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Abstract—Energy consumption is one of the most important
aspects of mobile apps. During energy testing, it is important for
developers to understand not only the energy consumption rate
of an app, but also why energy is consumed. However, existing
energy testing tools are more concerned about the accuracy of
energy estimation, while typically not providing explanations on
why and how exactly energy has been consumed.

This paper presents E-Spector, an online energy inspection
method for Android apps, which can not only visualize the energy
consumption of an app in an instant online manner, but also can
tell what happened behind each energy hotspot on the energy
curve. E-Spector relies on static analysis and app instrumentation
to collect the activities from an app execution in real-time. Then
it presents the activities on an instant energy curve, such that
the user can easily tell what happened behind each energy spike.
Experimental result shows that the energy estimation error of E-
Spector is less than 10% and its overhead on energy consumption
is about 4%. We also show case studies to demonstrate the
applicability and effectiveness of E-Spector in energy monitoring,
analysis and bug inspection.

Keywords-Energy testing, mobile applications, static analysis,
Android.

I. INTRODUCTION

Mobile applications (apps for short) have become more and
more complicated since the emerging of iPhone and Android-
based smartphones. More functionalities and extensive use of
sensors have increased the energy consumption rate for most
popular apps. As a result, mobile app developers are very
concerned about the energy consumption of their apps.

Energy visualization and debugging tools [15], [5], [10],
[13] can help app developers understand the overall energy
consumption of an app. However, many existing tools are ei-
ther based on offline models or only provide offline debugging
(estimating and debugging the energy issues of an app after
execution) capabilities.

In this paper, we present E-Spector, an online energy inspec-
tion method that not only provides instant online visualization
of energy consumption patterns, but also can tell why and how
energy is spent at each time point.

E-Spector relies on an online energy model [14] that can
be used to calculate energy consumption based on system
utilization data. We obtain power-related data including CPU
utilization, Wifi and 3G/4G data traffic, and screen on/off (and
brightness information), and use these information to calculate
instant energy consumption for each app at runtime. We can

break down the system energy for each app including both
apps running in the foreground and background services.

In order to reveal the reasons behind the energy consump-
tion, we also instrument the app under test (AUT) to log all
its API calls and other related events to reveal the activities
performed by the AUT. These events will be synchronized to
the energy visualization interface, and displayed to reveal what
happened behind each power spike.

In summary, E-Spector achieves the following goals:
• It does not require hardware meters, instead using an

online software-based power model to calculate instant
power numbers for each app at runtime.

• It provides detailed energy breakdowns (including com-
ponents such as screen, CPU and network) for each pro-
cess running on the device, including both apps running
in the foreground, and background services as well.

• E-Spector is able to tell at each time point, especially
at energy spikes, what really happened in the app by
mapping the events and API calls to the energy spikes
in almost real-time.

We implement E-Spector for Android smartphones and use
a web-based user interface to provide online instant power con-
sumption curves, as well as provide user interaction capability
to inspect the reasons of energy consumption at each time
point. E-Spector can be used to visualize energy consumption
patterns during app execution, without the need of hardware
meters, while offering the capability of debugging the energy
hotspots instantly.

We evaluate the accuracy and overhead of E-Specter. The
results show that E-Spector can provide energy estimation
within an error less than 10%, while the energy overhead is
less than 4%. We also demonstrate its capability in finding
energy hotspots and bugs with a couple of case studies.

II. METHODOLOGY

In this section, we introduce our methodology and the
design of E-Spector.

A. Reasons of Energy Consumption

Energy consumption is an important aspect to evaluate an
app. The energy consumed while apps are running could be
influenced by a lot of factors such as hardware components,
network condition, OS version, user interaction, etc. From
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Fig. 1. Overview of the E-Spector working process.

different angles, people are concerned with different factors
of energy.

For example, app users mainly focus on the relation of user
interaction and energy consumption, while system developers
and hardware providers care more about the resource usage.
When developing an app, app developers should consider not
only the user interaction and hardware power features, but also
how to use the hardware resources to deal with user requests.

Thus, when performing energy testing or profiling, app
developers need to know which code is executed, why the
code is executed and what resources are used. This paper uses
these information to explain the reason of energy consumption.

Many prior research works and tools are focused on the
user interaction and system resources[11], [15], but few works
have analyzed the behaviors of apps. Thus, we propose an
energy inspection system, E-Spector, to display the energy
consumption of running apps, and also reveal the reasons of
the energy consumption in an instant manner.

B. Overview of E-Spector

The main goal of E-Spector is to display instant energy
consumption statistics of all apps running on a smartphone,
while being able to tell why and how the energy is consumed.
In order to be able to visualize energy consumption without
affecting the power dissipation on the device, we choose to
connect the device to a PC server that will provide visualiza-
tion and inspection services to the developer.

The architecture of E-Spector is shown in Figure 1. We first
perform static analysis on the AUT and instrument it such that
it can print log information while running on the testing device.
We connect the smartphone to a desktop with ADB and run
the instrumented AUT on the device. The logs contain both
device utilization information, which will be used to calculate
energy numbers, and app events and API calls, which will be
synchronized with power traces to explain power surges or
spikes at each point on the power curve.

C. Energy Estimation

We do not want to use a hardware power meter such as
Monsoon [1] to measure the instant power numbers because
it is obviously not widely applicable. Thus we use a software-
based energy estimation model, which relies on device uti-
lization number collected by an energy profiler that runs as a
service on the smartphone.

TABLE I
INFORMATION COLLECTED BY THE ENERGY PROFILER.

Info Acquiring Method
CPU /proc/[pid]/stat

Network WifiManager & TelephonyManager
Traffic TrafficStats
Screen Settings.System.SCREEN BRIGHTNESS
Apps ActivityManager

Battery Intent.ACTION BATTERY CHANGED
Screen Intent.ACTION SCREEN ON/OFF

Network android.net.conn.CONNECTIVITY CHANGE

TABLE II
ENERGY MODEL FOR THE NEXUS S SMARTPHONE.

Hardware Parameter Energy Model
CPU Utilization(u) 161.6 ∗ u2 + 97.5 ∗ u+ 6.0
WiFi Traffic Speed(t) 0.5 ∗ t

Cellular Traffic Speed(t) 0.8 ∗ t
Screen Brightness(b) 0.6 ∗ b+ 112.0

Table I shows the list of information it collects, which
includes CPU utilization, network traffic data and screen
brightness, and also the voltage of battery, etc. The information
in the first five rows is collected periodically. In order to obtain
balance between accuracy and overhead, we select a frequency
of 2Hz as the sampling frequency. The rest of the information
collection is event-driven. We record relevant data with time
stamps only when events occur.

E-Spector is then able to calculate energy numbers based
on a device energy model we built based on the V-Edge power
model [14]. We use V-Edge to calculate the power dissipation
of the device based on battery voltage, and use a regression
method to build the energy estimation model. Table II shows
the resulting model for the Nexus S smartphone, which was
used in our experiments.

D. Collecting App Events

We then instrument each app to record all the events in
order to reveal what happens during app execution. We build
an app analysis tool to analyze each app and instrument it to
record all events related to energy consumption.

Unlike traditional computation tasks, mobile apps are
mostly interactive. Figure 2 shows the event-driven model for
Android apps. The event stream consists of a list of events,
such as user click event, timer event, network message event,
etc. When an event occurs, the framework will notify the
app if it is listening to the event. Then the app starts to run
from the callback function, which be can be regarded as an
“event entrance”. Table III shows the types of different “event
entrances”.

While the “entrance” explains “What happens”, the code
executed by the “entrance” tells “What does the app execute”.
As analyzing all the code could become difficult for complex
apps, we focus on only the APIs related to energy.

As we know, energy consumption is related to hardware
resource usage. Besides the CPU and screen usage, which are
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Fig. 2. The execution model of Android apps.

TABLE III
TYPES OF “ENTRANCES”.

Type Example
User Event onClick, onScoll

System Event onReceive
Lifecycle Event onResume, onDestory

hard to infer from the source code, we are more concerned
about the resource and related APIs in Table IV. We call
these APIs resource-related APIs. Through the information
of resource-related APIs, developers could analyze which
resource is used and where the energy is consumed.

When analyzing an app, we first identify all the “event
entrances”, and perform instrumentation at the beginning of
each “entrance”. We then search for the API calls along with
the Call Graph and Control Flow Graph to instrument and
record all the events as listed in Table IV.

For example, the app of Kugou Music has 3,178 “event
entrances” and 3,622 resource-related API calls among all the
35,991 API call instructions. The number of data-base API is
3,129, which accounts for the most of resource-related APIs.
While the second ranked is network APIs, with a number of
381.

E. Data Synchronization and Visualization

In the testing phase, we run the instrumented app on the
testing device. While the app is running, the instrumented code
will print logs on “entrances” and API calls, while the energy
profiler will print logs on resource usage of the app.

These data will be synchronized based on timestamps, and
transferred to the E-Spector service for power calculation and
display. According to the power model of the testing device,
we could calculate instant energy consumption of the app.
Then we display the energy curve of the AUT with events
and API information synchronized to the energy curve. The
user can then click on any point on the power curve to learn
the events corresponding to the energy pattern.

III. IMPLEMENTATION

In this section, we introduce the implementation details of
E-Spector.

TABLE IV
RESOURCE-RELATED APIS.

Type APIs
PowerManager android.os.PowerManager.*

Sensor android.hardware.*

Network
android.net.*

org.apache.http.*
java.net.URL

Bluetooth android.bluetooth.*
Location android.bluetooth.*
Media android.media.*

Database
android.content.SQLite.*
android.database.sqlite.*

I/O java.io.*

A. App Instrumentation

We first perform static analysis on each AUT in a prepro-
cessing step before running it. The preprocessing step consists
of 2 parts: instrumenting all the “entrances” with the code
of logging and listing resource-related APIs following each
“entrance”. The instrumented app will execute on the testing
device. The API list is deployed on the PC server, which will
be displayed to the user (i.e., app developers) along with the
energy estimation results.

We build our static analysis tool based on the open-source
project AndroGuard[2]. We use the basic analysis tools in
AndroGurad, such as Control Flow Graph, Call Graph, Basic
Blocks, etc, to perform our analysis. Our instrumentation does
not need the source code of AUT. All we need is the apk file
of each app.

1) Entrance Instrumentation: We decompile the apk file
of AUT into smali code with AndroGuard and then perform
instrumentation on the smali code.

We first find all the “entrances” according to method names
and Call Graphs. Specifically, an “entrance” method should
not be called by other methods explicitly and have a specific
format name, such as “onClick”, “onDestory”, as shown in
Table III.

Then, we insert an “invoke” instruction at the beginning of
each “entrance”. This instruction invokes a static method for
printing logs about the information of “entrances”.

2) API information: A straightforward approach to acquire
API information is to instrument a log printer before every
API call in the smali code. However, the number of API calls
is very large and the overhead may be intolerable. Thus, we
introduce a method to estimate the API calls via static analysis.

For each “entrance”, we walk through the Call Graph and
find all “invoke” instructions that call resource-related APIs,
as listed in Table IV. We save the API lists on the PC server.
In the testing phase, if the user/developer clicks a sampling
point on the power curve, E-Spector will search the “event
entrance” around the point and display the corresponding
resource-related API list, along with the power curve.



Fig. 3. Screenshot of E-Spector, showing the power curve of Kugou Music.

B. Testing and Output

Before running an instrumented app, we connect the testing
device to a PC server via a USB cable. The information of
energy consumption, resource usage and events is logged on
the device while testing.

On the PC server, we deploy a TomCat web application to
obtain these data using the “adb logcat” command in a syn-
chronized manner. The web application estimates the energy
consumption and display it with events and API information
on a web interface. The interface was refreshed every 0.5
seconds, which is the same frequency as we collect power-
related statistics.

Since E-Spector uses an online power model based on
resource usage, USB charging would not affect the energy
estimating results for AUT. E-Spector can also avoid the
interference of the log service and other apps on the testing
device, because the energy of the whole device is broken down
to each app and service running on the device.

C. User Interface

We build a web interface for E-Spector, which can be used
in any popular web browser. Figure 3 shows a screenshot of
E-Spector. The information displayed by E-Spector includes:

• The instant energy curve for an app, which is updated
in real-time as the app executes on the device. The
energy numbers can be broken down into different power
consuming components including CPU, Network and
Screen, which can be toggled on/off.

• Users can choose to inspect the energy consumption for
any app/process from the list of all running processes, in-
cluding background services running on the smartphones.

• For all instrumented apps, the user can click on the energy
curve to see what happened behind each time point. If the
user wants to know what causes an energy spike, moving
the mouse to the point before the energy spike will reveal
all the events and API calls.

• We also show other useful information and statistics,
including phone status, device utilization and energy
breakdown by components, etc.

IV. EVALUATION

In this section, we evaluate the accuracy of our energy
model and the overhead of E-Spector.
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Fig. 4. Accuracy of E-Spector.
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A. Accuracy

To evaluate the accuracy of our power model, we compare
the estimated energy of the whole device to the measured
power value using the popular hardware power meter, the
Monsoon Power Monitor [1].

We run our energy profiler on a Nexus S smartphone, which
is connected to the Power Monitor. After running some test
cases, we estimate the energy consumption of the smartphone
through the data collected by energy profiler, and compare it
with the ground truth measured by Power Monitor.

Figure 4 shows the comparison result of a test case in which
the screen of the smartphone is turned off and then turned on
again. The result indicates that our energy model represents the
actual power consumption numbers closely, while the average
error is within 10%.

B. Overhead

To evaluate the overhead of E-Spector during app execution,
we compare the power consumption with and without running
the energy profiler and app instrumentation.

Since the testing need to be conducted twice(or more) and
it is difficult to reproduce a complex execution condition, we
just choose the simplest condition, not running any other apps,
to evaluate the overhead.

Figure 5 shows the comparison result, which suggests that
the energy overhead of logging is less than 4%.

V. CASE STUDIES

We present three different case studies to illustrate the
capability and effectiveness of E-Spector in energy analysis
and bug detection.



Fig. 6. Test case for a background app (Zhiqu Weather).

Fig. 7. Test case for an energy bug (Anki-Android).

A. Foreground Apps

Figure 3 shows a test case of Kugou Music, a popular music
app, running in the foreground. It shows that the power curve
rises up at about 232th seconds on the x-axis.

When we click the sampling point at the beginning of the
rise, it shows that the cause is a user click event at the UI com-
ponent of “android.widget.RelativeLayout@419b69d0”. After
this click event, the app would create a new Fragment, which
explains the reason of the energy surge.

B. Background Activities

Figure 6 shows part of the screenshot of a testing case using
a weather app (Zhiqu Weather), which runs in the background.
It shows that the power curve rises up for about every 90
seconds. Clicking the sampling point at the beginning of
one rise, we see that the app starts a “WidgetUpdateService”
and calls a series of APIs about database accesses and I/O
operations.

Thus, we can conclude that the app accesses the database
periodically and consumes a certain amount of energy in the
background during each access.

C. Energy Bugs

We then show an example using Anki-Android, an open
source app on GitHub[12]. In a previous version of the app,
some users complained about the energy problem. Then the
developers debugged the app and found a lot of unnecessary
“UpdateService” invocations.

We run the Anki-Android app version with energy bugs
using E-Spector. It can successfully detect the exact problem,
as shown in Figure 7.

D. Summary
These case studies suggest that E-Spector can help app

developers perform energy testing and debugging on their
apps.

• E-Spector can estimate the power consumption of an app
during execution. Beside total power consumption, E-
Spector can also estimate the detailed power breakdown
of each app on each hardware component.

• E-Spector can help developers to find out the reasons
behind energy hotspots. E-Spector shows the API calls
of the AUT at each hotspot. Through these API calls,
developers can analyze the energy cause (user inputs, sys-
tem events, etc.) and foreground/background behaviors of
the AUT (accessing network, updating UI, IO operations,
etc.).

• E-Spector can detect energy bugs and locate them in
either bytecode or the source code of the AUT. The results
can help developers to locate and fix the corresponding
energy bugs and optimize the power consumption of the
AUT.

VI. DISCUSSIONS AND FUTURE WORK

In this section, we discuss the limitations of our work and
present possible future research directions.

A. Accuracy of the Energy Model
In our energy model, we only considered the top three

hardware energy consumers: CPU, screen and network (both
WiFi and cellular network). In most instances, the CPU, screen
and network combined consume almost all of the energy of
the whole device. According to the evaluation results, the
error rate of our model is less than 10%, which is acceptable
considering that we only need a rough estimation to find out
the energy spikes.

However, in some special scenarios, some other components
also consume significant amount of energy. For example, when
running map and navigation apps, the device may consume
most energy in the GPS sensor. When running a pedometer,
the device may consume more energy in a series of sensors
including accelerometer or gyroscope.

In order to further improve the accuracy, we want to refine
the energy model by adding more components, such as GPS,
GPU, microphone in the future.

B. Detailed API Information
E-Spector can show the resource-related API list around

a sampling point. In consideration of the high overhead of
dynamic logging, we chose to generate the API lists via static
analysis. Compare to API logging, the static estimation results
is not as accurate. It can only tell which APIs the app calls,
but include no information of the frequency of API calls or
the parameters passed to the APIs.

Although the API lists are enough to tell the behaviors of
AUT, we hope to give more accurate and detailed information
about the resource-related APIs. One possible way is to
estimate the number of API calls via analyzing the branches,
loops and call graph of the AUT.



C. Remote Testing Suport

Currently, E-Spector is implemented as a local service, with
the testing device (smartphone) connected to the testing server
(PC) with USB. However, we deliberately implemented the
user interface in a web-based manner such that it can be easily
extended to support remote testing.

In a remote testing scenario, we can implement E-Spector
as a web service. Developers can upload the AUT for static
analysis and download our energy modeling tool for building
energy model, collecting data, etc. While testing with these
tools, the testing data can be transmitted to the server and the
results would be displayed in a web page.

Furthermore, we could also test the AUT on devices con-
nected to the server (cloud testing), by providing a web-based
UI for developers to interact with the AUT. This can release
the burden of the developers to test their apps on different
real devices as these devices can be provided by the testing
service.

VII. RELATED WORK

Many recent work are focused on energy consumption of
mobile devices and mobile apps. Researchers have developed
energy models for hardware components including network
[3], screen [4], as well as mobile device energy models such
as CABLI [17] and Devscope [7].

Based on the hardware power models, several research
work are focused on the energy analysis of mobile apps. For
example, Appscope [15] analyzes energy of apps based on
DevScope via their hardware utility. Eprof [11] estimates the
energy consumption of apps via system call traces. eLens
[5] tests apps in a simulator and estimates their energy
consumption via instruction models.

Some research work extend these energy models to analyze
the energy features of mobile apps. For example, Maiti et
al.[9] analyzed the efficiency of energy usage of mobile apps.
Linares-Vasquez et al.[8] analyzed the relation between API
behavior and energy consumption.

There are also many energy analysis tools available. Power-
Booter [16] is a power monitor for android devices based on
resource usage model. It only provides the power of the whole
device. GreenMiner [6] is a power testing tool for Android
apps. It measures the power of the whole device and breaks
it down to each app. AppScopeViewer is an energy testing
tool for mobile apps based on AppScope [15]. JouleUnit
[13] is an energy testing tool for java applications based on
JUnit. It can provide unit testing at method-level. Carat [10]
is a crowdsourcing energy diagnosis tool for mobile apps.
It collects energy information of mobile apps from a large
number of users and compare the energy consumption of the
same app among different users to find energy bugs.

These energy analysis tools could estimate the energy
consumption of mobile apps, but they typically cannot help
users/developers understand why their apps are consuming

energy instantly in a visualized interface, which is the focus
of E-Spector.

VIII. CONCLUDING REMARKS

In this paper, we have presented E-Spector, an online energy
inspection method, which can not only display how much
energy an app consumes instantly, but also reveal the reason of
the energy consumption at each time point. We have evaluated
E-Spector through experiments to demonstrate its accuracy and
applicability. We also performed case studies to show that E-
Spector is effective in energy monitoring, analysis and bug
location.
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