accessed

URLs are generated and then sent to the prediction model.

The prediction model calculates the access probability for

every feature vector. According to the probability of every

feature vector, one or more URLs are prefetched. Model

training is executed in the PC or cloud without energy costs

in the mobile side. The result shows that for 80% - 90%

of the users the model can accurately prefetch 60% of the

URLs within 2 minutes before request, which can provide

a faster web browsing experience without increasing energy

dissipation.

D. Speculative Loading

Wang et al. [20] propose the speculative loading approach

in order to reduce the resource loading time. When a

user accesses a web page, the browser first predicts which

resources may be useful, and then loads the sub-resources

along with the main resources, which can save the round-

trip-time. The main difference between speculative loading

and prefetching is that speculative loading predicts which

resource the user may need while prefetching predicts which

page the user may visit. The main difficulty is how to

accurately predict which sub-resources will be useful. Wang

et al.’s approach is based on a web site’s resource graph,

which is constructed using the visiting history. Different

pages of the same web site may share lots of sub-resources.

If the web page visit is a revisit, the sub-resources needed

can be found in the resource graph. If the web page visit

is a new visit, the browser can predict which sub-resource

may be useful according to the shared sub-resource nodes. A

speculative loading prototype called Tempo is implemented

based on the WebKit [45]. It can reduce the mobile browser

delay by 1 second ( 20%) under 3G network. This approach

causes little wireless data usage and storage overhead.

E. Comparison of the Client-side Approaches

We present a comparison of the existing client-side op-

timization approaches for the mobile browser in Table I

from these aspects: computation-intensive operation time,

resource loading time, network traffic, energy efficiency,

security and privacy, implementation complexity, and storage

overhead. In the table, “highly effective” means that the

approach can greatly optimize the corresponding aspect and

“lowly effective” means that the approach cannot improve

the performance greatly. The implementation complexity is

divided into three categories according to the difficulty: easy,

medium and difficult.

Based on the comparison, we have the following obser-

vations:

• Both smart caching and client-side parallelization are

effective to address the issue of computation inten-

sive operations. The client-side parallelization can also

improve the energy efficiency. Speculative loading is

effective to address the resource loading issue.

• PocketWeb and speculative loading are effective to

address the resource loading issue with low or no

overhead.

• None of these approaches take into account security

and privacy issues.

• The implementation complexity of smart caching,

PockerWeb and speculative loading is medium, which

is easier than the client-side parallelization.

V. CLOUD-BASED OPTIMIZATIONS

Mobile cloud computing combines cloud computing with

mobile devices. Mobile devices are limited by processor

capability, battery power and bandwidth. While the cloud

has super ability and unlimited resources, which can be used

to empower mobile devices. By offloading the computation-

heavy tasks to the cloud or moving the huge amount of

data to cloud data center, the mobile devices can improve

performance and reduce energy consumption. Many applica-

tions get benefit from mobile cloud computing and various

offloading approaches are proposed. As one of the most

important applications in mobile devices, the mobile browser

can also improve its performance with the aid of mobile

cloud computing. Many research works focus on this. Actu-

ally, people began to use the power of external infrastructure

many years ago to augment the mobile browser, such as

offloading the computation to the vicinal computers.

We survey the related work on augmenting the mobile

browser with the cloud, and categorize them into four ma-

jor themes: (1) cloud-based parallelization, (2) cloud-based

preprocessing, (3) computation offloading to the cloud, and

(4) cooperating with the P2P mobile cloud.

A. Cloud-based Parallelization

Cloud-based parallelization further exploits task paral-

lelism to speed up mobile web browsing compared with

client-side parallelization. A typical work falling into this

theme is Adrenaline [21].
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Table II
A COMPARISON OF CLOUD-BASED OPTIMIZATIONS

Approaches Architecture Computation-
intensive
operations

Resource
loading time

Network
traffic

Energy
efficiency

Security and
privacy

Implement
Complexity

Storage
Overhead

Cloud-based
Paralleliza-
tion ([21])

Cloud-Based Highly Effec-
tive

Highly Effec-
tive

Highly
Effective

/ Weakened Difficult /

Cloud-based
Preprocess-
ing ([46, 47,
48, 49, 22,
24, 23])

Cloud-Based Highly Effec-
tive

Highly Effec-
tive

Highly
Effective

Highly Effec-
tive

Weakened Difficult /

Computation
Offloading
([25, 26, 27,
28])

Cloud-
Assisted

Highly Effec-
tive

/ Low
Overhead

Highly Effec-
tive

Weakened Medium Low
Overhead

Cooperating
([29])

Cooperating / Moderately
Effective

/ / Weakened Medium /

Mai et al. [21] propose an approach to parallelize mobile

browser at the web page level, and design a prototype system

called the Adrenaline. Adrenaline consists of a server-

side preprocessor called Adrenaline server, and a client-

side browser. It adopts a cloud-based architecture (refer to

Section III-B). The client-side browser fetches web contents

from the Adrenaline server rather than the Internet. The

Adrenaline server decomposes the web page into loosely

coupled mini pages which is a “complete web page”. When

user triggers a request in the client side, the request is

sent to the Adrenaline server first. The Adrenaline server

fetches web contents from the web server, optimizes and

decomposes the web page into several mini pages. Then the

mini pages are sent to the mobile browser. The browser side

downloads and renders these mini pages in parallel using

multiple processes. At last, the browser aggregates all these

mini pages. Adrenaline can reduce the page load latency by

1.75 seconds and improve the page load latency time by

1.54x on average. However, this approach faces with some

difficulties. The first difficulty is how to keep the correct

web semantics. The final results should correctly response

to the DOM and UI events, synchronize all the global data.

Adrenaline chooses to put all JavaScript into one process

to keep JavaScript and DOM compatibility. Bloom filter is

used to minimize the synchronization overhead. The second

difficulty is how to decompose the web page into mini pages.

The number of mini pages and the way to decompose a

web page can influence the effectiveness of this approach.

Unfortunately, this paper does not provide more detailed

explanation on this.

B. Cloud-based Preprocessing

In cloud-based preprocessing, the cloud acts as an agent

of the mobile browser, and all the traffic between the web

server and the mobile browser passes through the cloud.

The cloud can preprocess and compress the web contents,

then send the results to the mobile browser. Some of current

mobile browsers use the similar approach, such as Deepfish

[46], Skyfire [47], Opera mini [48] and Amazon Silk [49].

When a user requests a web page, the request will be sent to

the cloud first. The cloud fetches, compresses, and processes

the web contents before they are returned to the mobile

device. The cloud uses its advantage of high bandwidth

to load the pages quickly. If the web page is accessed by

other users before, such contents exist in the cloud, then

resource loading can be faster. The cloud can perform some

optimizations, such as resizing the pictures to adapt to the

screen resolution of the mobile device. The data sent to the

browser is compressed, thus can improve energy efficiency

and reduces the traffic for mobile device. For example, Opera

mini announces to compress web pages by up to 90%,

saving both time and money for mobile users [50]. For some

other mobile browsers such as Skyfire, the web page can be

partially or fully rendered by the cloud, which can greatly

reduce the computation on the mobile side.

Thin Client [22] is proposed to offer a remote execution

approach for PDAs. The client sends the user input to the

cloud, and the server returns screen updates to PDA for

display. The authors in [23] compare the web browsing

performance of thin clients against fat client web browsers.

The result shows that thin clients can provide better web

browsing performance than fat clients in terms of both speed

and capabilities.

Similarly, Zhao et al. [24] propose an approach called

VMP (Virtual Machine Based Proxy) to shift the computa-

tion from the mobile browser to the VMP in order to reduce

not only browsing delays but also energy consumption. VMP

starts a virtual machine for each mobile browser request and

the resources are released after the request is completed.

VMP handles all the HTTP requests, replies, and executes

various JavaScript and Flashes. A compressed screen copy

is sent to the mobile browser in the end. They deployed

this system in 3G networks and implemented the prototype

using the Xen virtual machine and Android phones. The
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result shows that VMP reduces delay by more than 80%

and reduces energy consumption by more than 45% [24].

However, some issues should be concerned for the cloud-

based preprocessing approaches. One issue is the additional

latency. Traditional web browsing connects to the web server

directly while these approaches place an agent in the cloud

between the browser and the web server. The additional

latency may vary based on the location of the cloud agent,

and in some cases, the browser might be unable to access

the cloud agent. For example, the server of the international

version of Opera mini is blocked in China, and Chinese users

can only use the Opera mini China version whose agents are

placed in China [51]. Other issues are security and privacy.

Though the messages between the browser and the proxy

are encrypted, the cloud-based architecture cannot ensure

the end-to-end security. All the user’s personal information

and visiting history pass through the proxy server, which

may results in leaking the user’s private information.

C. Computation Offloading

Computation offloading to the cloud is an efficient way

to improve the mobile browser’s responsiveness and energy

efficiency [11]. The mobile browser can offload heavy

computations of web page processing to a resourceful cloud

and receive results from the cloud. Computation offloading

is easy to be confused with cloud-based preprocessing. In

the computation offloading approaches, the mobile browser

offloads sub-tasks to the back-end cloud. It is the mobile

browser who decides when and what need to be offloaded

to the cloud. While in the cloud-based preprocessing ap-

proaches, all the web contents pass through the front-end

cloud agent, and the agent processes the contents before

they are sent to server. It is the cloud who decides what

need to be processed and sent.

A significant amount of research has been performed on

computation offloading, such as MAUI [25] and CloneCloud

[26]. Most of these methods also can be applied to the

mobile browser. Some other research aims at offloading for

the mobile browser. Wang et al. [27] propose a JavaScript

offloading framework which can offload JavaScript code

to the cloud. The authors in [28] present a heterogeneous

offloading framework to offload multimedia processing tasks

to the cloud and merge remote display with the mobile

browser interface.

There might also exists additional latency issue for the

computation offloading approaches. However, if the latency

of connecting to the cloud is high, then the mobile device

could decide not to offload the tasks to the cloud.

D. Cooperating with the P2P Mobile Cloud

Mobile devices are usually considered to be resource

consumers in mobile cloud computing. However, mobile

devices can also act as resource providers so as to establish

a peer-to-peer mobile cloud [52]. A mobile browser in one

device can cooperate with various mobile devices within its

proximity to improve its performance.

Perrucci et al. [29] propose an approach of cooperative

mobile web browsing among multiple mobile phones in the

vicinity. In this approach, multiple nearby mobile devices

share their cellular links using Bluetooth connections. Coop-

eratively downloading web contents can increase the virtual

capacity of cellular link and reduce the resource loading

time. They divide the resource loading phase into two sub-

phases: web page processing and components downloading.

In the web page processing phase, the browser searches the

sub resources from the contents of the URL and ranks these

sub resources according to their size. These sub resources are

divided to several sub-lists equally according to the number

of cooperating mobile devices. Then in the downloading

phase, each mobile device downloads its sub-lists resources

and then sends the resources to the device who visits

the page. There are some disadvantages in this approach.

Traditional browsers discover the new sub resources when

parsing a loaded resource, in which loading and resource

parsing run at the same time. However, in this approach,

the resource loading phase is divided into two separate

phases. Downloading the sub resources can only happen

after parsing of the main resource is finished.

E. Comparison of the Cloud-based Approaches

Similar to the previous comparison of client-side ap-

proaches, we also provide a comparison of the cloud-based

approaches from these aspects: computation-intensive oper-

ations time, resource loading time, network traffic, energy

efficiency, security and privacy, implementation complexity,

storage overhead. Besides, we also compare the mobile web

browsing architectures of these approaches. The comparison

result is shown in Table II.

The following observations can be drawn based on the

comparison:

• Cloud-based parallelization and cloud-based prepro-

cessing approaches can optimize computation-intensive

operations, shorten resource loading time, and reduce

network traffic.

• Cloud-based preprocessing and computation offloading

are effective to improve energy efficiency.

• All of the cloud-based approaches face the security and

privacy issues.

• Cloud-based parallelization and cloud-based prepro-

cessing are difficult to implement, because servers

with low network latency are needed and the internal

structure of the web browser must be changed.

VI. FUTURE RESEARCH DIRECTIONS

The client-side approaches can combine with the cloud-

based approaches to improve the mobile browser perfor-

mance further. For example, the smart caching scheme can

be integrated with all the cloud-based approaches to reduce
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computation-intensive operations. Pre-rendering techniques

can also be combined with PocketWeb [19]. Web content

pre-rendering is the extension of prefetching. Instead of

merely fetching the resources, the browser can conduct the

computation tasks before visiting, such as pre-calculating the

CSS style and layout of each element [16]. PocketWeb [19]

can accurately prefetch most URLs the user visits, thus the

fetched contents can be further processed in advance. The

mobile browser can pre-render the prefetched pages, which

will offer users an instant browsing experience.

Mobile cloud computing is progressing, and many new

technologies are emerging. The mobile browser can further

benefit from mobile cloud computing. For example, Cloudlet

[53] can be used in mobile browsers to reduce the network

RTT. The cooperation of mobile browser with mobile cloud

computing can be further explored. They can not only work

cooperatively to download web contents, but also calculate

and render them collectively. Some research on cooperative

mobile cloud computing may provide more benefits [52, 5,

54].

With the development of HTML5, the functions of the

web browsers are more and more powerful. There is also

a trend to combine the browser and the operating system

into an ecosystem, which can be called “boot to browser”.

An example of this is Mozilla’s “Boot To Gecko”, which is

renamed to Firefox OS [55] recently. In the Firefox OS, ev-

erything becomes an HTML5 application. Web applications

can directly access different kinds of resources (hardwares

and softwares) through WebAPI in the Firefox OS, thus

it runs much faster. However, there are many challenging

issues in “boot to browser”, such as standardization and

security, which brings a lot of potential research topics and

opportunities.

VII. CONCLUSION

This paper analyzes the key issues in mobile web brows-

ing and surveys a body of research associated with mobile

web browser optimization. We classify these optimization

approaches into two categories: the client-side approaches

and the cloud-based approaches. For each category, we ana-

lyze the effects of corresponding approaches and provide a

comprehensive comparison. We believe that the optimization

of mobile browsers is a promising research direction, and

more researchers should put their efforts into making mobile

browsers more powerful and more energy-efficient at the

same time.
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