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Abstract

It becomes very important to understand power character-
istics of mobile applications because more and more complex
applications are running on modern smartphones. Although
many techniques have been proposed to estimate the power
dissipation rate for mobile applications, it typically requires
hardware support (i.e., power meters) or complex power mod-
els (software profiling or hardware parameters). These tech-
niques might work well in labs with a small set of applications.
However, it becomes impractical when we try to estimate the
power of mobile applications in an uncontrolled environment.

This paper proposes a novel method for estimating the power
consumption of mobile applications with profile-based battery
traces. Battery traces can be easily collected through a user-
level application on any devices. Although it is difficult to
achieve accurate results for only a few users because battery
changes are coarse-grained, the method is expected to reach an
accurate estimation when the number of battery traces reaches
a certain scale. Our experiments based on battery traces
from more than 80,000 users demonstrate that it is possible
to estimate application power with only coarse-grained battery
traces. The results are also validated with measured power
numbers from a Monsoon power monitor.

1. Introduction

As mobile devices such as smartphoens and tablets have more
powerful functions and stronger calculation capacity, they can
support a lot of complex applications. These applications
might reduce the battery life to as short as several hours for
many users. Thus it becomes important to understand how
batteries are consumed by mobile applications.

In order to understand the power consumption pattern of
mobile applications, we need to either measure or estimate
the power dissipation rate of different mobile applications
on mobile devices. Although measuring power with meters
could achieve the most accurate results, it only applies in a
lab environment and cannot be widely applied on a variety
of mobile devices in the wild. Another issue with measured
power numbers is that they are for the whole device and cannot
be easily attributed to specific applications without software
support.

On the other hand, many researchers have built different
power models on mobile devices. Once we setup a power
model, it becomes possible to estimate application power
online or with profiled statistics. Existing power models can
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be classified into two main categories: hardware-based model
and software-based model.

Hardware-based models are typically built according to the
power dissipation rate of each energy-consuming components
on a mobile device [8, 9, 16, 18]. The first step is build a power
model for every power consuming component on the mobile
devices [1, 2, 4, 14], such as CPU, OLED or LCD screen,
network, cellular and sensors. Then, based on the working
state timing information collected from online monitoring or
offline profiling, we could calculate the power numbers of
each component and estimate the power consumption of an
application by summing up the power consumption of all
relevant components. [11, 12, 17] A major weakness of this
method is that it must consider a lot of hardware components
in order to build a more accurate (usually more complex)
model. However, the power consumption of applications can
be greatly different in different running environment or with
different system configuration.

Another way is to build a software-based power model [10,
15], which could be based on program analysis, profiling,
or other software techniques. For example, we can build
a power model for each software component, which could
be a subroutine or an execution path. Based on the model
and software execution traces, we could calculate the total
power/energy consumption for each application. It is also
possible to estimate software energy at compile-time with
static analysis [7], however, these work has been in the early
stages and have not been applied widely.

The above techniques might work well in labs with a
small set of applications. However, it becomes impractical
when we try to estimate the power of mobile applications in
an uncontrolled environment. For example, software-based
estimation sometimes requires extensive instrumentation and
profiling of every application [10], or requires modification
to the device operating system [15], which cannot be applied
widely in a large-scale study.

In order to alleviate these challenges, our main objective is
to perform power estimation based on easy-to-collect tracing
data, such that the method could be applied to most smart-
phones straightforwardly. One potential candidate of power
data is battery traces, which can be collected with a user-
level service. An application could be easily written to collect
battery traces and application context (switching) information
on any devices.

However, directly using battery traces to calculate appli-
cation power is very difficult because the battery traces are
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usually coarse-grained. For example, most Android smart-
phones could only record their battery levels at one-percentage
granularity. (Some Android phone models even uses minimum
battery levels at 10 percent granularity, these phone models
will be excluded from our research.) Because many application
usage periods are so short that they will consume less than
1% of battery, they might not be able to record any battery
changes even they actually used the battery. In this case, if
we calculate average power with these coarse-grained battery
traces, we might end up with skewed power numbers.

This paper proposes a new method to estimate power
consumption of mobile applications by profile-based battery
traces. Our method use a statistical method to estimate power
consumption with large-scale battery traces to reduce the
error of direct calculation. With the application switching
information and battery level drops in all battery traces, we are
able to calculate a combined average power consumption rate
for each mobile application based on traces collected from
thousands of users. Although it is difficult to achieve accurate
results for only a few users because battery changes are
coarse-grained, the method is expected to reach an accurate
estimation when the number of battery traces reaches a certain
scale.

We developed an Android application to perform data col-
lection. Battery traces have been collected from over 80,000
valid users. We evaluated our estimation method to calculate
power consumption rate for several popular applications with
different user quantities. The results show that when the scale
of users is small, the variance of our method is significant. But
once the number of users reaches beyond 10,000, the estimated
power numbers start to converge to a relatively stable number.
The results are also validated with measured power numbers
using a state-of-the-art power monitor on smartphones devices.

The main contribution of this paper is that we introduce a
method to calculate accurate power dissipation rate for mobile
applications based on only coarse-grained battery traces. Our
experiments show that it is feasible to calculate mobile appli-
cation power accurately once the collected battery traces reach
a certain large scale. The method is very easy to implement
compared to previous work and could be applied to millions of
mobile devices easily.

The rest of this paper is organized as follows. Section 2
described the background of our study. Section 3 presents the
energy estimation method based on battery traces. Section 4
presents and analyzes the evaluation results. We describe the
related work in Section 5 and conclude with Section 6.

2. Background

In this section, we introduce the background of our work,
including how to collect battery traces and what is included
in the traces.

2.1 Data Collection

We have developed a simple application for the Android
platform to collect battery and application related user data.

The application consists of the following components:

e A data collection component listens to the events about
batteries, applications and other components of mobile
devices broadcast from the android system.

e A data storage component writes the events information
to the SD-cards and compresses the data.

e A data transmission component sends the compressed
data to server via Internet when the network of mobile
devices is available.

The data collection tool starts a background service on the
mobile devices when the devices are turned on. With this tool,
we have collected data from over 120,000 users for about 4
weeks. After filtering out invalid users and unusable traces, we
use more than 80,000 valid users in our study.

2.2 Battery Traces

The collected data includes a lot of information of events and
mobile devices, such as network events, screen events, device
type, etc. In this paper, we are concerned with only the battery
traces for all applications.

A battery trace consists of two parts of information, the
battery level change events and the application switching
events. Each of these events is attached with a timestamp. All
the battery level change events within a continuous running
period of a foreground application is recorded as a battery
trace of that application. Because a user might start and close
an application many times, there exist many battery traces
corresponding to one specific application.

2.2.1 Battery Level Change Events

On mobile operating systems such as Android, battery level is
normally used to represent the remaining percentage of battery
capacity accurate to 1%. When the battery level changes(goes
up or goes down), the operating system will broadcast an event
indicating the current battery level. We collect these events
and add a timestamp to each of them to record the battery level
history of the mobile device.

In the same device, every 1% battery level represents the
same battery power. But when it comes to devices who have
different battery capacities, 1% battery levels of different mo-
bile devices always represent different battery power values.
Thus, during calculation with different mobile devices, we
must consider their battery capacities. We collected the battery
capacity information based on the standard configuration of
each mobile devices and use this information together with the
battery levels.

2.2.2 Application Switching Events

Besides battery level changes, we also need to know which
application is running at a given moment. When an application
starts to run or an application is switched to the foreground,
the operating system will broadcast an event including the
application name. We collect these events and add a timestamp
to each of them to record the foreground application history on
the mobile device.



We are concerned with the following three types of applica-

tions:

e Normal applications: Most of applications in our data
belongs to this type. We denote the running time of
these applications with the application start events and
application switch events. If there is a relative long period
of screen off in the running period of an application,
we considered the screen off period as in standby mode
instead of the running period of the application.

e Standby: We denote the standby mode as the time periods
while the screen is off. However, the screen may be turned
off automatic when users do not operate the devices for a
while. If users turned on the screen immediately, we do
not regard this screen off time period as standby.

e Phone calls: In our study, phone calls are regarded as a
special kind of application. We denote the time periods of
phone calls by the phone call events. Since smartphones
will typically turn off the screen during calling to save
battery, we also do not regard this screen off time period
as standby.

3. Application Power Estimation

In this section, we present our method to calculate the power
consumption rate for each mobile application, with the collect-
ed battery traces described above.

3.1

Our basic method is trying to calculate the average power
consumption rate for each application based on the collected
battery traces. However, we face many challenges:

e The accuracy of battery level is typically 1% of the
battery capacity. Thus we could not detect the battery
level changes that are less than 1%. For some shorter
battery traces, we usually get zero battery level drop. This
indicates that if we calculate the power for this specific
trace, the power is always 0.

e Battery charging events might occur during the applica-
tion running period. We must eliminate the impact of
charging when calculating the power consumption.

e Background applications and operating systems also con-
sume battery. However, we could not separate these
battery consumption from the foreground applications.
For simplicity, we assume that at each moment only the
foreground application is consuming the battery.

e The timestamps of battery level change events and appli-
cation events are often different of each other. Thus, we
could not get the exact battery level when an application
event occurs.

Challenges

3.2 Battery Trace Distribution

Figure 1 shows the distribution of battery traces based on the
energy level drops (in percentages of battery capacity). We
could see that about 90% of the battery traces have consumed
no energy because their usage period is too short. If we
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Figure 1: The distribution of battery traces.

calculate average power with these battery traces, the result
would be 0. This shows that it is impossible to achieve
an accurate power number with only a few battery traces.
However, if we calculate the average combined power for a
large scale of energy traces, we expect that we might get an
accurate number if the scale of the traces is large enough.

3.3 Power Estimation Method

Our estimation method is to calculate the power consumption
of applications based on statistics with large-scale battery
traces to reduce the error during calculation. Firstly, we
calculate the running time and battery level drops of every
battery trace, then simply combine them together to calculate
the TotalUsingTime and TotalBatteryLevelDrops.

We denote the power consumption by the discharge rate.
The average discharge rate of each application can be calcu-
lated as follows:

AvgDischargeRate = Tmarlft“a’ ;Egﬁgﬁfem” s

Besides the coarse-grained battery level issue, we deal with
the other challenges described above in Section 3.1 as follows:

e To deal with the charging influence, we detect the charg-
ing events by the battery level change events. We consider
that the mobile device is charging if the battery level
goes up. When calculating the power consumption, we
discard the battery traces with charging events, consider
the running periods without charging.

e To deal with the background battery consumption, we
regard all the battery level drops as consumed by the
foreground application. It is acceptable because fore-
ground applications usually use the CPU, screen and other
components much more than the background applications
and system services, therefore consuming more energy.
We consider the background battery consumption as the
general running environment of the foreground applica-
tion in our large-scale study.

e Because of the timestamp problem, when we calculate
the battery level drops, if we use the battery level of the
nearest battery level change events to represent the battery
level of the application switch events, there may be some
errors for each battery trace. However, since the battery
levels always change by 1%, the error of one battery trace
is less than 1%. We suppose that the error could be




reduced to a tolerable level by the statistic method with
large-scale analysis.

4. Evaluation

In this section, we present our evaluation method and the
results.

Although directly using each of the battery traces to calcu-
late the power consumption would be inaccurate, we expect
that the large-scale analysis could reduce the error into a
tolerable level. Thus we perform a series of evaluation of
different scale to evaluate our estimation method.

4.1 Experimental Setups

Since the duration of battery traces vary from several seconds
to several hours, it is inappropriate to represent the scale of
battery traces by the number of battery traces. In our evaluation
work, we denote the scale of battery traces by the number of
users.

In our evaluation, we select several different scales of users
to calculate the power consumption, from 10 users to all the
80,000 users. We randomly select 5 groups of users at every
scales, from 10 users to about 10,000 users. Then we calculate
the average and standard deviation of the results of every
scales.

4.2 Estimation with Different User Scales

Figure 2 shows the results of calculated power consumption of
phonecall with different scales of battery traces. It is obvious
that the variance becomes smaller when the scale of battery
traces increases. Then we analyzed the average, variance and
the standard deviation (shown in Figure 3(a) and Figure 3(d)).
At the scale of 10 users, the calculated power consumption
vary from 0 mA to 474.55 mA, while converge to a variance
of 278.89 mA to 309.13 mA at the scale of 10,000 users. At
the scale of 10,000 users, the average power consumption is
296.95 mA while the standard deviation is 12.90 mA (about
4.3% of the average power consumption).

This is because about 90% of the battery traces have con-
sumed no energy. If we calculated the power consumption with
10 random users, the probability is very high that all battery
traces of these users are zero-energy-consuming. Thus, the
calculated power consumption could very likely be zero. When
the user scale reaches a certain level, the battery traces are more
likely to cover all the possible energy consumption level. Thus,
we could calculate a relative stable power consumption value
on average.

We also do similar experiments for other applications, Fig-
ure 3(b), Figure 3(e), Figure 3(c) and Figure 3(f) show the
results of AngryBirds and SinaWeibo. The convergence of
power consumption is also obvious.

The results show that the power dissipation rate converges
after the number of users reaches 10,000, thus we are able to
achieve an accurate estimation with the combined average.
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Figure 2: Calculated power of phone call at different user
scales.

4.3 Comparison with Measured Power Con-
sumption

We also measured the power consumption of applications with
the Monsoon PowerMonitor, a hardware instrument to measure
the current and voltage of mobile devices. The smartphone
we measured is a Tianyu W806 device with dual-core Nvidia
Tegra2 processor at 1GHz and 4.3 inch screen. The phone
model is representative of the mainstream smartphones in the
market during our data collection period.

Figure 4 shows the comparison of the calculated power con-
sumption and measured power consumption. The calculated
average discharge rates are 178.48 mA, 296.95 mA and 307.03
mA (as shown in Figure 3), while the measured current are
218.30 mA 262.46 mA and 322.79 mA (shown in Figure 4) for
SinaWeibo, phone call and Angrybirds.

Surprisingly, the difference between the measured data
and the calculated power numbers are very small, with all
differences less than 18%. Although our data collection and
energy calculation method might not be accurate enough to
calculate energy numbers for individual users with limited
data, this results shows that this method is good enough to
estimate the energy consumption rate of applications over a
large-scale data.

5. Related Work

Many research work have been focused on estimating power
consumption rate of mobile devices and mobile applications,
including hardware-based models for mobile device compo-
nents, and software-based models based on program analysis.

In recent years, many hardware-based approaches have been
proposed to estimated the power consumption rate of mobile
devices and applications. Several research work have focused
on developing power models for a certain component on
mobile devices. For example, Dong et. al [4] modeled the
power consumption of OLED screen at color-level, image-
level, code-level, etc. Panigrahi et. al [14] proposed a
stochastic model for mobile batteries to estimate the battery
life. Balasubramanian et. al [2] developed a model for
the energy consumed by network activity for each network
technology and presented a method to reduce the tail energy
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Figure 3: Estimation results at different user scales for phone call(a)(d), Angrybirds(b)(e) and Sinaweibo(c)(f). (a)(b)(c)
is the average power consumption and the variance at different user scales. (d)(e)(f) is the standard deviation at different

user scales.

according to the RRC protocol.

Other researchers have tried to combine the power models of
these components to estimate the power of mobile devices [9,
16, 18]. For example, DevScope [8] developed an autonomous
power modeling tool for smartphones. Application-level pow-
er models are usually based on the hardware component power
models by detecting the working state of hardware components
when applications are running and using a lot techniques to
improve the accuracy of the models [11, 12, 17, 19]. These
hardware-based approaches typically requires the modeling of
hardware components based on either measuring or profiling.

Besides hardware-based approaches, some software-based
methods have also been proposed to analyze mobile appli-
cation power consumption. For example, Li et. al [10]
proposed a system routine-based system power model with the
estimation error less than 6%. Eprof et. al [15] could be
used to perform detailed energy profiling using a system-call-
based power model. These software based techniques normally
requires instrumentation or other modifications on the mobile
applications or mobile operating systems.

Related to our research, many large-scale user studies for
battery usage and energy consumption of mobile devices have
been proposed. For example, Falaki et. al [5] studied 255
smartphone users, characterized user activities and application-
s, and the impact of those activities on network and energy
usage. Banerjee et. al [3] designed a user- and statistics-driven
energy management system, and conducted a user study, which
shows that their system could harvest excess battery energy
for a better user experience without a noticeable change in
battery lifetime. Ferreira et. al [6] presented a 4-week study
of more than 4000 people to assess their smartphone charging
habits to identify power intensive operations and to provide
interventions to support better charging behavior. Oliver et. al

[13] conducted one of the largest-scale study to measure the
energy consumption of 20,100 BlackBerry smartphone users,
and predicted energy level within 72% accuracy in advance.
However, most of these studies have focused on the study of
either battery usage patterns or user charging habits, instead
of analyzing energy consumption patterns for specific mobile
applications as in this paper.

6. Concluding Remarks

Estimating mobile application power is important to under-
stand the energy consumption pattern for mobile applications.
This paper proposes a simplistic power estimation method
based on battery traces that are easy to acquire from any smart-
phones. Although the battery level changing information in
these traces is coarse-grained, we are able to perform accurate
power estimation while calculating a combined average power
when a large scale of battery traces are available.

The proposed estimation method is practical and accurate
based on our evaluation for several popular applications on
battery traces collected from more than 80,000 users. The
evaluation also demonstrate that this method is simpler than
existing approaches and could be easily applied to millions of
devices.

Our future work includes performing more detailed analysis
on the traces and developing energy optimization techniques
based on the calculated power numbers.
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