
Characterizing Android App Signing Issues

Haoyu Wang1, Hongxuan Liu2, Xusheng Xiao3, Guozhu Meng4,5, and Yao Guo2
1 Beijing University of Posts and Telecommunications, Beijing, China

2 Key Lab of High-Confidence Software Technologies (MOE), Dept of Computer Science, Peking University, China
3 Case Western Reserve University 4 SKLOIS, Institute of Information Engineering, Chinese Academy of Sciences, China

5 School of Cyber Security, University of Chinese Academy of Sciences, China

Abstract—In the app releasing process, Android requires all
apps to be digitally signed with a certificate before distribution.
Android uses this certificate to identify the author and ensure
the integrity of an app. However, a number of signature issues
have been reported recently, threatening the security and privacy
of Android apps. In this paper, we present the first large-scale
systematic measurement study on issues related to Android app
signatures. We first create a taxonomy covering four types of app
signing issues (21 anti-patterns in total), including vulnerabilities,
potential attacks, release bugs and compatibility issues. Then we
developed an automated tool to characterize signature-related
issues in over 5 million app items (3 million distinct apks) crawled
from Google Play and 24 alternative Android app markets. Our
empirical findings suggest that although Google has introduced
apk-level signing schemes (V2 and V3) to overcome some of the
known security issues, more than 93% of the apps still use only
the JAR signing scheme (V1), which poses great security threats.
Besides, we also revealed that 7% to 45% of the apps in the 25
studied markets have been found containing at least one signing
issue, while a large number of apps have been exposed to security
vulnerabilities, attacks and compatibility issues. Among them a
considerable number of apps we identified are popular apps with
millions of downloads. Finally, our evolution analysis suggested
that most of the issues were not mitigated after a considerable
amount of time across markets. The results shed light on the
emergency for detecting and repairing the app signing issues.

Index Terms—Signature, Vulnerability, Mobile App, Certificate

I. INTRODUCTION

Mobile apps are distributed through app markets such as

Google Play, where users can search and download desired

apps. In the app releasing process, Android requires all apps

cryptographically signed by developers, which is known as

package signatures [1]. App signing is the primary security

mechanism that protects the integrity of an app after it is

released by the developer, for example ensuring that only the

original developer can issue an update to an already installed

app. The Android system uses this certificate to identify the

author of an app. The certificate does not need to be signed

by a certificating authority.

However, in recent years, a number of vulnerabilities related

to app signing have been disclosed from time to time, posing

great security risks to a significant number of Android apps

and mobile devices. For example, the Janus vulnerability

(CVE-2017-13156) [2] allows attackers to modify APKs with-

out breaking their original signatures, which could affect

almost all the apps signed with Android’s original JAR-

based signing scheme (V1 Signing Scheme) in mobile devices

running Android systems between v5.0 and v8.0 [3]. The

Master Key vulnerability (CVE-2013-4787) [4] was disclosed

in 2013. It was reported that 99% of Android devices (by the

date of July 2013) were affected by this vulnerability, which

could also allow attackers to modify any legitimate signed

apps without breaking their original signatures. Similarly, two

other Android Master Key vulnerabilities [5], [6] were also

discovered in Android 4.3, as malware were found using these

vulnerabilities to inject malicious payload to legitimate apps.

In addition, some attackers are selling legitimate Android

code-signing certificates to evade malware detection [7]. As

many anti-virus engines use white-lists to filter apps created

by legitimated developers, it is easy for malware to sneak into

a mobile device if the malware is signed with the purchased

certificates. Moreover, many amateur app developers (even the

ones who created popular apps) use the private keys well-

known in the community (e.g., publicly-known private keys

included within the Android Open Source Project) to sign their

apps, which makes it easy for attackers to replace the vulner-

able apps with malicious ones without users’ knowledge.

To address these issues, the signing schemes in Android

have been evolving as well. On one hand, a number of bugs

and vulnerabilities related to app signing are disclosed and

then fixed during the evolution. On the other hand, due to

numerous vulnerabilities found in the original V1 Signing

Scheme [8], which has been adopted since the first version of

Android, Android has introduced new signing schemes in its

later versions. For example, Android Nougat (v7.0) introduced

the APK Signing Scheme (i.e., V2 Signing Scheme) [9]

to provide APK-level signing. An improved version of the

APK Signing Scheme (i.e., V3 Signing Scheme) [10] was

introduced in Android Pie (v9.0).

However, the app signing issues have not been systemat-

ically studied, especially when considering that there are a

variety of severe signing issues, as well as millions of apps and

developers in the ecosystem. Although Google has introduced

new signing schemes to enhance security, it is still unclear how

many apps have been suffering from known signing issues

in the wild. Besides, as a large portion of Android devices

are running legacy Android system versions [11], little is

known on how many attackers have exploited the existing

vulnerabilities to perform possible attacks in the wild.

Contributions. In this paper, we perform the first large-
scale and systematic study of Android app signing issues. We

first compile a taxonomy of 21 anti-patterns of app signing

280

2019 34th IEEE/ACM International Conference on Automated Software Engineering (ASE)

978-1-7281-2508-4/19/$31.00 ©2019 IEEE
DOI 10.1109/ASE.2019.00035

(cf. Section III), including 2 app-level vulnerabilities, 6 types

of possible attacks (5 of them are performed by exploiting

system-level vulnerabilities), one compatibility issue, and 12

types of releasing bugs. Based on these anti-patterns, we

developed a tool to automatically detect each type of the issues

(cf. Section IV). To measure the presence of signature-related

issues, we crawled 5.03 million app items from 25 app markets

including Google Play (over 2.95 million distinct APKs in total

due to the overlapping among markets) and applied our tool

to these apps to detect app signing issues (cf. Section V).

We studied the results to analyze the distribution of apps with

signing issues from various aspects including app markets, app

categories, app popularity and release/update time. At last, we

studied the evolution of app signing issues (cf. Section VI),

and performed a post analysis seven months later to measure

how many apps with signing issues have been removed or

mitigated. Among many interesting results and observations,

the following are the most prominent:

• 93.7% of the apps (roughly 2.7 million) studied in
this paper could be exploited on devices with Android
versions prior to 7.0, as they only adopted the V1

signing scheme, even though the V2 scheme had been

introduced for over 1.5 years by the date of our study.

• App signing issues are prevalent in both Google
Play and alternative markets. Roughly 7% to 45%

of the apps in the 25 studied markets have been found

containing at least one issues, which allow attackers to

inject malicious payloads via bypassing verification and

replacing unprotected files with malicious payloads in the

signed APKs. Such issues can even be found in many

popular apps with millions of downloads.

• A significant number of apps (over 65K) are found
to be signed with publicly-known keys, which allow
attackers to arbitrarily modify the apps without
breaking its original signatures, indicating that most of

the developers paid little attention to app signing issues,

or simply were unaware of the potential risks. These apps
have aggregated over 5.7 billion installs in total. Even

some popular apps use publicly-known private keys, e.g.,

com.shuqi.controller, with over 100 million downloads,

was found using the “testkey” to sign itself.

• 94 apps (435K installs in total) were found exploiting
the Master Key vulnerability to perform attacks, and

most of them were confirmed as malware by VirusTotal.

Over 1K apps were found being compromised, with
over 7.1 billion app downloads in total. Attackers try

to remove ad libraries or resource files to create ad-free

apps or compromise the functionalities of the apps.

• Over 90K apps were found containing release bugs
or compatibility issues that may lead to installation
failures on certain Android versions, including some apps

with billions of downloads (e.g., com.kugou.android).

• Most of the apps with signing issues have been
released years ago (e.g., more than 50% of the apps

that exploit vulnerabilities were released before 2016),

Fig. 1. The protection chain of the V1 signing scheme.

which suggested that they may have impacted millions

of users for years. Besides, our post analysis suggested

that most markets had not removed/updated the apps
with signing issues after 7 months since our initial
study. Such findings indicate that many app markets paid

little attention to (or were unaware of) the security issues

caused by app signing, which could make these markets

an easy target to disseminate malware.

To the best of our knowledge, this is the first systematic

study of app signing issues at scale, longitudinally and across

various dimensions. Our results motivate the need for more

research efforts to disclose the widely unexplored app signing

issues and further improve the app ecosystem.

II. BACKGROUND

A. App Signing Keys

Android enforces a self-signed mechanism – an app should

be signed with its developer’s certificate before it is installed,

so as to prevent the apps from being tampered. The developer

holds the private key (with the extension .pk8) of the certifi-

cate, and uses it to sign the APK. The private key must be

kept secret and protected by a password. The public key is

used to verify its signature, which is visible to everyone.

B. App Signing Schemes in Android

There are three signing schemes used in Android [1].

• JAR signing scheme (V1) : The V1 scheme, introduced

since Android 1.0, is based on JAR signing [8]. It has

been introduced since the first version of Android.

• APK signing scheme (V2): The V2 scheme (APK-level

signing) [9] was introduced in Android 7.0. The contents

of an APK file are hashed and signed, and then the

resulting signing block is inserted into the APK.

• APK signing scheme (V3): This is an improved ver-

sion [10] of V2, introduced in Android 9.0. It contains

additional information in the signing block.

For compatibility and security concerns, it is recommended

by Google to sign apps with all the three schemes, first

with V1, then V2, and finally V3. Devices running out-of-

date Android systems typically ignore the V2 and the V3

signatures, thus V1 signatures should always be included.

1) JAR Signing Scheme (V1): A JAR-signed APK must

contain the exact files listed in META-INF/MANIFEST.MF

and all the files must be signed by the same set of

certificates. All signature-related files are stored in

the META-INFO/ directory, including MANIFEST.MF,

CERT.SF, and CERT.(RSA|DSA|EC) (Note that the *.SF

281

and *.(RSA|DSA|EC) can be any signer-customized strings).

These files form the protection chain, as shown in Figure 1.

MANIFEST.MF contains the hash results of all source files

in the APK file to prevent them from being tampered.

CERT.SF contains a file-level hash value of the MANI-

FEST.MF and hash values of each section of MANIFEST.MF.

In the Android system, the framework first verifies the file-

level hash value of the MANIFEST.MF. If that fails, the hash

value of each MANIFEST.MF section is verified instead.

CERT.(RSA|DSA|EC) Android supports three signature al-

gorithms: RSA, DSA, and ECDSA (introduced in Android

4.3). CERT.(RSA|DSA|EC) is used to verify the signature

of “CERT.SF”. It includes the certificate meta info (subject,

issuer, series number, etc.), the signature of “CERT.SF” signed

by developers’ private keys, and the public key.

2) APK Signing (V2 & V3 Schemes): V1 signatures does

not protect some parts of the APK, such as ZIP metadata and

the files located in the META-INF directory. Only uncom-

pressed file contents are verified in V1 (not the whole APK),

which allows modifications to be made to the APK file after

signing (e.g., Janus and Master Key vulnerabilities).

To overcome the limitation of V1, the V2 and V3 schemes

consider all the binary contents of the whole APK file. V2

and V3 signing insert a Signing Block into the APK file

immediately before the ZIP Central Directory section, which

is located at the end of the file. Any modifications to the

APK, including ZIP metadata modifications, will invalidate the

APK signature. The new formats are backwards compatible, so

APKs signed with the new signature schemes can be installed

on legacy Android devices (which simply ignore the extra data

added to the APK), as long as these APKs are also V1-signed.

III. A TAXONOMY OF APP SIGNING ISSUES

To the best of our knowledge, no previous work has

compiled a taxonomy of app signing issues because the

relevant issues have not been studied systematically. In or-

der to provide an extensive taxonomy covering most of the

signing issues, we have investigated app signing issues in

the following means. First, we resort to Common Vulnera-

bilities and Exposures (CVE) and Android Vulnerability [12]

for searching related vulnerabilities using keywords such as

“Android” and “signature”. We have identified 5 vulnerabilities

(CVE-2013-4787, ANDROID-9695860, ANDROID-9950697,

FakeID, CVE-2017-13156) related to the Android app signing

process. All of them are system-level vulnerabilities that

could be exploited by attackers. Second, we manually inspect

the verification process in the Android framework (mainly

for checking the release bugs and the compatibility issues

related to app signing), search signature-related questions

(using keywords including APK, signing, signature, etc.) from

StackOverflow, and summarize the issues found in technical

reports. As a result, we compiled a taxonomy of 21 anti-

patterns of app signing, as shown in Table I. We have classified

them into 4 categories based on the severity levels and impacts:

• Vulnerabilities. Apps have known signing vulnerabili-

ties, or they could be potentially exploited by attackers.

• Exploits. Apps are tampered or exploited by attackers

using known vulnerabilities (both system-level and app-

level). Note that all the CVEs we summarized are system-

level vulnerabilities that could be exploited by attackers.

• Compatibility issues. This type is usually introduced

by using unsupported digest/signature algorithms, which

could lead to installation failures in certain Android ver-

sions (based on its supported minimum SDK versions).

• Release bugs. This type of issues are generally caused

by the developers in the apps’ release process (e.g., use

the packing tools or releasing tools improperly), which

could lead to app installation failures in most cases.

A. App Vulnerabilities
We have found two types of app-level signature vulnerabil-

ities, including (1) signing apps with a publicly-known private

key and (2) unprotected contents in the META-INF folder.

1) Vul-1 - Signing Apps with publicly-known Private
Keys: In general, private keys should be kept secret in order

to prevent unauthorized modifications to the original app.

However, many privacy keys are well known in the Android

development community. The most famous set of keys are the

publicly-known private keys included in the AOSP project.

The standard Android build uses four known keys, all of which

can be found at build/target/product/security.

For example, TestKey is the generic default key for packages

that do not otherwise specify a key. Other publicly-known keys

include Platform (key), Shared (key) and Media (key).
For apps signed with the publicly-known keys, it is easy

for attackers to replace this vulnerable app with another one

(possible with malicious payloads), without user’s knowledge.

2) Vul-2 - Unprotected Contents in the META-INF:
The V1 scheme verifies the integrity of all files in the APK

except those inside the META-INFO directory, which could

introduce security issues. On one hand, malicious payloads

can be hidden in this directory, and dynamically loaded at

runtime (e.g., an app may implement the logic to iterate the

META-INFO directory). On the other hand, for the legitimate

apps that put unprotected contents in the directory, attackers

could easily modify the APK through simply replacing the files

inside META-INFO with malicious payloads. Note that the

security risks caused by this vulnerability usually depend on

the type and the content of the unprotected files. For example,

if developers put unprotected libraries under this directory, it

is easy for attackers to replace them with malicious ones.

B. Security Exploits

1) Attack-1: Exploiting Master Key Vulnerability: MAN-

IFEST.MF contains a digitally signed list of checksums for

the rest of the archive. Before app installation, the files

in the APK are extracted and their digests are compared

with the corresponding checksums in this list. If there is a

mismatch, the verification will fail and the installation will

be rejected. However, if the developer puts two files of the

same name into the APK, the verifying process will verify

the first file, but install and use the second file [4], which is

282

TABLE I
A TAXONOMY OF 21 ANTI-PATTERNS RELATED TO APP SIGNING.

Issue Type Issue V1 V2 System Versions Impact

Vulnerabilities
Signing apps with publicly known private keys Y Y All Version Modify app without breaking its signature
Unprotected Contents in the META-INF Y - Before v7.0 Replace the unprotected files

Exploits

Exploiting Master Key Vulnerability Y - Before V4.3 Modify app without breaking its signature
Compromise the Integrity of APK Y - Before v6.0 Remove files without breaking its signature
Exploiting Janus Vulnerability Y - Before v7.0 Modify app without breaking its signature
Exploiting Unsigned Shorts Vulnerability Y - Before v4.3 Modify app without breaking its signature
Exploiting Unchecked Name Vulnerability Y - Before v4.4 Modify app without breaking its signature
Exploiting the Fake ID Vulnerability Y - Before v4.4 Modify app without breaking its signature

Release Bugs

Mismatch between signature and *.SF Y - All version Installation Failure
Mismatch between *.SF and *.MF Y - All versions Installation Failure
Incomplete *.SF Y - All versions Installation Failure
Incomplete *.MF Y - All versions Installation Failure
Without *.MF Y - All versions Installation Failure
Mismatch between *.MF and JAR Entry Y - All versions Installation Failure
Cannot find any signature Y Y All versions Installation Failure
Signed by different signature groups Y - All versions Installation Failure
Rollback protection issue Y - After v7.0 Installation Failure
V2-related bug - Y After v7.0 Installation Failure
Extra byte at the end of Zip file Y Y All versions Installation Failure
Cannot extract files from Zip Y Y All versions Installation Failure

Compatibility Unsupported digest algorithm Y - Specific Version Installation Failure

the underlying reason leading to the master key vulnerability.

This vulnerability allows attackers to insert malicious payloads

in the package. The attacker can exploit the original apps by

adding an additional malicious classes.dex file and also an

additional Android manifest file. Such exploits were found in

many real attack cases [13]. It was patched by Google in Jelly

Bean, and affects Android systems between 1.6 and 4.2.

2) Attack-2: Compromise the Integrity of APK Files : In

general, all the files should be protected by MANIFEST.MF

to prevent them from being tampered with. If there are some

missing files in MANIFEST.MF, it is possible that (1) the

APK has been modified by the attackers, as the attackers could

remove files from the zip file without breaking the signature

protected by the JAR signing scheme, or (2) it incurs certain

bugs during the APK packing process. Thus, we categorize

this type of issues into the attack category since it indicates

the integrity of the APK has been compromised. Android has

fixed this attack surface by improving StrictJarFile to

better handle the issue of missing files and ensure that all

manifest files are present in the jar since Android v6.0. Thus,

this attack could only target Android OS versions prior to 6.0.

3) Attack-3: Exploiting Janus Vulnerability: APK files

could contain arbitrary bytes (also called padding) at the start,

before its zip entries. The V1 scheme only takes into account

the zip entries, and ignores any extra bytes when computing

or verifying the app’s signature. Thus, a file can be both a

valid APK file and a valid dex file. As a result, attackers can

pretend a malicious dex file as an APK file, without affecting

its signature. The Android runtime then accepts the APK as a

valid update of an earlier legitimate version of the app.

The Janus vulnerability affects V1-signed apps running on

Android OS 5.0 to 8.0 [3]. Apps signed with the V2 and

V3 schemes and running on the devices supporting the latest

signature schemes are protected against this vulnerability.

4) Attack-4: Exploiting Unsigned Shorts Vulnerability:
Discovered in 2013, it is also known as the “second Mas-

terkey” vulnerability [14]. The underlying reason is that the file

offsets in zips are supposed to be unsigned but are interpreted

as signed, causing that the contents to be verified differ from

the content to be executed. Several different techniques [5]

can exploit this vulnerability. It is much more powerful than

the “MasterKey” vulnerability, as “MasterKey” only allows

attackers to replace the file contents present in the original

signed zip, while this vulnerability could allow attackers to

insert arbitrary new files that did not exist in the original zip

previously. It was patched in Android Jelly Bean, and thus

affects Android prior to 4.3.

5) Attack-5: Exploiting Unchecked Name Vulnerability:
The signature verification process in Android prior to v4.4

does not check the lengths of file names correctly [15]. It

assumes that the lengths of the file names are the same in both

the local file header section as well as the central directory

section of the Zip file header. To exploit this vulnerability, the

attackers woould first generate a difference between how the

zip files are verified compared with how they are extracted, so

that it allows files in an existing APK to be replaced with new

ones. For example, one could set the length of the file name

in the local file header section to a size large enough to skip

the length of the real name (which was defined in the central

directory) and the data that will be used, and then insert the

malicious code after the data that will be verified.

6) Attack-6: Exploiting the Fake ID Vulnerability: The

underlying reason of this vulnerability is that the Android

package installer (e.g., createChain() and findCert() methods

of the Android JarUtils class) does not properly validate an

app’s certificate chain [16]. A malicious app can claim to be

issued by another identity and impersonates a privileged app to

gain access to vendor-specific privilege resources. This attack

could affect Android OS versions between 2.1 and 4.4.

283

C. Release Bugs

We have summarized 12 types of signing-related release

bugs, which are classified into three categories.

1) V1-related Bugs: The verification process of the V1

scheme follows a protection chain (cf. Fig. 1). MANIFEST.MF

contains the message digests of all source files in the APK to

prevent their integrity from tampering. There must be at least

one SF file (e.g., CERT.SF) that stores the base64-encoded

codes of the message digest of MANIFEST.MF, and the

message digests of all the digests stored in MANIFEST.MF.

For each SF file, there must be a corresponding signature file

(e.g., CERT.RSA or CERT.DSA or CERT.EC) that stores the

digital signature of the SF file, and its signing certificate.

Thus, any inconsistency in the protection chain will lead

to bugs, which will make the app installation process fail.

In general, these bugs are introduced when developers pack

the apps, which should be avoided, since apps with these

bugs could not be installed successfully. By analyzing the

protection chain, we have identified 9 types of V1-related

release bugs: (1) Verification failure between the signature file
and the SF file, (2) Verification failure between the SF file
and MANIFEST.MF, (3) Incomplete or missing SF files, (4)

Incomplete MANIFEST.MF, (5) Missing MANIFEST.MF, (6)

Verification failure between MANIFEST.MF and JAR entry, (7)

No signature files, (8) The files signed by different signature
groups, and (9) Rollback protection issue.

For rollback protection, Android requires that the V2-

signed APKs that are also V1-signed must contain an

X-Android-APK-Signed attribute in the main section of

their SF files. When verifying the V1 signature, the APK

verifier is required to reject APK files that do not have a

signature for the APK signature scheme (e.g., V2 scheme).

Apps with rollback protection issues cannot be installed on

Android 7.0 and newer versions. Apps with other V1-related

issues cannot be installed on all Android versions.

2) V2-related Bugs: For APK-level protection, a V2-signed

APK consists of four sections, including (1) Contents of ZIP

entries, (2) APK Signing Block, (3) ZIP Central Directory

and (4) ZIP End of Central Directory. These sections form a

protect chain [9]. Any verification failures during the process

would lead to V2-related bugs. Apps with such bugs cannot

be installed on Android 7.0 and up.

3) Zip-related Bugs: We have identified two types of zip-

related bugs. The first is “extra bytes at the end of Zip file”. As

the legacy Android systems enforce loose zip verification, apps

with this type of bug could be installed on Android systems

with versions prior to v5.0. Android introduces “libziparchive”

to verify zip files since v5.0, which is stricter than the original

libdvm library used for extracting zip files. The second type is

“failed to extract certain files from the zip file”, which occurs

during the extraction process of the zip files. Apps with this

bug cannot be installed on any Android devices.

D. Compatibility Issues

The supported digest/signature algorithms are updated when

Android OS evolves. For example, SHA256withRSA is avail-

able for minimum SDK 18 (Android v4.3) and up, while

SHA256withDSA could only be used for minimum SDK 21

(Android v5.0) and up, and SHA256withEC for minimum

SDK 18 and up. As a result, JAR signatures containing

unsupported digest algorithms will lead to compatibility issues.

In this paper, we resort to APKSigner to get the JAR signing

digest algorithm used for signing an APK using the provided

key, and compare with the minSdkVersion (minimum API

Level) of the platform on which the APK may be installed.

IV. STUDY METHODOLOGY

We present the details of our characterization study on app

signatures in this section. We first describe the dataset used

for our study. Then, we present the study design and research

questions we focus in this paper. At last, we present the tool

we developed for conducting the study on the dataset.

A. Dataset

To measure the presence of signature-related issues, we first

make efforts to implement different crawlers to harvest mobile

apps from 25 popular Android app stores, as listed in Table II.

Note that besides Google Play, we also crawled 24 popular

alternative markets in order to understand the distribution of

APK signing issues globally. As Google Play is restricted in

some countries (e.g., China), Android users have to resort to

various alternative app markets.

As shown in Table II, we have crawled 5.03 million app

items (with all the metadata and APKs) during December

2017 and January 2018. Over 200K of them are crawled

from Google Play, while the remaining 4.8 million apps are

crawled from major Chinese app markets. Since developers

could release the same apps (with the same package name

and hashing value) to multiple markets, our dataset contains

2,951,017 distinct APKs (with different hashing value) in total.

We believe our dataset is large enough to study the presence

of app signing issues and perform comparative studies across

Google Play and alternative app markets.

Post Analysis. After 7 months (August 2018), we launched

a second, two-day crawling campaign for analyzing whether

any of the studied apps with signing issues have been removed

or updated from each individual market (cf. Section VI).

B. Study Design

In this paper, we focus on the following research questions:

• RQ1: What is the distribution of V1 and V2 signatures
in the wild1? By the date of our first crawling, the APK

signing scheme (V2) had been released for 1.5 years. As

the V1 signing scheme is known to be less secure, it is

interesting to study how the developers have adopted the

more secure V2 signing scheme.

• RQ2: How many apps are exposed to the security
risks introduced by APK signing issues? Are there any

correlation between app popularity and app categories?

Are there any differences across app markets?

1Note that the V3 signing scheme was introduced with Android Pie (v9.0)
in August 2018, thus our dataset contains no V3-signed apps.

284

Fig. 2. The workflow of our app signing analysis tool.

• RQ3: The evolution of app signing issues. How long

have these vulnerable apps been released to the markets?

Have the apps with signing issues been removed or

updated during the evolution?

C. Methodology

We have developed an automated tool to check the

signature-related issues in Android apps. As shown in Fig-

ure 2, our tool is comprised of the following five main parts.

1) Zip Analysis: The main purpose of Zip analysis is to

check the integrity of a Zip file and extract all the necessary

files. First, we search the End of Central Directory (EOCD)

record from the tail of Zip, in order to verify whether it is

a valid Zip file. Based on the position of EOCD, we could

analyze whether there are extra bytes at the end of Zip file (cf.

Zip-bug-1). Then, we parse each item in the Central Directory,

and locate the corresponding local file header (LFH). We

then check the consistence between the metadata of the files

in CD an LFH to verify whether the Zip file has exploited

the “unchecked name length” vulnerability. (cf. Attack-5) We

further analyze the File Offset of CD and LFH to see whether

they are exploited to perform attacks. (cf. Attack-4) After this

step, we extract files from Zip based on the information listed

in CD and LFH, and then verify them. (cf. Zip-bug-2) To

identify attacks that exploit the Janus vulnerability, we check

the Zip heading to see whether there exist dex file paddings

(cf. Attack-3). To identify the attacks that exploit Master Key

vulnerability, we iterate all the files and verify whether there

are duplicate file names (cf. Attack-1). Note that as the attacks

could only be triggered at specific system versions (cf. Table I),

we also combine the following manifest analysis results (e.g.,

minimum API level) to measure whether such attacks could

be successfully performed.

2) Manifest Analysis: AndroidManifest can be extracted

during Zip analysis. By analyzing AndroidManifest, we could

get the basic information of the app, including its package

name and the minimum supported API level. The information

of the minimum Android API level could offer insights about

whether app developers are trying to target top-end users. Note

that the detection of compatibility issues will use the informa-

tion of the minimum Android API level (cf. Compatibility).

3) Verifying V2 Signatures: We first identify the APK

Signing Block, parse it and extract the APK Signature Scheme

v2 block (ASSB) from it. Then we extract all the Signers from

ASSB. For each Signer, we parse it and get all the signed data,

the list of signatures and the corresponding public key. For

each signature, we analyze its digest algorithm and pick the

signature with the strongest algorithm (out of SHA-512, SHA-

384, SHA-256, SHA-1). Then we use the Public Key and the

selected Signature to verity Signed Data, and further extract

Certificates and Digests from the Signed Data, and verify the

integrity of the APK file (cf. V2-bug).

4) Verifying V1 Signatures: We first identify and parse

META-INF and MANIFEST.MF (cf. Vul-2). We check if

each of the hashing value listed in MANIFEST.MF is con-

sistent with the corresponding file (cf. V1-bug-5, V1-bug-6,
ATTACK-2), and make sure that each item listed in MANI-

FEST.MF exist in the APK (cf. V1-bug-4). For each signature

file (i.e., RSA/DSA/EC), we first identify the corresponding

SF file (cf. V1-bug-1, V1-bug-3). To identify attacks that

exploit the Fake ID vulnerability, we use the method [17]

patched by the Android framework to check the certificate

chain signatures (cf. ATTACK-6). For each SignerInfo in

the signature, we check the corresponding SF file and verify

whether the digest algorithm is supported in the corresponding

API level (cf. COMPATIBILITY). If the SF file is protected

by V2 but we cannot find the V2 signature, we will report it

as a releasing bug (cf. V1-bug-9). We use the SF file to verify

MANIFEST.MF and analyze if MANIFEST.MF is modified

(cf. V1-bug-2). Then we verify whether each file is signed by

the same signature group (cf. V1-bug-8).

5) Signature Analysis: At last, we extract all the signature

files (both V1 and V2), compare them with publicly known

signatures (cf. Vul-1), and further analyze the consistency

between signatures (e.g., apps signed by multiple signatures).

Implementation. The implementation of verifying V2/V1

signatures of the tool is based on APKSigner [18], a widely

used tool to sign APKs and to confirm that an APK’s signature

will be verified successfully. As APKSigner is only able to

identify the bugs that lead to unsuccessful app installation, we

have implemented our own code to identify the vulnerabilities

and attacks as mentioned above.

V. RESULTS AND ANALYSIS

In this section, we first provide some general statistics to

understand the distribution of V1 and V2 signatures in the

wild (RQ1). Then we seek to investigate the detailed signing

issues for the 5 millions apps we collected (RQ2).

A. RQ1: The Distribution of Signing Schemes.

V1 Signing Scheme vs. V2 Signing Scheme We have

analyzed 2,951,017 distinct APKs in total. Although the V2

scheme has been introduced for 1.5 years prior to our crawling

process, it is surprising to see that more than 93.7% of APKs

(2,765,752) still use only the V1 signing scheme, while only

6.3% of APKs (185,150 in total) in our dataset have adopted

the V2 signing scheme. Note that 185,139 apps use both sign-

ing schemes, which means 11 apps use only the V2 signatures.

This result suggests that most of the apps in our dataset are

exposed to the attack surfaces of V1 signatures, e.g., attackers

285

TABLE II
OVERALL RESULTS OF OUR MEASUREMENT STUDY.

Market #Apps Vulnerability Attack Compat. Developing Bug Total Percentage
Vul-1 Vul-2 Attack-1 Attack-2 C1 Zip Bug V1 Bug V2 Bug - -

Google Play 219,944 11 15,510 7 55 418 0 81 0 16,084 7.31%
Tencent 636,665 19,066 27,601 24 159 1,202 38,637 149 43 85,109 13.34%
Baidu 381,419 10,651 83,898 14 165 669 929 659 130 96,985 25.43%
360 162,584 2,713 9,478 9 91 795 272 32 10 13,363 8.22%
Huawei 106,672 157 45,324 0 10 580 9 95 52 46,191 43.3%
Xiaomi 169,502 1,321 53,147 0 142 698 8,904 7,313 1,834 72,980 43.06%
Wandoujia 560,662 6,916 33,641 17 178 1,215 1,073 254 67 43,174 7.70%
HiAPK 238,787 10,409 15,116 21 56 394 74 110 29 26,151 10.95%
AnZhi 225,659 21,590 21,843 6 90 607 247 455 52 44,739 19.8%
91 11,822 369 808 0 5 15 13 3 1 1,212 10.25%
OPPO 483,201 7,064 56,531 31 73 1,370 6,890 177 43 71,622 14.82%
25PP 1,060,464 11,860 55,477 33 289 22,58 1909 364 95 71,999 6.79%
Sougou 201,041 4,326 44,175 6 112 831 6,398 8,181 514 63,908 31.79%
Gfan 11,121 283 1,141 0 3 30 5 6 0 1,466 13.18%
Meizu 80,179 923 15,717 3 15 286 260 100 38 17,269 21.54%
DCN 18,796 769 4,612 0 5 199 11 35 5 5,588 29.73%
LIQUCN 198,034 3,931 23,707 6 112 1,214 357 152 36 29,426 14.86%
APPChina 39,092 809 4,925 1 14 116 77 46 14 5,970 15.27%
10086 4,640 97 369 0 1 10 5 12 0 493 10.63%
Lenovo MM 36,293 886 9,478 0 15 169 25 87 24 10,649 29.34%
ZOL 6,412 64 2,788 0 3 32 2 11 1 2,900 45.23%
NDUO 19,331 262 1,854 0 21 55 23 68 11 2,287 11.83%
CNMO 4,893 289 364 0 9 9 26 12 7 711 14.53%
PCOnline 140,905 5,131 9,372 0 55 340 1,734 80 24 16,524 11.73%
APPCool 12,769 130 965 0 4 38 28 34 17 1,212 9.49%

Total - 65,374 370,138 94 1,110 8,518 62,311 17,836 2,849 - -

could exploit various V1 vulnerabilities to perform attacks on

devices with Android system versions prior to 7.0.

Apps with Multiple Signatures. Another interesting ob-

servation is that some apps have been signed by multiple

certificates. For example, 128 apps in our dataset are signed

by 2 signatures, 2,003 apps are signed by 3 signatures, 15

apps are signed by 4 signatures, and 39 apps are signed by 5

signatures. Note that Google Play does not accept APKs with

multiple signatures, thus all these apps are found in alternative

markets. One possible reason is that they tried to use multiple

signatures to distinguish app versions or app release channels.

B. RQ2: App Signing Issues

1) Overall Results: We present our primary exploration

results on the 21 anti-patterns in Table II. Around 6.79% to

45.25% of apps in each market have been found containing

at least one issue. Even in Google Play, roughly 7.3% of our

crawled apps have various signing issues. For three alternative

markets (Huawei, Xiaomi and ZOL), over 40% of the apps are

exposed to signing risks. This result suggests that the signing
issues are prevalent across markets.

The two vulnerabilities are most popular across markets,

accounting for more than 80% of the apps with signing issues.

To our surprise, over 65K apps were found using public

known keys, which allow attackers to arbitrarily modify the

apps without breaking its signatures. More than 370K apps

contain unprotected contents, which offer opportunities for

attackers to modify and replace them without developers’

knowledge. 94 apps were found exploiting the Master Key

vulnerability to perform attacks, and most of them were

TABLE III
THE TOP 5 APPS USING testkey IN OUR DATASET.

Package Name (MD5) App Installs Market
com.shuqi.controller
(04B8E1ED1F724E210BBBE6EBF75308A5)

100,000,000 Baidu

com.kiloo.subwaysurf
(CFBAE893E9B7B25928C62BDEED8B3CEF)

100,000,000 Baidu

com.aiyou.mhsjuu
(EE345CB5A869D27471ED40FAE4ED5BDF)

77,840,000 Tencent

com.cheercode.phonegame1
(AE976AA9669FBA6D42C8808D8B8F8456)

76,690,000 Tencent

com.mango.sanguo15.ruanyou
(778A75DF40AE339B0796B6597FBE3BA1)

72,720,000 Tencent

confirmed as malicious apps. Over 1,000 apps were found

being compromised. Roughly 90K apps include release bugs or

compatibility issues that may lead to unsuccessful installation.

C. Detailed Results

1) Vulnerabilities: Over 65K apps were found using the

known keys to sign apps. Although the four keys provided

by AOSP (“media”, “platform”, “shared” and “testkey”) were

released 10 years ago, all of them were found still being used

in our dataset. There are 24 apps using the “media” key, 746

apps using the “platform” key, 23,619 apps using the “shared”

key and 40,985 apps using the ”testkey”. These apps have
aggregated 5.8 billion app installs in total. To our surprise,

even some popular apps (with millions of downloads) use
these publicly known keys, which expose them to great
security risks, e.g., attackers could arbitrarily modify the
app without developers’ knowledge. Table III lists the top

286

5 apps ordered by app installs that use testkey. For example,

app “com.shuqi.controller” is a famous novel reading app, and

“com.kiloo.subwaysurf” is a popular game app. But they were

found using “testkey” to sign themselves.

More than 553K apps in our dataset include some kind of

unprotected contents in the META-INF directory. Note that it

does not mean that all of them could be seriously attacked by

hackers, as some of the unprotected contents are resource files

that cannot incur serious security risks. However, it is still not

recommended by Android to list unprotected files in META-

INF, as attackers could easily tamper with the app and
modify it to replace the unprotected files without breaking
the V1 signature. The severity of risks introduced by this

vulnerability depends on the content of the unprotected files.

2) Exploits: Although we have categorized 6 kinds of

exploits and developed a tool to detect them, only two kinds

of exploits have been found in our dataset. 94 apps (435K

app installs in total) exploit the Master Key vulnerability to

perform possible attacks. We further upload these apps to

VirusTotal, an online malware detection service that embed

more than 60 anti-virus engines. The result suggests that 85 of
them are labelled as “Virus:Android.Masterkey” or “CVE-
2013-4787”. Table IV lists top 3 such apps ordered by the

number of flagged engines on VirusTotal.

The integrity of 1,110 apps were found being com-

promised, i.e., missing files listed in the MANIFEST.MF.

These apps have aggregated over 7.1 billion down-
loads in total. We further investigate this issue, and

found 156 of them with removed code, and the remaining

ones with removed resource files. For example, the Baidu

ad library “biduad_plugin/__pasys_remote_banner.jar” in app

“com.aew.vbsz” has been removed. One possible reason is
that attackers try to remove ad libraries to create an ad-
free app or compromise the functionalities of the apps.
These attacks could be successfully performed on systems
prior to 6.0 (cf. Section 2.3). Roughly 40% of them have

been flagged by at least one VirusTotal engine, and over 13%

of them have been flagged by at least 10 anti-virus engines.

To identify attacks that exploit the Janus vulnerability, our

tool automatically checks whether any of the apps add extra

bytes to the start of Zip file. Although 4 such apps are found

with this behavior, none of them attach the dex file. Thus, we

did not find any cases that exploit the Janus Vulnerability.

Besides, we found 6 apps with long extra field lengths and

41 apps with inconsistent file name lengths between CD and

LFH. However, all of them are breaking the resource files,

while none of them break the classes.dex files. Furthermore,

we did not identify apps that break the certificate chain.

3) Compatibility Issue: We analyzed the distribution of

the digest/signature algorithms in our dataset, as shown in

Figure 3. Most of the apps (over 90%) use SHA1WITHRSA

and SHA256WITHRSA algorithms. We have identified 8,518

apps with compatibility issues in our dataset, and found that

most of them are introduced by the SHA256WITHRSA algo-

rithm. As SHA256WITHRSA is supported on API levels higher

than 18, apps that declared minsdkversion lower than 18 will

TABLE IV
APPS THAT EXPLOIT THE MASTER KEY VULNERABILITY.

Package Name (MD5) App Installs VT (# Engines, Flag)
air.com.baobaogame.MathBearAndroid.EN
(53BD19EEED64F1182C993DB01CB11000)

500 23, MasterKey

air.com.shuchao.app.A36house
(E4359956968BD988478652EB63F6D6B8)

96 14, CVE-2013-4787

air.GreenCloudSmasherFree
(135EE5428EF595E8FB95581BC5F5F101)

10000 12, MasterKey, Revmob

0

0.2

0.4

0.6

Pe
rc

en
ta

ge
 o

f A
pp

s

The Digest Algorithms used in Apps

Fig. 3. The distribution of used digest algorithms.

have compatibility issues, leading to installation failures on

devices with lower API levels. We even found many popular
apps (with billions of downloads) with compatibility issues.
For example, “com.autonavi.minimap” is a popular app with

over 1 billion installs that were found with compatibility

issues, such that it cannot be installed on devices with earlier

Android versions, although many old devices are still popular

in countries such as China.

4) Release Bugs: Most of the apps with release bugs were

found in alternative markets. V2-related bugs and Zip bugs

were not found in Google Play. 81 apps in Google Play have

V1 bugs, and all of them belong to the Rollback Protection

issue, i.e., the JAR signature file indicates that the APK is

supposed to be signed with the V2 signature scheme (in

addition to V1) but no V2 signature was found in the APK,

which will lead to installation failure in the systems supporting

V2 signatures. A large portion of apps with Zip bugs were
found in Tencent Myapp, Xiaomi and OPPO markets,
which suggests that these markets do not enforce strict app
regulation, as these apps are definitely low-quality apps
that cannot be installed on any Android devices. 17,836

apps in total have V1 bugs, and most of them (over 80%)

belong to the issue that “mismatch between *.MF and JAR

entry”, which will lead to installation failure too. V2 related

bugs were found in 2,849 apps, as only over 185K apps have

adopted V2 signatures, over 1.5% of them have release bugs,

which will lead to installation failures on devices with system

versions higher than 7.0. This result suggested that many low-

quality developers have little experiences in releasing apps and

they were not even aware that their apps cannot be installed

on any devices successfully.

D. The Distribution of App Signing Issues

We then analyze the distribution of app signing issues

according to app category and app popularity (downloads).

287

Fig. 4. The distribution of app signing related issues across app categories.
Each column adds up to 100%.

Fig. 5. The distribution of downloads for the apps with signing issues.

1) Category: Note that each Android market implements its

own app taxonomy. For example, Google Play defines 33 app

categories (excluding subcategories for Game), while Huawei

Market only has 18 categories. In order to understand the

general distribution of app signing issues across categories,

we manually developed a consolidated taxonomy containing

22 app categories, and map all the categories of 25 app markets

to this taxonomy, as shown in Figure 4.

As shown in Figure 4, most app signing issues were
found in categories including GAME, LIFE, PERSONAL-
IZATION, and EDUCATION. One possible reason is that

these categories are most popular across markets. For example,

roughly 50% of the apps that exploit existing vulnerabilities

to perform attacks were found in the GAME category, while

roughly 36% of apps with publicly known signature were

found in PERSONALIZATION. Most of the V2 related bugs

were found in EDUCATION, LIFE and FINANCE, while Zip

and V1 related bugs were found mostly in the GAME category.

2) App Popularity: We further investigate the correlation

between signing issues and app popularity (the number of app

2008 2010 2012 2014 2016 2018
Release/Update Time

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge
 o

f A
pp

s
(C

D
F)

Attack
Release Bug
Compatibility Issue
Vulnerability

Fig. 6. The distribution of release/update time for all the identified apps.

downloads). Note that, as the app downloads across different

app markets vary greatly, we perform per-market analysis here.

Figure 5 listed the distribution of signing issues in each of the

4 top app markets due to space limitation.

To our surprise, although the apps with less popularity

(< 10K) account for a large portion of the issues, a con-
siderable number of them are popular apps with millions
of downloads. For example, over 10% of the apps with issues

found in Google Play have downloads higher than 1 million.

The result is more prevalent on popular apps of the alternative

markets, roughly 20% apps with V1 bugs and V2 bugs in the

Baidu market have more than 1 million app installs, suggesting

that these apps could introduce installation failure issues (at

least in some system versions), which will greatly affect users’

experience and the market’s reputation as well.

The apps with vulnerability and compatibility issues were

distributed across different app download ranges. In Google

Play, roughly 10% of the apps with known signatures have

installs higher than 100K, and roughly 10% of the apps with

compatibility issues have installs higher than 1 million. The

exploited apps (attacks) in general have fewer app downloads.

For example, all of the apps utilize Janus vulnerabilities have

less than 1K installs in Google Play. More than 97% of apps

with Zip bugs have less than 1K app downloads in Tencent and

OPPO markets, while the numbers in Baidu and Wandoujia

markets are outliers, which are 39% and 45% respectively.

VI. THE EVOLUTION OF SIGNING ISSUES

In this section, we study the evolution of signing issues

(RQ3). We first analyzed the release/update time of these apps

with signing issues. As most of the issues would lead to great

security risks or installation failures, we want to examine how

long they have been staying in the markets. Then we perform

a post analysis seven months later to measure how many apps

with signing issues have been removed or mitigated.

1) Release/Update Time: As shown in Figure 6, we have

investigated the distribution of release/update time for all the

issues we identified across four categories. Over half of
the bugs and attacks were released before 2016, which
means that they have affected millions of users for at least
two years (2 years prior to our first crawling process).

288

Fig. 7. The percentage of remaining/removed apps with signing related issues across markets after 7 months.

Over 70% of the vulnerabilities and compatibility issues were

released during 2016 and 2018.

This result suggested that, on one hand, the developers of
these apps usually paid little attention to the signing issues,

and some of them are even unaware whether their apps could

be successfully installed on users’ devices. On the other hand,

although each app market claims to enforce app inspection
on malicious code and app clones, they do not enforce
strict/any app inspection on signing issues, especially for

alternative markets (e.g., Tencent, Baidu and Xiaomi) with a

large number of low-quality apps with signing issues.
2) Post Analysis: Our results reveal that each market hosts a

significant number of apps with signing issues. We performed

a second app crawling on each app store about 7 months after

the first one in order to quantify: (1) whether the app markets

made any effort to remove those samples and (2) whether the

app developers identified the issues and updated the apps.

For each market, we crawled the apps with signing issues

and labeled them as: (1) remaining unchanged (identical APK

MD5 hashing), (2) removed, and (3) updated (to a newer

version). Note that we exclude HiAPK from the analysis as it

has discontinued its services before our second crawling.

Figure 7 shows the percentage of the remaining and re-

moved apps with signing issues. To our surprise, for 11 out

of 25 markets, more than 90% of the apps with signing

issues still remain in the market without any updates, as

shown in Figure 7(1). The situation is the worst for the 91,

Gfan, AppChina and PC Online markets, almost all of the

apps with signing issues remained in the markets without any

updates. Anzhi, Huawei and Google Play addressed part of the

vulnerable apps, but more than 50% of the apps with signing

issues still remained in the markets. By further analyzing the

removed vulnerable apps (cf. Figure 7(2)), it is interesting to

see that almost none of the apps with signing issues were

removed in 12 alternative markets (e.g., 91, OPPO, 25PP).

Google Play, 360 market, Wandoujia and Anzhi have removed

the most number of the apps with signing issues. On a per-

issue basis, most of the apps that are vulnerable to attacks (cf.

Section III-B) have been removed in Google Play, 360 and

Anzhi. However, most of the apps with compatibility issues,

V1 bug issues, and V2 bug issues did not get any updates.

This result suggests that the app regulation and app
maintenance behaviors across markets differ significantly.

Most of the alternative markets do not even remove the

risky apps, which could lead to severe consequences such

as compromising app users’ security and privacy and having

negatively impacts on the brands of the app markets.

VII. DISCUSSIONS

A. Implication

We believe that our efforts can positively contribute to

different stakeholders in the mobile app ecosystem.

App Markets. We found most markets paid little attention

to security issues introduced in the app signing process.

These markets host a large number of low-quality apps and

developers, and are even exploited by malicious developers to

disseminate malware. Thus, app markets should (1) improve

their app regulation process to eliminate apps with signing

issues before they enter the market, and (2) deploy automated

tools to identify/remove apps with signing issues, remove

low-quality developers, identify signing-related attacks, and

improve the app ecosystem.

App Developers. Experiment results suggested that many

app developers are unaware of the signing issues. Very few

developers have adopted the V2 signatures, while many devel-

opers use publicly-known private keys. Even some popular app

developers cannot deal with app signing correctly and many

of them suffer from compatibility issues. Our work could help

289

app developers identify and eliminate these signing issues, thus

helping improve app quality.

App Users. As most of the issues listed in this paper were

focused on the V1 signing scheme, a majority of them cannot

cause serious security issues on Android systems that support

V2 and V3 signing schemes (after 7.0). Our work could help

app users be aware of the severity of signing issues, and further

eliminate the issues by updating their devices to up-to-date

system versions and choose apps from high-quality markets.

Research Community. Our work could help encourage

more research on app signing issues, such as additional

app signing issues and advanced approach to identify them.

Besides, further studies could focus on the new signing

mechanisms and third-party signing frameworks (e.g., Baidu

OASP [19]), as well as automated exploitation of apps with

signing issues and how to identify such attacks.

B. Threats to Validity

To the best of our knowledge, this work is the first attempt

in the community towards characterizing app signing issues in

large scale. Our study, however, carries several limitations.

First, we focus on 21 kinds of signing issues, which were

summarized from CVE and existing technical reports. This

taxonomy might be incomplete, and we did not identify new

app signing vulnerabilities or anti-patterns. Nevertheless, it

is surprising to see that a large number of apps have been

exposed to security issues, although these issues were known

to the community for a long time. Besides, our measurement

study is limited by our dataset. On one hand, our dataset is a

bit outdated and does not cover the V3 signing scheme. On the

other hand, most of the apps in our dataset were crawled from

Chinese alternative app markets, which is not representative

enough to characterize the global app signing issues.

VIII. RELATED WORK

Measurement Study of App Security Issues. A number

of studies have measured the mobile app ecosystem in large

scale from different angles, including malware [20], [21], [22],

[23], repackaged apps [24], [25], [26], low-quality apps [27],

[28], permission issues [29], [30], [31], [32], third-party track-

ing [33], [34], [35], [36], [37], [30], fraudulent behaviors [38],

[39], [40], [41], and promotion attacks [42], [43], [44], etc.

Besides, cryptography APIs have been widely studied in the

mobile app ecosystem [45], [46], [47], [48], [49]. For example,

Egele et al. [45] empirically analyzed cryptographic misuses in

Android apps and found that over 88% of apps make at least

one mistake. iCryptoTracer [46] investigated the iOS app’s

usage of cryptographic APIs and observed that more than

65% of iOS apps contain various security flaws caused by

cryptographic misuses. Backes et al. [47] observed the misuse

of cryptographic APIs in mobile ad libraries. Wang et al. [49]

proposed a framework to investigate OAuth implementation

issues and found that 86.2% of the apps incorporating OAuth

services are vulnerable. Many other studies are focused on

analyzing vulnerabilities including the SSL/TLS issues [50],

[51], [52], the open port vulnerability [53] and the ICC

issues [54], [55], [56], [57], etc.

App Authorship/Developer Analysis. Oltrogge et al. [58]

have investigated online app generators and found that they are

suffering from well-known security issues, while developers

are unaware of these hidden problems. CredMiner [59] studied

the prevalence of unsafe developer credentials and found that

over half of them using free email services and Amazon

AWS are vulnerable. Gonzalez et al. [60] proposed to analyze

the authorship attribution of Android apps based on a set of

features extracted from the decompiled binary. Their results

suggested that they could achieve 97.5% accuracy on identi-

fying developers. Wang et al. [61] performed the first large

scale study of the mobile app ecosystem from the perspective

of app developers. The results suggested that over 70% of the

apps with severe privacy risks are created by 1% developers.

The follow-up work [62] has analyzed over 1 million Android

app developers across Google Play and 16 popular alternative

markets, from different angles including developing, releasing,

app maintenance and malicious behaviors.

App Signing for Securing App Installation. Barrera et
al. [63] conducted a detailed analysis of the app installation

process to study the update integrity and UID assignment.

They found empirical evidence that Android’s current signing

architecture does not encourage best security practices, and the

limitations of Android’s UID sharing method force developers

to write custom code for secure data transfer. Baton [64],

provides a mechanism to enable transparent key updates or

certificate renewals. These work were focused on exposing

the limitations of the signing architecture, while our work

conducted a systematic study to identify issues in existing apps

and shed light on attacks on the apps.

IX. CONCLUSION

In this work, we have conducted a large-scale measurement

study of Android app signing issues in the wild. We first

created a taxonomy of 21 anti-patterns, and then developed

an automated tool for conducting the characterization study.

We have studied over 5 million apps across 25 markets, and

revealed that various signing issues are prevalent in Google

Play and alternative markets. Furthermore, evolution analysis

suggested that most app markets have paid little attention to the

security issues caused by app signing, as almost all the apps

with signing issues were not removed/mitigated. We believe

that our research efforts can positively contribute to bring

developer and mobile user awareness of signing issues, attract

the interests of the research community and regulators, and

promote best operational practices across market operators.

ACKNOWLEDGMENT

This work is supported in part by the National Key Research

and Development Program (2017YFB1001904), the National

Natural Science Foundation of China (grants No.61702045,

No.61772042 and No.U1836211), NSF (CNS-1755772), Bei-

jing Natural Science Foundation (No.JQ18011) and a research

grant from Huawei. Yao Guo is the corresponding author.

290

REFERENCES

[1] (2018) Apk signing. [Online]. Available: https://source.android.com/
security/apksigning/

[2] “New Android vulnerability allows attackers to mod-
ify apps without affecting their signatures,” 2019,
https://www.guardsquare.com/en/blog/new-android-vulnerability-
allows-attackers-modify-apps-without-affecting-their-signatures.

[3] “CVE-2017-13156,” 2019, https://nvd.nist.gov/vuln/detail/CVE-2017-
13156.

[4] “APK duplicate file vulnerability,” 2019,
http://www.androidvulnerabilities.org/ vulnerabili-
ties/APK_duplicate_file.

[5] “Android Bug Superior to Master Key,” 2018,
http://www.saurik.com/id/18.

[6] “Yet Another Android Master Key Bug,” 2018,
http://www.saurik.com/id/19.

[7] “Hackers are selling legitimate code-signing cer-
tificates to evade malware detection,” 2018,
https://news.ycombinator.com/item?id=16445845.

[8] Oracle. (2018) Signed jar file. [Online]. Available: https://docs.oracle.
com/javase/8/docs/technotes/guides/jar/jar.html#Signed_JAR_File

[9] “Scheme v2,” 2018, https://source.android.com/security/apksigning/v2.
[10] “Scheme v3,” 2018, https://source.android.com/security/apksigning/v3.
[11] “Android Distribution and Android Market Share,” 2018,

https://data.apteligent.com/android/.
[12] “Android Vulnerability,” 2018, http://www.androidvulnerabilities.org/all.
[13] (2018) First malicious use of ’master key’ android vulnerability

discovered. [Online]. Available: https://www.symantec.com/connect/
blogs/first-malicious-use-master-key-android-vulnerability-discovered

[14] “APK unsigned shorts,” 2018, http://www.androidvulnerabilities.org/
vulnerabilities/APK_unsigned_shorts.

[15] “APK unchecked name,” 2018, http://www.androidvulnerabilities.org/
vulnerabilities/APK_unchecked_name.

[16] “FakeID,” 2019, https://androidvulnerabilities.org/vulnerabilities/Fake_ID.
[17] (2018) Add api to check certificate chain signatures.

[Online]. Available: https://android.googlesource.com/platform/libcore/
+/2bc5e811a817a8c667bca4318ae98582b0ee6dc6

[18] “apksigner,” 2018, https://developer.android.com/studio/command-
line/apksigner.

[19] (2019) Online app status protocol. [Online]. Available: https:
//github.com/baidu/OASP

[20] H. Wang, Z. Liu, J. Liang, N. Vallina-Rodriguez, Y. Guo, L. Li,
J. Tapiador, J. Cao, and G. Xu, “Beyond google play: A large-scale
comparative study of chinese android app markets,” in Proceedings of
the 2018 Internet Measurement Conference (IMC ’18), 2018, pp. 293–
307.

[21] F. Wei, Y. Li, S. Roy, X. Ou, and W. Zhou, “Deep ground truth analysis
of current android malware,” in Proceedings of the 2017 International
Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment (DIMVA ’17), 2017, pp. 252–276.

[22] H. Wang, H. Li, and Y. Guo, “Understanding the evolution of mobile
app ecosystems: A longitudinal measurement study of google play,” in
Proceedings of the The World Wide Web Conference (WWW ’19), 2019,
pp. 1988–1999.

[23] H. Wang, J. Si, H. Li, and Y. Guo, “Rmvdroid: towards a reliable
android malware dataset with app metadata,” in Proceedings of the 16th
International Conference on Mining Software Repositories (MSR ’19),
2019, pp. 404–408.

[24] Y. Ishii, T. Watanabe, M. Akiyama, and T. Mori, “Appraiser: A large
scale analysis of android clone apps,” IEICE TRANSACTIONS on
Information and Systems, vol. 100, no. 8, pp. 1703–1713, 2017.

[25] H. Wang, Y. Guo, Z. Ma, and X. Chen, “Wukong: A scalable and accu-
rate two-phase approach to android app clone detection,” in Proceedings
of the 2015 International Symposium on Software Testing and Analysis
(ISSTA ’15), 2015, pp. 71–82.

[26] L. Li, T. F. Bissyandé, H.-Y. Wang, and J. Klein, “On identifying and
explaining similarities in android apps,” Journal of Computer Science
and Technology, vol. 34, no. 2, pp. 437–455, 2019.

[27] H. Wang, H. Li, L. Li, Y. Guo, and G. Xu, “Why are android
apps removed from google play?: a large-scale empirical study,” in
Proceedings of the 15th International Conference on Mining Software
Repositories (MSR ’18), 2018, pp. 231–242.

[28] V. N. Inukollu, D. D. Keshamoni, T. Kang, and M. Inukollu, “Factors
influencing quality of mobile apps: Role of mobile app development life
cycle,” arXiv preprint arXiv:1410.4537, 2014.

[29] J. Reardon, Á. Feal, P. Wijesekera, A. E. B. On, N. Vallina-Rodriguez,
and S. Egelman, “50 ways to leak your data: An exploration of apps’
circumvention of the android permissions system,” in Proceedings of the
28th {USENIX} Security Symposium ({USENIX} Security 19), 2019, pp.
603–620.

[30] H. Wang, Y. Li, Y. Guo, Y. Agarwal, and J. I. Hong, “Understanding
the purpose of permission use in mobile apps,” ACM Transactions on
Information Systems (TOIS), vol. 35, no. 4, p. 43, 2017.

[31] H. Wang, Y. Guo, Z. Tang, G. Bai, and X. Chen, “Reevaluating android
permission gaps with static and dynamic analysis,” in Proceedings of
the 2015 IEEE Global Communications Conference (GLOBECOM ’15),
2015, pp. 1–6.

[32] H. Wang, J. Hong, and Y. Guo, “Using text mining to infer the purpose
of permission use in mobile apps,” in Proceedings of the 2015 ACM
International Joint Conference on Pervasive and Ubiquitous Computing
(UbiComp ’15), 2015, pp. 1107–1118.

[33] A. Razaghpanah, R. Nithyanand, N. Vallina-Rodriguez, S. Sundaresan,
M. Allman, and C. K. P. Gill, “Apps, trackers, privacy, and regulators,” in
Proceedings of the 25th Annual Network and Distributed System Security
Symposium (NDSS ’18), 2018.

[34] K. Chen, X. Wang, Y. Chen, P. Wang, Y. Lee, X. Wang, B. Ma,
A. Wang, Y. Zhang, and W. Zou, “Following devil’s footprints: Cross-
platform analysis of potentially harmful libraries on android and ios,”
in Proceedings of the 2016 IEEE Symposium on Security and Privacy
(SP ’16), 2016, pp. 357–376.

[35] Z. Ma, H. Wang, Y. Guo, and X. Chen, “Libradar: fast and accurate
detection of third-party libraries in android apps,” in Proceedings of the
38th international conference on software engineering companion, 2016,
pp. 653–656.

[36] L. Li, T. Riom, T. F. Bissyandé, H. Wang, J. Klein et al., “Revisiting the
impact of common libraries for android-related investigations,” Journal
of Systems and Software, vol. 154, pp. 157–175, 2019.

[37] M. Li, W. Wang, P. Wang, S. Wang, D. Wu, J. Liu, R. Xue, and
W. Huo, “Libd: scalable and precise third-party library detection in
android markets,” in Proceedings of the 39th International Conference
on Software Engineering (ICSE ’17), 2017, pp. 335–346.

[38] B. Andow, A. Nadkarni, B. Bassett, W. Enck, and T. Xie, “A study of
grayware on google play,” in Proceedings of the 2016 IEEE Security
and Privacy Workshops (SPW), 2016, pp. 224–233.

[39] Y. Hu, H. Wang, Y. Zhou, Y. Guo, L. Li, B. Luo, and F. Xu, “Dating
with scambots: Understanding the ecosystem of fraudulent dating ap-
plications,” IEEE Transactions on Dependable and Secure Computing,
2019.

[40] Y. Hu, H. Wang, L. Li, Y. Guo, G. Xu, and R. He, “Want to earn a
few extra bucks? a first look at money-making apps,” in Proceedings of
the 26th International Conference on Software Analysis, Evolution and
Reengineering (SANER ’19), 2019, pp. 332–343.

[41] F. Dong, H. Wang, L. Li, Y. Guo, T. F. Bissyandé, T. Liu, G. Xu, and
J. Klein, “Frauddroid: Automated ad fraud detection for android apps,”
in Proceedings of the 26th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE ’18), 2018, pp. 257–268.

[42] H. Zhu, H. Xiong, Y. Ge, and E. Chen, “Discovery of ranking fraud for
mobile apps,” IEEE Transactions on knowledge and data engineering,
vol. 27, no. 1, pp. 74–87, 2014.

[43] B. Sun, X. Luo, M. Akiyama, T. Watanabe, and T. Mori, “Padetective:
A systematic approach to automate detection of promotional attackers
in mobile app store,” Journal of Information Processing, vol. 26, pp.
212–223, 2018.

[44] Q. Guo, H. Wang, C. Zhang, Y. Guo, and G. Xu, “Appnet: understanding
app recommendation in google play,” in Proceedings of the 3rd ACM
SIGSOFT International Workshop on App Market Analytics (WAMA
’19), 2019, pp. 19–25.

[45] M. Egele, D. Brumley, Y. Fratantonio, and C. Kruegel, “An empirical
study of cryptographic misuse in android applications,” in Proceedings
of the 20th ACM Computer and Communications Security Conference
(CCS ’13), 2013, pp. 73–84.

[46] Y. Li, Y. Zhang, J. Li, and D. Gu, “icryptotracer: Dynamic analysis on
misuse of cryptography functions in ios applications,” in Proceedings
of the International Conference on Network and System Security, 2014,
pp. 349–362.

291

[47] M. Backes, S. Bugiel, and E. Derr, “Reliable third-party library detection
in android and its security applications,” in Proceedings of the 23rd ACM
Computer and Communications Security Conference (CCS ’16), 2016,
pp. 356–367.

[48] S. Krüger, S. Nadi, M. Reif, K. Ali, M. Mezini, E. Bodden, F. Göpfert,
F. Günther, C. Weinert, D. Demmler et al., “Cognicrypt: Supporting de-
velopers in using cryptography,” in Proceedings of the 32nd IEEE/ACM
International Conference on Automated Software Engineering (ASE ’17),
2017, pp. 931–936.

[49] H. Wang, Y. Zhang, J. Li, H. Liu, W. Yang, B. Li, and D. Gu, “Vulner-
ability assessment of oauth implementations in android applications,”
in Proceedings of the 31st Annual Computer Security Applications
Conference, 2015, pp. 61–70.

[50] S. Fahl, M. Harbach, T. Muders, L. Baumgärtner, B. Freisleben, and
M. Smith, “Why eve and mallory love android: An analysis of android
ssl (in) security,” in Proceedings of the 2012 ACM conference on
Computer and communications security (CCS ’12), 2012, pp. 50–61.

[51] D. Sounthiraraj, J. Sahs, G. Greenwood, Z. Lin, and L. Khan, “Smv-
hunter: Large scale, automated detection of ssl/tls man-in-the-middle
vulnerabilities in android apps,” in In Proceedings of the 21st Annual
Network and Distributed System Security Symposium (NDSS ’14), 2014.

[52] L. Onwuzurike and E. De Cristofaro, “Danger is my middle name:
experimenting with ssl vulnerabilities in android apps,” in Proceedings of
the 8th ACM Conference on Security & Privacy in Wireless and Mobile
Networks, 2015, p. 15.

[53] Y. J. Jia, Q. A. Chen, Y. Lin, C. Kong, and Z. M. Mao, “Open doors
for bob and mallory: Open port usage in android apps and security
implications,” in 2017 IEEE European Symposium on Security and
Privacy (EuroS&P ’17), 2017, pp. 190–203.

[54] L. Li, A. Bartel, T. F. Bissyandé, J. Klein, Y. Le Traon, S. Arzt,
S. Rasthofer, E. Bodden, D. Octeau, and P. McDaniel, “Iccta: Detecting
inter-component privacy leaks in android apps,” in Proceedings of the
37th International Conference on Software Engineering (ICSE ’15),
2015, pp. 280–291.

[55] A. Bosu, F. Liu, D. D. Yao, and G. Wang, “Collusive data leak and more:
Large-scale threat analysis of inter-app communications,” in Proceedings
of the 2017 ACM on Asia Conference on Computer and Communications
Security (AsiaCCS ’17), 2017, pp. 71–85.

[56] A. Sadeghi, H. Bagheri, and S. Malek, “Analysis of android inter-
app security vulnerabilities using covert,” in Proceedings of the 37th
International Conference on Software Engineering (ICSE ’15), 2015,
pp. 725–728.

[57] Y. K. Lee, J. Y. Bang, G. Safi, A. Shahbazian, Y. Zhao, and N. Medvi-
dovic, “A sealant for inter-app security holes in android,” in Proceedings
of the 2017 International Conference on Software Engineering (ICSE
’17), 2017, pp. 312–323.

[58] M. Oltrogge, E. Derr, C. Stransky, Y. Acar, S. Fahl, C. Rossow,
G. Pellegrino, S. Bugiel, and M. Backes, “The rise of the citizen
developer: Assessing the security impact of online app generators,” in
Proceedings of the 2018 IEEE Symposium on Security and Privacy (SP
’18), 2018, pp. 634–647.

[59] Y. Zhou, L. Wu, Z. Wang, and X. Jiang, “Harvesting developer creden-
tials in android apps,” in Proceedings of the 8th ACM Conference on
Security & Privacy in Wireless and Mobile Networks, 2015, pp. 23:1–
23:12.

[60] H. Gonzalez, N. Stakhanova, and A. A. Ghorbani, “Authorship attribu-
tion of android apps,” in Proceedings of the Eighth ACM Conference on
Data and Application Security and Privacy (CODASPY ’18), 2018, pp.
277–286.

[61] H. Wang, Z. Liu, Y. Guo, X. Chen, M. Zhang, G. Xu, and J. Hong, “An
explorative study of the mobile app ecosystem from app developers’
perspective,” in Proceedings of the 26th International Conference on
World Wide Web (WWW ’17), 2017, pp. 163–172.

[62] H. Wang, X. Wang, and Y. Guo, “Characterizing the global mobile app
developers: a large-scale empirical study,” in Proceedings of the 6th
International Conference on Mobile Software Engineering and Systems
(MobileSoft ’19), 2019, pp. 150–161.

[63] D. Barrera, J. Clark, D. McCarney, and P. C. van Oorschot, “Under-
standing and improving app installation security mechanisms through
empirical analysis of android,” in Proceedings of the second ACM
workshop on Security and privacy in smartphones and mobile devices
(SPSM ’12), 2012, pp. 81–92.

[64] D. Barrera, D. McCarney, J. Clark, and P. C. van Oorschot, “Baton:
Certificate agility for android’s decentralized signing infrastructure,” in
Proceedings of the 2014 ACM conference on Security and privacy in
wireless & mobile networks (WiSec ’14), 2014, pp. 1–12.

292

