WuKong: A Scalable and Accurate Two-Phase Approach to
Android App Clone Detection

Haoyu Wang, Yao Guo, Ziang Ma, Xiangqun Chen
Key Laboratory of High-Confidence Software Technologies (Ministry of Education)
School of Electronics Engineering and Computer Science, Peking University, Beijing, China
{wanghy11, yaoguo, maziang14, cherry}@sei.pku.edu.cn

ABSTRACT

Repackaged Android applications (app clones) have been
found in many third-party markets, which not only compro-
mise the copyright of original authors, but also pose threats
to security and privacy of mobile users. Both fine-grained
and coarse-grained approaches have been proposed to detect
app clones. However, fine-grained techniques employing
complicated clone detection algorithms are difficult to scale
to hundreds of thousands of apps, while coarse-grained
techniques based on simple features are scalable but less
accurate. This paper proposes WuKong, a two-phase detec-
tion approach that includes a coarse-grained detection phase
to identify suspicious apps by comparing light-weight static
semantic features, and a fine-grained phase to compare more
detailed features for only those apps found in the first phase.
To further improve the detection speed and accuracy, we
also introduce an automated clustering-based preprocessing
step to filter third-party libraries before conducting app
clone detection. Experiments on more than 100,000 Android
apps collected from five Android markets demonstrate the
effectiveness and scalability of our approach.

Categories and Subject Descriptors

D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement—restructuring, reverse engineering and
reengineering

General Terms

Algorithms, Security, Experimentation

Keywords
Clone detection, mobile applications, Android, repackaging,
third-party library

INTRODUCTION

In the past few years, mobile devices such as smartphones
and tablets have grown explosively. Android has since

1.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions @acm.org.

ISSTA’15, July 12-17, 2015, Baltimore, MD, USA

© 2015 ACM. 978-1-4503-3620-8/15/07...$15.00
http://dx.doi.org/10.1145/2771783.2771795

71

dominated the smartphone market, with more than 1.5
million devices activated daily [1]. A wide variety of
feature-rich mobile applications (apps for short) have been
developed. Currently, the number of Android apps in the
Google Play market has surpassed the 1.4 million mark.

However, Android apps are easy to crack as many decom-
piling tools are available [5, 7]. Hackers can easily crack
legitimate apps and re-advertise them in various third-party
markets. Paid apps can be cracked and advertised for free.
Hackers can also modify the ad libraries to steal revenues
[26]. Malicious hackers may insert malware into legitimate
apps to infect unsuspicious users [65]. These actions not only
cause the original authors lose potential revenues, but may
also compromise the security and privacy of mobile users.

Various techniques have been proposed to detect repack-
aged Android app clones, including techniques based on sim-
ple hashing [64, 27] or other static semantic features [63, 62],
and also more complicated techniques based on PDGs [24,
25] or other existing code clone techniques [55].

We observe two key challenges in existing approaches:

e How to achieve accuracy and scalability at the same
time in detecting mobile app clones. Although the
simpler hashing-based approaches [64, 27] and static
semantic feature based approaches [63, 62] are very
fast, they are typically not as accurate as more com-
plicated approaches such as PDG-based detection [24,
55]. On the contrary, although PDG-based approaches
are more accurate, they cannot be scaled to perform
app clone detection on a market with over a million
apps. As a result, it is still a big challenge to develop
an accurate and scalable approach to detect app clones
on Android markets [21].

e How to deal with third-party libraries during app clone
detection. Compared to desktop/server applications,
one special characteristic of Android apps is that they
typically contain a number of third-party libraries.
Based on our evaluation, more than 60% of the
sub-packages in Android apps are from third-party
libraries, which might occur in many other apps in
the exact same form. Detecting and filtering these
third-party libraries is important, because if apps are
dominated by these library code, app clone detection
results will be skewed significantly.

Most of the existing approaches [64, 27, 21, 24, 55]
use a whitelist to filter external libraries by comparing
their package names. For example, one most recent
work [21] uses a list of 73 libraries in their whitelist.
However, it is impossible to build a complete whitelist



of existing third-party libraries, as we found more than
600 different libraries with an automated clustering
technique. Besides, some libraries have no specific
package names or use obfuscated package names,
which cannot be detected with a whitelist.

In this paper, we propose WuKong', a new approach to
detect app clones on Android markets. We introduce two
key techniques to achieve both accuracy and scalability.

e We propose a novel clustering-based technique to i-
dentify and filter third-party libraries automatically,
which is more effective and accurate compared to the
whitelist approach used in most state-of-the-art ap-
proaches. Experiment results show that this approach
is more effective and removes more than 60% of all the
sub-packages 2 in 100,000 Android apps studied.

e We propose a two-phase detection technique to identify
app clones, which includes a coarse-grained detection
phase to select suspicious cloned apps quickly by
comparing their static semantic features, and a fine-
grained detection phase to perform more detailed code
segment level comparison to refine the results. Because
the coarse-grained phase can quickly narrow down the
suspicious clone pairs by several orders of magnitude,
it allows the fine-grained phase to perform detailed
detection on a limited number of clone candidates.

We have implemented a prototype system and studied
more than 100,000 apps collected from five Android markets.
We are able to perform app clone detection on these apps
with no false positives, while the whole comparison process
only takes several hours. Besides app clones from different
markets, we also find that there exists a significant number
of cloned app pairs within the same market as well.

2. BACKGROUND
2.1 Android Apps

Android apps are normally written in Java and compiled
to Dalvik bytecode (DEX). All Java code is contained in
the classes.dex file. The compiled code and resources are
packaged as Android packages (.apk).

One particular feature of Android apps is that most of
them contain third-party libraries, such as advertisement
libraries, social network libraries, mobile analytic tools, etc.
These libraries usually compose a considerable fraction of
code (up to 50% in many apps), which may influence the
accuracy and efficiency of app clone detection [63, 64].

Furthermore, many Android apps are obfuscated to in-
crease the difficulty of reverse engineering [29, 61, 41]. For
example, ProGuard [14] is an obfuscation tool that can
be used to shrink, optimize and obfuscate the source code
through removing unused code and renaming classes, fields,
and methods with semantically obscure names. Obfuscation
increases the difficulty of identifying third-party libraries.

2.2 App Clones

The term app clones, also known as app repackaging [64]
or app piggy-backing [63], are used to describe the scenario

"WuKong is the name of Monkey King, a famous
fictional character in Chinese folklore, who can distinguish
faked/cloned creatures and real ones using his naked eyes.
2In this paper, each sub-package refers to all bytecode files
under a directory, excluding its sub-directories, such that
there are no duplication in different sub-packages.

72

when two apps have similar core functionalities but different
ownerships. The core functionalities refer to the functional
code, excluding the third-party libraries and frameworks.
The ownership of an app is determined by the signature of
the app, which is signed using the developers’ private keys.
We assume that the developers’ private keys are not leaked,
thus a cloned app must have a different signature. Apps
developed by the same developer (different versions of the
same app, for example) are not viewed as cloned apps.

Based on the features of Android apps and the criteria
of app clones, we face the following challenges in detecting
cloned apps:

e How to identify the core functionalities of
an app? Only when the core functionalities of
one app are cloned in another app, we can then
consider them as a clone pair. Most apps contain
third-party libraries, which may impact the detection
result greatly. Identifying and filtering these external
frameworks and libraries efficiently and accurately is
the key to identify core functionalities.

e How to perform pair-wise comparison efficient-
ly? App clones could appear on different markets
or within the same market. Given apps from various
markets, we should compare these apps pair-wisely to
identify all the clone pairs. The number of comparisons
grows explosively with the number of apps. For
example, pair-wise comparisons of 100,000 apps will
incur almost 5 billion comparisons (Co0000)-

e How to generate app features efficiently? An
app usually contains thousands of lines of code, with
each app containing 50,000 op codes on average [27].
Generating precise features to represent each app is
both important and difficult. Simplistic features may
not be able to describe the detailed characteristics
of apps, while detailed features may increase the
complexity of comparison.

3. OVERVIEW OF WUKONG
3.1 Key Ideas

As stated above, we aim to achieve two important goals:
one is to identify and filter third-party libraries accurately,
the other is to achieve accuracy and scalability at the same
time. To achieve these two goals, we propose two key
techniques: clustering-based third-party library filtering and
two-phase app clone detection:

(1) An automated clustering-based approach to fil-
ter third-party libraries efficiently and accurately.
In general, third-party libraries have two characteristics:
(1) they are used by app developers without modification,
thus the same library in different apps possesses identical
features; (2) they may be used by many apps, thus we can
identify them via clustering with no prior knowledge. Based
on these two characteristics, if we extract features at sub-
package level for a large number of apps and cluster these
features into groups, the sub-packages containing third-
party libraries would be clustered into big groups because
the same libraries are used by many different apps.

(2) A two-phase app clone detection approach to
achieve accuracy and scalability simultaneously. Sim-
ple detection approaches could be scalable because they
contain fewer features, but they cannot guarantee the
same accuracy as more complicated approaches. While



Static
Semantic
Features

! ' Code Blocl
'
! ' Level

Static
Semantic
Features

Feature
#"|Generation

i
Similarity |
Analysis 1

‘ode Blod
Level
Features

Similarity
Analysis

App

Libraries

tatic
Semantic
Features

Excluding Third-party

(]
>
]
—
]
)
1]
I~
©
©
2
a
>
(7]

Clones

! Features
:
| Feature
1 > Generation
‘ode Bloc

' Level
! Features

Figure 1: The overall architecture of WuKong.

complex approaches are more accurate because they can
compare more detailed features, their performance becomes
the bottleneck. With a two-phase detection framework, we
can use the simpler approach to select clone pair candidates
from millions of apps first, then use the complex approach to
conduct detailed comparisons on a narrowed set of apps. In
this way, we can expect to achieve accuracy and scalability
simultaneously.

3.2 Overall Architecture of WuKong

The overall architecture of WuKong is shown in Fig. 1,
which is comprised of three main stages.

In the app pre-processing stage, we preprocess each app to
extract the intermediate SMALI [15] code and the developer
keys. Meanwhile, we also filter third-party libraries using the
proposed clustering-based technique, which is the key step
to retrieve the core functionalities of each app. In the coarse-
grained detection stage, we calculate the static semantic
features for each app, identifying pairs of potentially cloned
apps by comparing these features. In the fine-grained
detection stage, code block level features are generated and
similarity scores are calculated for each selected app pair
(from the coarse-grained stage). In the end, app clone pairs
are determined based on their similarity scores.

4. THIRD-PARTY LIBRARY FILTERING

As stated above, many apps include third-party libraries,
which not only impact the accuracy of clone detection, but
also slow down the detecting speed.

Third-party libraries may impact the accuracy of app
clone detection in two ways. First, when two apps are not an
app clone pair, but they use the same external frameworks or
libraries, it could increase their similarity to a much higher
level. Thus, it might lead to false positive result that they
are incorrectly detected as clone pairs. On the other hand,
considering that two apps are a clone pair and they have the
same core functionalities, but the hacker may replace the
original Ad libraries with other libraries, which could cause
their similarity ratio to decrease. Thus, it might lead to a
false negative result that the cloned apps evade detection.

4.1 Challenges

Most previous work uses a whitelist to filter third-party
libraries by comparing the package names. However, our
experiments show that whitelist-based filtering cannot filter
external libraries effectively and accurately.

First, it is impossible to build a complete whitelist of
existing third-party libraries. There are many other external
libraries and frameworks besides the ad libraries used in
most approaches. For example, the whitelist [12] used in [21]
is quite incomplete, which may lead to inaccurate results.

Second, obfuscation may change the package names, mak-
ing it harder to filter the external libraries. A most recent

73

com const-string v3, “interstitial_mb”

asmali . . 5l 1 S T

gl invoke-interface {vl, v2, v3}, Ljava/util/Map;—>put (Ljava

c$a.smali 2014 2:2 igoto 0

sl const-string v2, "slotname

csmali iget-object v3, p0, Le;—>f:ld;

d.smali 5 /

invoke-virtual {v3}, Ld;->h()Ljava/lang/String;

e:smali

f.smali move-resul t-object v3
smali I 1 g N

9 invoke-interface {vl, v2, v3}, Ljava/util/Map;—>put(Ljava

h.smali

i.smali const-string v2, "js”

}simali 2 Icuu:l’alnng v3, “afma-sdk-a-v4.1.0” I
ksmali

invoke-interface {vl, v2, v3}, Ljava/util/Map;->put(Ljava

Lsmali
m.smali invoke-virtual {v0}, Landroid/content/Context;->getPackagc
n.smali

osmali move-result-object v2

p.smali stry_start_0

q.smali invoke-virtual {v0}, Landroid/content/Context;->getPackagt

ramah move-result-object v3
ssmali
tsmali const/4 v4, 0x0

usmali invoke-virtual {v3, v2, v4}, Landroid/content/pm/PackageM
try_en

vsmali _end_
catch Landroid/content/pn/PackageManager $NameNotFoundExcc

w.smali

xsmali move-result-object v2

Figure 2: Library code under the root dir of SMIALI.

| | | | i

i a.apk i i 1,0,0,0,1,2,8,6,7,... | i libraries

i LAA—SMAU I I | 1 \909% o0

| i | 102560520, | |

| com i [, | J

! | ! ‘ . o

[ L templ — 1,0,0012867,. | | | e9)

| ’ — ‘ org | | ! | - e

I APKs I | [

! L temp2 | 231001394, | . (e®)

o ____ | ____ i o ____
SMALI Code sub-package level feature clustering

Figure 3: A clustering-based approach to filter
third-party libraries.

study [42] shows that more than half of the libraries they
examined have been applied different levels of obfuscation.
In our study, we find many third-party libraries with package
names such as “com/a/b/”. 1t is impossible to filter out them
using a whitelist simply by comparing their package names.

Furthermore, we also find that some libraries have no
specific package names and their code is placed in the root
directory of SMALI. For instance, Fig. 2 shows a library we
find whose code is under the root directory of SMALI. After
inspecting its SMALI code, we find that it is actually the
Google AdSence library.

4.2 Clustering-based Library Filtering

We propose an accurate and automated clustering-based
approach to filter external libraries, as shown in Fig. 3. We
first extract the static semantic features for each non-empty
sub-package in the apps. Non-empty sub-packages refers to
sub-directories with code files directly under them. We only
consider files in the root directory of sub-packages.

In order to enable fast comparison, the static semantic
features only include the frequency of different Android API
calls. Feature vectors are generated for sub-packages and
then clustered into groups. We enforce strict comparison,



which means that only when two features are exactly
the same can they be clustered. Thus, in our clustering
algorithm, we first sort feature vectors according to the total
number of API calls. For feature vectors with the same
number of APT calls, we proceed detailed comparison and
cluster them if the features are exactly the same.

We assume the app dataset is large enough and each
third-party library is used in many apps. As a result, the
sub-packages in these libraries will be clustered in larger
groups than other sub-packages, such that we could filter
these libraries according to the clustering results.

We achieve the following goals with the proposed method:

e [t detects third-party libraries automatically without
prior knowledge. Therefore, it could cover more third-
party libraries than whitelist-based approaches.

o [t is able to detect different versions of third-party
libraries, as long as there are enough apps using these
libraries. The experiments show that we have detected
different versions of Admob libraries, Apache libraries,
various Android support libraries, etc.

e [t could also deal with obfuscation because we use API
calls as features, which cannot be modified during
name obfuscation.

5. TWO-PHASE APP CLONE DETECTION

After filtering out the third-party libraries, the app code
contains only the code representing core functionalities of
each app. We use the remaining sub-packages to perform
app-level clone detection. In order to perform accurate and
fast app clone detection, we propose a two-phase app clone
detection approach that contains a coarse-grained detection
stage and a fine-grained detection stage.

In the coarse-grained detection stage, pairs of potentially
cloned apps are selected by comparing their simple static
features. In the fine-grained detection stage, we apply a
code clone detection technique [60] to generate code block
level features and calculate similarity scores for each app
pair selected in the coarse-grained stage.

5.1 Coarse-grained Detection

5.1.1 Feature Generation

In order to achieve fast detection of suspicious cloned
apps, we use simple but effective static semantic features as
fingerprints, which include the call frequencies of different
Android APIs. Each app is represented as a feature vector.

The intuition is that it is rare that two different apps
coincidentally use exactly the same API calls, while the API
calls of cloned apps should be almost the same due to their
identical core functionalities. Although using this simple
static fingerprint may cause false positives (e.g., two different
apps have similar static features), the false negative ratio
could reach almost zero. We rely on fine-grained detection
in the next stage to reduce the false positives.

Other coarse-grained techniques could also be used here,
such as the resource lists in [62], or hashing in [27]. We
choose to use the list of API calls because it is much simpler
and it can filter out dissimilar apps very fast.

5.1.2  Similarity Comparison

We use a variant of Manhattan distance to measure the
similarity of fingerprints. For feature vectors A and B, with
n kinds of features in total, their distance is represented as:

74

?:0 |Ai - Bil
Z?:o (A; + Bs)

This distance is more precise than the Jaccard distance,
which is widely used in app clone detection [63, 27]. Jaccard
distance is not accurate enough because it does not consider
call frequencies, which is a significant factor to measure the
similarity of fingerprints. For example, it is quite different
that an API is used 2 times and 100 times respectively in
different apps, but the Jaccard distance cannot represent
this difference and treats them equally.

If the calculated distance between two apps exceeds
a certain threshold and these two apps are signed with
different signatures, they will be selected as a candidate app
clone pair for further fine-grained detection. Specifically,
a low threshold likely leads to low false positives but high
false negatives, while a high threshold introduces high false
positives but low false negatives. We want to select as much
app clone candidates as possible because the fine-grained
detection the next stage would eliminate the false positive
results. During our experiments, we empirically chose the
distance 0.05 as the threshold (Section 7).

5.1.3 Pruning Strategy

Since pair-wise comparisons are computationally expen-
sive (thousands of millions comparisons), we introduce some
optimization strategies.

If two apps are an app clone pair, most of their attributes
will not differ much. Typically, these attributes include
the total number of API calls and the total kinds of
API calls, which are the meta-data of the feature vector.
These attributes will not be affected much with minor
modifications, and thus they are typically stable. If two apps
are “very different” in the meta-data, we will stop compare
the feature vectors and mark them as dissimilar. The two
numbers should not differ by a large ratio, such that 100
and 50 will be regarded as “very different”. During our
experiments, if the attributes of two feature vectors differ
by more than 20%, we will stop compare them.

5.2 Fine-grained Detection

For the selected potentially cloned apps during the coarse-
grained phase, we further exploit more detailed features to
calculate their similarity. This step is based on an existing
counting-based code clone detection approach called Boreas
[59, 60], which has been independently implemented and
confirmed as both accurate and scalable [22].

The basic idea is that we match the variables, rather
than the sequences or structures of code segments. The
similarity of two code segments® is decided by the proportion
of variables that could be matched based on their feature
matrices, which are formed by counting the number of times
each variable occurs in different contexts. Accordingly, the
similarity of two apps is measured by the proportion of
similar code segments.

We have successfully applied Boreas to detect repackaged
Android app clones in our previous work [55]. Although
it is able to identify repackaged apps accurately, because
it requires the extraction of detailed features and perform
pair-wise comparison on all apps, the performance is unac-
ceptable for large-scale detection. In this paper, we modify it

distance(A, B) =

3We choose code segments separated by natural punctuation
marks as the basic clone granularity.



Application 1

Application 2
/o O\
/@ @ \

o ®q )
\ 0 g/
\. /

w2
Similarity comparison of
feature vectors

Similarity comparison of
applications

Similarity comparison of
feature matrixes

Figure 4: The workflow of fine-grained similarity
comparison

and use it as the technique behind the fine-grained detection
stage, instead of applying it to all apps directly.

5.2.1 Feature Generation

As mentioned above, we generate feature matrices based
on the number of occurrences of all variables counted in
different contexts. We use Counting Environments (CEs for
short) to describe the contexts.

The CEs are divided into three levels, each level provides a
more concrete and distinct description for chosen variables:

e Naijve counting, which includes the simplest counting
information: the number of times each variable is used
and defined.

e In-statement counting, which includes more high-level
information involving only a single statement, for
example, the number of times each variable occurs
in an if-predicates, the number of times each variable
is added or subtracted, or the number of times each
variable occurs as an array subscript.

o Inter-statement counting, which involves the envi-
ronments involving multiple statements, such as the
nested loop-level of variables. It includes the number
of times each variable occurs in a first-level loop, a
second level loop and a deeper level loop.

For each variable, we generate an m-dimensional Char-
acteristic Vector (CV for short) using m CEs, where the
i-th dimension of the CV is the number of occurrence of
the variable in the i-th CE. For each code segment, we
compute CVs for all variables. Then we can obtain a nxm
Characteristic Matriz (CM for short). A CM represents the
abstraction for a code segment. For each app, we compute
the CM for each code segment. Then we can obtain a series
of CMs, which we treat as the code segment level features
of this app.

5.2.2  Similarity Comparison

As shown in Fig. 4, we perform similarity comparison of
feature vectors, code segments and apps, respectively. The
similarity of two apps is measured by the proportion of their
similar code segments. The similarity of code segments is
determined by the corresponding feature matrices, while the
comparison of feature matrices is decided by the similarity
comparison of their feature vectors.

Similarity of Feature Vectors. We use Cosine similar-
ity to compare CVs. Because CVs represent the patterns of
variables, the similarity of two variables can be computed
by the cosine of vectors in high dimensional spaces.

For two vectors a and b with the angle o between them,
their cosine similarity is defined as:

_a-b Dieg @i X bi
llalllloll /32 af x /L 82
Similarity of Code Segments. The similarity of two

code segments is defined as the similarity of their CMs,

which is related to the matching of their variables.

Variables are sorted according to their frequencies. We
match each variable a of block A to those variables of block
B whose ranks are close to the rank of a. Duplicated matches
are allowed, that is, although every variable of block A must
match exactly one variable of block B, there are no such
restrictions on the variables of block B. It greatly simplifies
comparison process: we only need to search a small range
of variables for each variable of block A, choose the most
similar one as the similarity value for each variable, then
compute the product of these similarity values.

Similarity of Apps. The similarity between two apps is
calculated as the proportion of similar code blocks in them.
For each app pair A and B, we calculate two similarity
scores: Simy(py and Simpca)y. A higher similarity score
means that a large portion of one app can be found in the
other, providing the evidence of app cloning. We identify
two apps as clones when at least one of these two similarity
scores are over the threshold (max(Sima(p), Sima(py) >=
threshold). During our experiment, we empirically chose
the threshold as 85%(Section 7).

6. IMPLEMENTATION

We implement WuKong in a prototype system, which
includes roughly 6,912 lines of C++ code, 3,300 lines of
python code and 780 lines of shell script code.

The implementation of WuKong involves the following
steps:

e In the pre-processing stage, we disassemble APKs to
SMALI code using Apktool [5]. Keytool [11] is used to
extract the developer’s signature. We extract static
semantic features for each sub-package and cluster
them into groups by strict comparison. The groups
whose size are greater than the threshold are regarded
as third-party library related code.

e In the coarse-grained detection phase, we calculate
the feature fingerprint for each app by accumulating
the static features of non-library sub-packages. Then,
we perform pair-wise comparisons to calculate the
distance between apps. If the similarity score exceeds
the threshold, the corresponding app pair will be
classified as app clone candidates.

e In the fine-grained detection phase, for each selected
suspicious app clone pair, we decompile their core
functional code to Java code using Dex2Jar [7] and
JD-Core-Java [10]. We have modified JD-Core-Java
in order to execute in batch through command-line.
We compute the feature matrices for each app, and
calculate the similarity scores for each suspicious app
clone pair detected in the coarse-grained detection
stage. If the similarity score exceeds the specified
threshold, they will be considered as a cloned pair,
which represents the final detection result.

7. EVALUATION

We evaluate WuKong with apps downloaded from five
popular third-party Android markets. Our experiments are

CosSim = cos(a)




0.9

0.8

0.7

0.6

w

0 05

o

0.4

0.3

0.2

0.1

0
e — N
size per app

Figure 5: The distribution of the sizes of APK files

Table 1: Experiment Dataset

[ Market | Number of Apps | Percentage of Dataset |
anzhi [3] 14,047 13.3%
eoe (8] 40,134 38.1%
gfan [9] 13,672 13.0%
baidu [6] 16,613 15.8%
myapp [13] 20,833 19.8%

[ fotal | 105299 | 100% |

conducted on a Lenovo Thinkcenter with CORE i7 3.40GHz
CPU and 4GB memory.

7.1 Dataset Statistics

We collected 105,299 Android apps from five different
markets*. The apks and decompiled resources occupy nearly
4TB storage space. The distribution of collected apps from
different markets is shown in Table 1. Fig. 5 shows the
distribution of the sizes of APK files. The majority of the
sizes are between 512KB and 16MB, as the sizes between
1MB and 8MB account for more than 50% of the apps. The
sizes of more than 60% apps exceed 1MB.

7.2 Pre-processing

We generate feature fingerprints for each sub-package of
apps. There are total 4,406,128 non-empty sub-packages.

Fig. 6 shows the distribution of the number of API calls
per sub-package. The number of API calls vary greatly for
different sub-packages. Large sub-packages contain more
than 60,000 API calls, while small sub-packages only contain
less than 10 API calls. Each sub-package has 309 API calls
on average.

7.2.1 Third-party Library Filtering

We cluster the sub-packages into groups according to their
feature vectors. It is worthy to note that small sub-packages
contain much fewer API calls, which would impact the
results of clustering. Thus we exclude small sub-packages
which contain less than 10 different APIs during clustering.
The threshold is determined according to the clustering
results. Clusters with sizes larger than the threshold will
be filtered as external libraries.

Sub-package Level Clustering. After clustering, the
distribution of clusters with different sizes is shown in Fig.
7. We can see that the clusters with size 2 or 3 account for
the most number of clusters and number of sub-packages.

4We do not use apps from the official Google Play market
because we were unable to download a large number of apps
from Google Play, because we cannot access Google Play
directly from China during the same period.

76

800000
& 700000
£ 600000
3 500000
<
© 400000
o
+ 300000
8
£ 200000
5
2 100000

Number of API Calls Per Sub-package

Figure 6: The distribution of the number of API

calls per sub-package

350000 800000
700000

600000

300000

250000
500000

400000
300000
200000

I 100000
[
©

of Clusters

E 200000

% 150000
2

5
5 100000
z
50000
[
& g0

Onumber of clusters

Number of Sub-packages

Size of Cluster

W number of sub-packages

Figure 7: The distribution of the size of cluster (sub-
package level clustering)

With the increase of cluster size, the number of clusters
decrease greatly. But the total number of sub-packages in
these clusters still account for a large portion in the clustered
results.

Table 2 shows the top 12 clusters with their representative
package names. Note that although the sub-packages are
clustered into the same group, their package names may
be not identical. In that case we randomly choose a sub-
package name (as shown in the table).

We could see that the top five clusters are sub-packages
related to Android support libraries. Many of these top
clusters are not ad libraries, thus not listed in most whitelist
approaches. An interesting point is that sub-packages in
different clusters may use the same package names. Such
as in Table 2, there are two clusters with the representative
name “/smali/android/support/vj/net”. The reason is that
we use strict comparison in sub-package level clustering, only
when the features are exactly the same can they be grouped
together. A minor difference in feature vectors will lead to
that they are clustered to different groups. As a result, we
could detect different versions of libraries.

The results also show that many third-party libraries are
obfuscated. Such as the sub-packages with package name
“/smali/com/gpworkstui/kz/a/c” in Table 2. These obfus-
cated libraries cannot be filtered with whitelist approaches.

The threshold of third-party libraries. To filter
third-party libraries, we need determine a threshold after
clustering. In our experiments, we combine two ways to
determine the threshold.

First, we download 200 apps containing more than 60
different identified third-party libraries. We manually check
their disassembled SMALI code, and label the sub-packages
of the corresponding libraries. We cluster the sub-packages
of these 200 apps with the 105,299 apps downloaded previ-



1 - " 7;—;—;—&
o =
0.6

0.4

\
AN

0.2

0 2 4 8 16 32 64 128 256 512 10242048
number of sub-packages per app

=rmhefore pre-processing  =omafter pre-processing

Figure 8: The distribution of the number of
non-empty sub-package per app before/after pre-
processing

1
0.8

W 06
[=]
© 04

0.2

0

©

O 2 b &

ao @ I R I T S
EAR NG NGRS RS SRR G SR
e RS N

number of API

=de=hefore pre-processing  =ommafter pre-processing

Figure 9: The distribution of the number of API
calls per app before/after pre-processing

ously. In the results of the detected sub-packages, we could
see the distribution of these known libraries.

Second, for different cluster sizes (as shown in Fig. 7),
we randomly choose 5 clusters to manually check their
SMALI code and label them as “library”, “core code”, or
“cannot decide”. For some sub-packages, it is easy to decide
according to their package names. While for others, we
need look for some specific statements in their code and use
Google search to help us make decisions. We checked about
60 clusters with sizes ranged from 2 to 5000.

Combing the experiment results of these two approaches,
we choose 32 as the threshold to filter libraries. Clusters
with sizes larger than 32 will be labeled as third-party
libraries. With this threshold, we are able to find more than
600 different third-party libraries (each of them appearing
in more than 32 different apps), which is much larger than
the whitelist approaches in previous studies.

Refinement. As stated above, there are some small
sub-packages containing fewer than 10 different API calls.
We have not clustered these sub-packages with others to
avoid false positives, because there is a higher possibility for
small sub-packages to be coincidentally the same with each
other. We collect the package names of identified third-party
library according to the clustering results and known library
lists, and use these names to filter some small sub-packages.
Although we still could not filter all the third-party related
small sub-packages, they have nearly negligible effects on the
results of app clone detection.

Results. Fig. 8 shows the distribution of the number of
sub-package per app before and after pre-processing. Before
pre-processing, more than 70% of the apps contain 8 to 127
non-empty sub-packages and every app has 41.8 non-empty
sub-packages on average. After pre-processing, most apps
contain 1 to 32 sub-packages and each app contains 15.8 sub-

77

Table 2: The Top 12 clusters and their representa-
tive package names

Cluster Size | Package Name
19,880 | android/support/v4/accessibilityservice
13.494 | android/support/v4/view/accessibility
10.568 | android/support/v4/net
8.985 | android/support/v4/widget
8.161 | android/support/v4/util
7.361 | com/google/ads/mediation
6.923 | android/support/v4/net
6.865 | org/apache/http/entity/mime
6.413 | org/apache/http/entity/mime/content
6.287 | com/gpworkstui/kz/a/c
5.477 | com/android/vending/billing
5.381 | com/google/gson/reflect
Table 3: The results of app pre-processing
before after percentage
filtering filtering filtered
sub-packages | 4,406,128 1,665,970 62.2%
API calls 1,363,293,287 | 575,691,934 57.8%

packages on average. Besides, we also compare the number
of API calls before and after pre-processing, as shown in Fig.
9. The number of API calls decrease greatly. The overall
results of pre-processing are shown in Table 3. More than
60% of the non-empty sub-packages and more than 57% of
the API calls are filtered.

7.3 Coarse-grained Detection

7.3.1 Feature Generation

We calculate the feature vectors for core functionalities of
each app after pre-processing. As shown in Figure 9, more
than 60% apps contain more than 1024 API calls after pre-
processing, while about 17% of the apps contain only fewer
than 16 API calls.

7.3.2  Determining the Threshold

In the coarse-grained detection process, we aim to improve
the comparison efficiency while obtaining sufficient accuracy.
To this end, we choose 1000 samples and use a series of
distance thresholds to measure their accuracy.

We first get the ground truth of app clones by manually
checking, installing and comparing these 1000 apps. Then
we use the coarse-grained detection to compare these 1000
samples pair-wisely (the total number of app pairs is
499,500). We calculate the true positives and false positives
under different threshold by examining each reported pair.
We find that 0.05 can be used as the optimal distance to
achieve the most true positives. Although there are about
10% false positives under the distance of 0.05, we still want
to achieve more true positives because the subsequent fine-
grained detection phase could reduce the false positives
detected in coarse-grained detection.

7.3.3  Coarse-grained Detection Results

After the threshold is chosen, we apply it to detect
suspicious cloned apps from our dataset. The total number
of app pairs is about 5 billion. Luckily, our pruning strategy
could reduce a large portion of the app pairs to accelerate
the process.



0.8

0.6

CDF

0.4

0.2

0 16 32 64 128 256 512 1024 2048 4096
number of code blocks per app

=#=Total Block eem=Line Number >5

Figure 10: The distribution of number of code blocks
per app

After this step, we detected 93,122 suspicious app clone
pairs, which include 14,702 apps. The result is shown in
Table 4. Although the suspicious candidates comprise about
14% of the total apps, we are able to narrow down the
app pairs by almost five orders of magnitude, which greatly
reduces the burden of fine-grained detection.

7.4 Fine-grained Detection

7.4.1 Feature Generation

We calculate the CMs for each selected app. The
distribution of apps with different number of code blocks
is shown in Fig. 10. Note that because small blocks (lines of
code <=5) usually contain much less information, it makes
no sense to include them in app clone detection. Therefore,
we filter small code blocks that contain fewer than 5 lines of
code first. The distribution of apps with different number
of code blocks after filtering is also shown in Fig. 10. We
could see that the number of code blocks decrease greatly,
which improves the detection efficiency of this phase.

7.4.2  Determining the Threshold

We randomly choose 500 samples and use the fine-grained
approach to compare them pair-wisely. We manually check,
install and compare these 500 apps to get the ground truth
of app clones first. Then we use the fine-grained approach
to compare them pair-wisely (124,750 app pairs).

We use a series of similarity thresholds to measure their
accuracy. Based on the false positives and false negatives
under different thresholds, we choose 85% as the optimal
threshold.

7.4.3  Fine-grained Detection Results

We compare the selected 93,112 suspicious app pairs
after coarse-grained detection. Apps with similarity scores
exceeding the specified threshold will be considered as app
clone pairs. After fine-grained detection, we detected 80,439
app clone pairs, which include 12,922 apps. The results are
shown in Table 4. About 12% of the apps in our dataset are
detected as cloned apps in the identified app clone pairs.

We further study the cross-market and inside-market app
clone situations, which are shown in Fig. 11. An interesting
finding is that besides cross-market app clone pairs, there
exist many clone pairs even within the same market. For
example, eoe contains 4,368 apps that are clones within the
market, which represents more than 10% of the total apps
we studied from this market. The results show that, it is
very important for an app store/market to apply app clone
detection techniques to identify and remowve these cloned apps
from their market.

78

12442 (1928)

baidu

8
A1® oD o O
WP >

781
(432, 357)

5347
(778.1231)

Figure 11: Cross-market and inside-market app
clones. (Fach node corresponds to a market. The
size of a market node is proportional to the number
of apps from the market. The number beside an edge
shows how many app clone pairs are cross the two
markets. The numbers in the brackets refer to the
number of involved apps in each of the two markets.)

7.5 The Gap Between Two Phases
7.5.1 False Positive of First Phase

From the detection results, we could see that about 12% of
the apps and 13.6% of app pairs detected in coarse-grained
detection are not considered as app clone pairs after the
fine-grained detection stage.

We randomly choose 100 of these app pairs for further
analysis. We manually check, install and compare these
apps, and we find all of them are not app clones, which
means that they are the false positives of first phase.

7.5.2  The Reasons Leading to the Gap

We identify the following reasons leading to the gap
between two phases:

(1) A large portion of these app pairs are small apps, which
contain very few APIs (<10) and code blocks. We even find
some apps containing only 4 or 5 API calls, thus it is quite
possible that they are detected as clone pairs in the coarse-
grained detection stage.

(2) Many of these app pairs belong to the same cate-
gories, such as wallpaper apps and clock apps. They have
similar simple functions (such as choosing a wallpaper),
thus the number of API calls in these apps are similar.
Therefore, they are selected as app clone pair incorrectly
(in the coarse-grained stage). But in the fine-grained
detection, their similarity score is much lower because the
difference in their code blocks. For example, we find
one app with package name “If.live.hjfcebyl0.apk” which
is detected as in a clone pair with another app with
package name “com.mobi.screensaver.model6.apk” in the
coarse-grained detection stage. However, the first app
contains 647 blocks, while the second app only contains 46
blocks. They are both wallpaper apps, but the first app
contains many other code with no API calls.

7.6 Accuracy

We use two ways to measure the false positives of our
two-phase approach.



Table 4: The results of two-phase app clone detection

Market total # of | coarse-grained | coarse-grained | fine-grained fine-grained/ fine-grained/
apps results / total apps results coarse-grained total

anzhi 14,047 2,306 16.4% 2,022 87.8% 14.4%

eoe 40,134 6,307 15.7% 5,565 88.2% 13.9%

gfan 13,672 1,460 10.7% 1,068 73.2% 7.8%

baidu 16,613 2,654 16.0% 2,473 93.2% 14.9%

myapp 20,833 1,982 9.5% 1,799 90.8% 8.6%

total 105,299 14,702 14.0% 12,922 87.9% 12.2%

[ app pairs | 5,543,887,051 [ 93,112 | 0.00168% | 80,439 | 86.4% | 0.00145% |

(1) First, we use Androguard [2] to help measure the
false positives. Androguard is a reverse engineering and
static analyze tool for Android apps, which provides the
feature of measuring the similarity of Android apps. To the
best of our knowledge, it is the only repackaging detection
tool that is available for use. It calculates the similarity
score of apps by identifying method relevant metrics. We
randomly select 2,000 of the 80,439 detected app clone pairs
and apply Androguard on these apps. Note that we filter
the third-party libraries first to keep the same experiment
environment with our approach. With the threshold of 85%,
Androguard could detect 1,931 app clone pairs out of the
2,000 app pairs. We randomly select 500 of the 1,931 app
clone pairs detected by both our approach and Androguard.
We manually check these app pairs by inspecting their
disassembled code and installing them on smartphones. We
do not find any false positives. In the same way, we manually
check the 69 app clone pairs that detected by our approach
but can not be detected by Androguard. We find that they
are indeed repackaged apps. It shows that our approach
has no false positives in this experiment and our approach is
more accurate than Androguard.

(2) At the beginning of the evaluation, we add 1000
labeled apps to the dataset. Among the 1000 apps, there are
58 manually verified app clone pairs (116 apps) downloaded
from various markets with similar names or descriptions.
Besides, there are 100 artificially generated app clone pairs
(200 apps). We use various ways to generate these app
clone pairs, including using Proguard [14] to obfuscate the
apps, using APIMonitor [4] to insert some monitor code and
reordering the method manually. The remaining 684 apps
are totally different. We pre-process and detect these apps
together with the 105,299 apps. We check the detection
results to analyze the results containing these 1000 apps. We
are able to detect all these 158 app clone pairs successfully.
Meanwhile, we also find no false positives among these 1000
apps (499,500 app pairs).

We do not attempt to measure the false negative because
there is no feasible way to find the ground truth for the
105,299 apps in our dataset. As a matter of fact, none of
the previous app clone detection approaches [64, 27, 62, 54,
63, 61, 55, 21, 25] have measured the false negative rate.

7.7 Scalability

We analyze the performance of different detecting stages
respectively. In the pre-processing stage, after disassembling
the apps, we extract the static semantic features for each
sub-package. It takes about 28 hours to extract and store
the features for these 4,406,128 sub-packages. Then we
cluster these sub-packages into groups to filter third-party
libraries, and it takes less than 60 minutes. In the coarse-

79

grained stage, it takes about 4 hours to detect suspicious app
clones, including 2 hours to generate the features for each
app and 2 hours to compare these apps pair-wisely. In the
fine-grained stage, it takes about 10 hours to generate the
code segment level features for each selected apps. For the
selected suspicious app clone pairs, it take about 2.5 hours
to calculate the final similarity scores.

In comparison, comparing each app pair during coarse-
grained detection takes roughly 0.0000013 seconds on aver-
age, while it takes 0.097 seconds to compare each app pair
in the final fine-grained phase. Although the fine-grained
phase takes much longer to compare each pair, it compares
much fewer app pairs because the coarse-grained phase has
successfully filtered most of those dissimilar app pairs.

Note that we run all the phases on a single thread, which
leaves room for further improvement to take advantage of
multiple cores for speed-up.

8. DISCUSSIONS

In this section, we examine possible limitations of WuKong
and potential future improvements.

Code Obfuscation. ProGuard is the most widely used
obfuscation tool that has been integrated into the Android
build system. Proguard obfuscates code by renaming class-
es, fields, and methods with semantically obscure names.
WuKong could handle this kind of obfuscation well. Howev-
er, hackers could use some complex obfuscation algorithms
such as Class Encrypter [29] and API obfuscation to evade
our detection, which need to be further investigated.

App Clones VS. Original Apps. Although we can
detect app clone pairs from a very large number of apps,
for a given clone pair, it is hard to decide which one is the
original app. Previous work [26, 63] have proposed some
heuristic solutions, such as checking the submission time of
the app, the popularity of the app (download times), the size
of APK, or the proportion of non-primary code. However,
none of these solutions are perfectly sound and it is easy for
hackers to evade detection.

App Containment. It is possible that a cloned app
contains several small apps or the cloned app has far more
code than the original app. In this case, our approach may
not detect it as an app clone due to significant difference
in their features. It is hard to determine whether they
are actually app clones or not, because they possess many
different functionalities.

We might be able to detect this kind of clones with minor
modification to WuKong, such as considering the include-
relationship when comparing app signatures. However, it
will greatly increase the complexity of comparison. Mean-
while, false positives may increase, because the features of
small apps are likely to be contained in many big apps.



Usage Scenario. One typical usage scenario is applying
mobile app clone detection to an app market, where each
newly submitted app will be compared to all the existing
apps to check whether it is a cloned app. WuKong can be
easily modified to adapt to such cases. Since we only need
to compare one app to all the existing apps, we should be
able to finish the comparison within seconds even if there
are more than 1 million apps (such as in Google Play). We
will investigate this issue in more details in future work.

9. RELATED WORK

App Clone Detection. There are many recent work
studying how to detect Android app clones.

Several earlier approaches use simple features such as
hashing. DroidMOSS [64] collects the syntactic instruction
sequences to generate features. Fuzzy hashing [34] is used
to generate the fingerprints. Juxtapp [27] leverages feature
hashing [58] to detect code reuse in Android apps.

FSquaDRA [62] and PlayDrone [54] use resource signa-
tures to perform fast detection. Androguard [2] calculates
the similarity score of apps by identifying method relevant
metrics. Zhou et al. [63] proposed a module decompiling
technique to partition an app’s code into primary and non-
primary modules. Then semantic features are extracted
from the primary modules to detect “piggybacked” apps.

ViewDroid [61] leverages user interface based birthmark
to detect app clones, which is resilient to code obfuscation.
However, for the detection of apps with few views, the
false positive ratio is high. CLAN [44] detects similar
Java apps using Java API calls, which is similar with our
coarse-grained approach. In general, these coarse-grained
techniques using simple features are fast, while providing
relatively less accurate results.

There are also detection techniques using more compli-
cated features. For example, DNADroid [24] detects cloned
apps by comparing the PDGs between methods in candidate
apps. Wang et al. [55] leveraged counting-based code clone
detection techniques, which also faces scalability difficulties
because their complexity.

AdDarwin [25] splits PDGs into connected components
and extract semantics vector for each component. Semantic
vectors are calculated by counting the occurrence frequency
of specific types (e.g., binary operation type). AdDarwin
also uses semantics vectors to detect external libraries.
However, semantics block level clustering would introduce
high false positive rate [21].

Chen et al. [21] use the geometry characteristic (centroid)
of dependency graphs to measure the similarity between
methods of two apps. Their solution has demonstrated to
be both scalable and accurate. However, they also use a
whitelist to filter third-party libraries, which could lead to
inaccurate results.

As a matter of fact, our proposed technique for third-
party library filtering can be incorporated to many existing
techniques such as [21] to improve their performance.

Code Clone Detection. A more general related research
area is code clone detection, which have been studied
extensively for dozens of years. Text-based techniques [37,
47, 16] use little or no transformation on the source code
before the actual comparison, and in most cases raw source
code is used directly in the clone detection process.

Token-based techniques [17, 18, 32, 38] begin by trans-
forming source code into a sequence of “tokens” using

80

compiler-style lexical analysis. The sequence is then scanned
for duplicated subsequences of tokens and the corresponding
original code is returned as clones.

Counting-based techniques [59, 60] could improve the
accuracy of token-based clone detection and are effective
in some apps such as detecting programming bugs and
plagiarisms. The fine-grained detection in WuKong is based
on a counting-based code clone detection technique.

Syntactic approaches [19, 20, 48, 50, 23] use a parser
to convert source programs into parse trees or abstract
syntax trees, which can then be processed using either tree
matching or structural metrics to find clones. Lee et al. [36]
proposed a multi-dimensional token-level indexing structure
using an R* tree on Deckard’s vectors [31]. Semantics
approaches [35, 28] use static program analysis to provide
more precise information than simply syntactic similarity.
Kim et al. [33] proposed a symbolic-based approach to
identify semantically equivalent procedures. However, these
approaches are generally slower and not scalable enough.

Software Plagiarism Detection. Another related re-
search area is software plagiarism detection.  Software
birthmark is used to detect software plagiarism, which is
a unique characteristic that a program inherently possesses
that can be used to determine the identity of a software.

Software birthmarks could be classified into static birth-
mark and dynamic birthmark. Tamada [51] proposed four
types of static birthmark: constant values in field variables
birthmark, sequence of method calls birthmark, inheritance
structure birthmark and used classes birthmark. GPLAG
[43] leveraged PDG-based birthmark. Lim et al. [39] used
stack pattern based birthmark. Myles et al. [45] statically
analyzed executables and proposed op-code level k-gram
based static birthmark. Lim et al. [40] proposed n-gram
flow-path birthmark. Static birthmarks are vulnerable to
obfuscation techniques, such as instruction reordering.

Dynamic software birthmarks include dynamic API based
birthmarks [53, 52, 49], whole program path birthmark
[46], system call based birthmark [56, 57] and core value
based birthmark [30]. They need dynamically analyze
the program, thus not suitable for large scale plagiarism
detection, such as cross-market app clone detection.

10. CONCLUSION

This paper presents WuKong, a new accurate and scalable
approach to detect Android app clones. Our proposed tech-
niques include a novel clustering-based approach to detect
third-party libraries efficiently and accurately without prior
knowledge, which introduces significant benefits compared
to previously used whitelist approaches. We also introduce
a two-phase approach to detect app clones, which combines
the scalability of coarse-grained detection and the accuracy
of fine-grained detection mechanisms. Experiments on over
100,000 Android apps show that WuKong is able to detect
app clones within several hours of comparison, with no false
positives found in our evaluation.

Acknowledgment

This work is partly supported by the High-Tech Research
and Development Program of China (863) under Grant
No.2015AA01A203, the National Basic Research Program
of China (973) under Grant No. 2011CB302604, and the
National Natural Science Foundation of China under Grant
No.61421091, 61370020, 61103026.



11.
1]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

REFERENCES

Daily Android activations grow to 1.5 million, Google
Play surpasses 50 billion downloads. http://bgr.com/
2013/07/20/android-activations-app-downloads/,
2013.

Androguard. https://code.google.com/p/
androguard/, 2014.

Anzhi market. http://www.anzhi.com/, 2014.
Apimonitor. https://code.google.com/p/droidbox/
wiki/APIMonitor, 2014.

Apktool. https://code.google.com/p/android-
apktool/, 2014.

Baidu market. http://shouji.baidu.com/, 2014.
Dex2jar. https://code.google.com/p/dex2jar, 2014.
Eoe market. http://www.eoemarket.com/, 2014.
Gfan market. http://apk.gfan.com/, 2014.
Jd-Core-Java. https://github.com/nviennot/jd-
core-java, 2014.

Keytool. http://docs.oracle.com/javase/6/docs/
technotes/tools/solaris/keytool.html, 2014.

A list of shared libraries and Ad libraries used in
Android apps. http://sites.psu.edu/kaichen/2014/
02/20/a-1list-of-shared-libraries-and-ad-
libraries-used-in-android-apps/, 2014.

Myapp market. http://android.myapp.com/, 2014.
Proguard. https://proguard.sourceforge.net/,
2014.

Smali: An assembler/disassembler for Android’s dex
format. https://code.google.com/p/smali, 2014.

B. S. Baker. A program for identifying duplicated
code. In Computer Science and Statistics: Proc. Symp.
on the Interface, pages 49-57, 1992.

B. S. Baker. On finding duplication and
near-duplication in large software systems. In WCRE,
pages 86-95, 1995.

B. S. Baker. Parameterized pattern matching:
algorithms and applications. J. Comput. Syst. Sci.,
52(1):28-42, 1996.

I. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and
L.Bier. Clone detection using abstract syntax trees. In
Proceedings of the 1998 International Conference on
Software Maintenance (ICSM), 1998.

P. Bulychev and M. Minea. Duplicate code detection
using anti-unification. In SYRCOSE, 2008.

K. Chen, P. Liu, and Y. Zhang. Achieving accuracy
and scalability simultaneously in detecting application
clones on Android markets. In Proceedings of the 36th
International Conference on Software Engineering
(ICSE ’14), 2014.

X. Chen, A. Y. Wang, and E. D. Tempero. A
replication and reproduction of code clone detection
studies. In Proceedings of the Thirty-Seventh
Australasian Computer Science Conference (ACSC),
pages 105-114, 2014.

A. Corazza, S. Di Martino, V. Maggio, and

G. Scanniello. A tree kernel based approach for clone
detection. In Proceedings of the 2010 International
Conference on Software Maintenance (ICSM ’10),
pages 1-5, 2010.

J. Crussell, C. Gibler, and H. Chen. Attack of the
clones: detecting cloned applications on Android

81

(25]

[26]

27]

28]

29]

(30]

(31]

(32]

33]

(34]

(35]

(36]

37]

markets. In Proceedings of the 17th Furopean
Symposium on Research in Computer Security
(ESORICS ’12), 2012.

J. Crussell, C. Gibler, and H. Chen. Scalable
semantics-based detection of similar Android
applications. In Proceedings of the 18th European
Symposium on Research in Computer Security
(ESORICS ’13), 2013.

C. Gibler, R. Stevens, J. Crussell, H. Chen, H. Zang,
and H. Choi. AdRob: examining the landscape and
impact of Android application plagiarism. In
Proceeding of the 11th Annual International
Conference on Mobile Systems, Applications, and
Services (MobiSys ’13), pages 431-444, 2013.

S. Hanna, L. Huang, E. Wu, S. Li, C. Chen, and

D. Song. Juxtapp: a scalable system for detecting
code reuse among Android applications. In
Proceedings of the 9th Conference on Detection of
Intrusions and Malware and Vulnerability Assessment
(DIMVA ’12), 2012.

Y. Higo, U. Yasushi, M. Nishino, and S. Kusumoto.
Incremental code clone detection: a PDG-based
approach. In WCRE, pages 3 —12, 2011.

H. Huang, S. Zhu, P. Liu, and D. Wu. A framework
for evaluating mobile app repackaging detection
algorithm. In Proceedings of the 6th International
Conference on Trust and Trustworthy Computing,
2013.

Y.-C. Jhi, X. Wang, X. Jia, S. Zhu, P. Liu, and

D. Wu. Value-based program characterization and its
application to software plagiarism detection. In
Proceedings of the 33rd International Conference on
Software Engineering, pages 756—765, 2011.

L. Jiang, G. Misherghi, Z. Su, and S. Glondu.
DECKARD: scalable and accurate tree-based
detection of code clones. In Proceedings of the 29th
International Conference on Software Engineering
(ICSE ’07), pages 96-105, 2007.

T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: a
multilinguistic token-based code clone detection
system for large scale source code. IEEE Transaction
on Software Engineering, 28(7):654-670, 2002.

H. Kim, Y. Jung, S. Kim, and K. Yi. MeCC: Memory
comparison-based clone detector. In Proceedings of the
33rd International Conference on Software
Engineering (ICSE ’11), pages 301-310, 2011.

J. Kornblum. Identifying almost identical files using
context triggered piecewise hashing. Digit. Investig.,
3:91-97, Sept. 2006.

J. Krinke. Identifying similar code with program
dependence graphs. In WCRE, pages 301-309, 2001.
M.-W. Lee, J.-W. Roh, S.-w. Hwang, and S. Kim.
Instant code clone search. In Proceedings of the
Eighteenth ACM SIGSOFT International Symposium
on Foundations of Software Engineering (FSE ’10),
pages 167-176, 2010.

S. Lee and 1. Jeong. SDD: high performance code
clone detection system for large scale source code. In
Proceedings of the 20th Annual ACM SIGPLAN
Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA ’05),
pages 140-141, 2005.



[38]

[39]

[42]

Z. Li, S. Lu, S. Myagmar, and Y. Zhou. CP-Miner:
finding copy-paste and related bugs in large-scale
software code. IEEE Transaction on Software
Engineering, 32(3):176-192, 2006.

H.-i. Lim, H. Park, S. Choi, and T. Han. Detecting
theft of Java applications via a static birthmark based
on weighted stack patterns. IEICE - Trans. Inf. Syst.,
E91-D(9):2323-2332, 2008.

H.-i. Lim, H. Park, S. Choi, and T. Han. A method for
detecting the theft of Java programs through analysis
of the control flow information. Inf. Softw. Technol.,
51(9):1338-1350, 2009.

M. Linares-Vasquez, A. Holtzhauer,

C. Bernal-Cardenas, and D. Poshyvanyk. Revisiting
Android reuse studies in the context of code
obfuscation and library usages. In Proceedings of the
11th Working Conference on Mining Software
Repositories, pages 242-251. ACM, 2014.

B. Liu, B. Liu, H. Jin, and R. View. Efficient privilege
de-escalation for ad libraries in mobile apps. In
Proceedings of the The 13th International Conference
on Mobile Systems, Applications, and Services
(MobiSys ’15), 2015.

C. Liu, C. Chen, J. Han, and P. S. Yu. GPLAG:
detection of software plagiarism by program
dependence graph analysis. In Proceedings of the 12th
ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages
872-881, 2006.

C. McMillan, M. Grechanik, and D. Poshyvanyk.
Detecting similar software applications. In Proceedings
of the 34th International Conference on Software
Engineering (ICSE ’12), pages 364-374, 2012.

G. Myles and C. Collberg. K-gram based software
birthmarks. In Proceedings of the 2005 ACM
symposium on Applied computing, pages 314-318.

G. Myles and C. Collberg. Detecting software theft via
whole program path birthmarks. In Information
security, pages 404-415, 2004.

C. K. Roy and J. R. Cordy. NICAD: accurate
detection of near-miss intentional clones using flexible
pretty-printing and code normalization. In Proceedings
of the 2008 IEEE International Conference on
Program Comprehension, pages 172—181, 2008.

P. Schugerl. Scalable clone detection using description
logic. In IWSC ’11, pages 47-53, 2011.

D. Schuler, V. Dallmeier, and C. Lindig. A dynamic
birthmark for Java. In Proceedings of the 22nd
IEEE/ACM International Conference on Automated
Software Engineering (ASE 07), pages 274-283, 2007.
G. Selim, K. C. Foo, and Y. Zou. Enhancing
source-based clone detection using intermediate
representation. In WCRE, pages 227 —236, 2010.

H. Tamada, M. Nakamura, A. Monden, and K. ichi
Matsumoto. Design and evaluation of birthmarks for
detecting theft of Java programs. In Proceedings of the
TASTED International Conference on Software
Engineering, pages 569-575, 2004.

H. Tamada, K. Okamoto, M. Nakamura, A. Monden,
and K. ichi Matsumoto. Design and evaluation of
dynamic software birthmarks based on API calls.

82

(53]

[54]

[55]

[56]

[57]

(58]

[59]

[60]

(61]

(62]

(63]

(64]

[65]

Technical report, Nara Institute of Science and
Technology, 2007.

H. Tamada, K. Okamoto, M. Nakamura, A. Monden,
and K.-I. Matsumoto. Dynamic software birthmarks
to detect the theft of Windows applications. In
Proceedings of the International Symposium on Future
Software Technology (ISFST ’04), 2004.

N. Viennot, E. Garcia, and J. Nieh. A measurement
study of Google Play. In The 2014 ACM International
Conference on Measurement and Modeling of
Computer Systems (SIGMETRICS ’14), pages
221-233, 2014.

H. Wang, Z. Wang, Y. Guo, and X. Chen. Detecting
repackaged Android applications based on code clone
detection technique. In SCIENCE CHINA Information
Sciences, volume 44(1), pages 142-157, 2014.

X. Wang, Y. chan Jhi, S. Zhu, and P. Liu. Detecting
software theft via system call based birthmarks. In
Proceedings of the 2009 Annual Computer Security
Applications Conference, pages 149-158, 2009.

X. Wang, Y.-C. Jhi, S. Zhu, and P. Liu. Behavior
based software theft detection. In Proceedings of the
16th ACM Conference on Computer and
Communications Security, pages 280-290, 2009.

K. Weinberger, A. Dasgupta, J. Langford, A. Smola,
and J. Attenberg. Feature hashing for large scale
multitask learning. In Proceedings of the 26th Annual
International Conference on Machine Learning (ICML
’09), pages 1113-1120, 2009.

Y. Yuan and Y. Guo. CMCD: count matrix based
code clone detection. In Proceedings of the 18th Asia
Pacific Software Engineering Conference (APSEC
’11), pages 250-257, 2011.

Y. Yuan and Y. Guo. Boreas: an accurate and
scalable token-based approach to code clone detection.
In Proceedings of the 27th IEEE/ACM International
Conference on Automated Software Engineering (ASE
’12), pages 286289, 2012.

F. Zhang, H. Huang, S. Zhu, D. Wu, and P. Liu.
ViewDroid: towards obfuscation-resilient mobile
application repackaging detection. In Proceedings of
the Tth ACM Conference on Security and Privacy in
Wireless and Mobile Networks (WiSec ’'14), 2014.

Y. Zhauniarovich, O. Gadyatskaya, B. Crispo,

F. La Spina, and E. Moser. FSquaDRA: fast detection
of repackaged applications. In Data and Applications
Security and Privacy XX VIII, volume 8566 of Lecture
Notes in Computer Science, pages 130-145. 2014.

W. Zhou, Y. Zhou, M. Grace, X. Jiang, and S. Zou.
Fast, scalable detection of “piggybacked” mobile
applications. In Proceedings of the Third ACM
Conference on Data and Application Security and
Privacy (CODASPY ’13), pages 185-196, 2013.

W. Zhou, Y. Zhou, X. Jiang, and P. Ning. Detecting
repackaged smartphone applications in third-party
Android marketplaces. In Proceedings of the Second
ACM Conference on Data and Application Security
and Privacy (CODASPY ’12), 2012.

Y. Zhou and X. Jiang. Dissecting Android malware:
characterization and evolution. In Proceedings of the
2012 IEEE Symposium on Security and Privacy (SP
’12), pages 95-109, 2012.



