
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 16, NO. 12, DECEMBER 2008 1631

Data Memory Subsystem Resilient to
Process Variations

Mahmoud Bennaser, Student Member, IEEE, Yao Guo, Member, IEEE, and Csaba Andras Moritz, Member, IEEE

Abstract—As technology scales, more sophisticated fabrication
processes cause variations in many different parameters in the de-
vice. These variations could severely affect the performance of pro-
cessors by making the latency of circuits less predictable and thus
requiring conservative design approaches. In this paper, we use
Monte Carlo simulations in addition to worst-case circuit analysis
to establish the overall delay due to process variations in a data
cache sub-system under both typical and worst-case conditions.
The distribution of the cache critical-path-delay in the typical sce-
nario was determined by performing Monte Carlo simulations at
different supply voltages, threshold voltages, and transistor lengths
on a complete cache design. In addition to establishing the delay
variation, we present an adaptive variable-cycle-latency cache ar-
chitecture that mitigates the impact of process variations on ac-
cess latency by closely following the typical latency behavior rather
than assuming a conservative worst-case design-point. Simulation
results show that our adaptive data cache can achieve a 9% to
31% performance improvement in a superscalar processor, on the
SPEC2000 applications studied, compared to a conventional de-
sign. The area overhead for the additional circuits of the adap-
tive technique has less than 1% of the total cache area. Additional
performance improvement potential exists in processors where the
data cache access is on the critical path, by allowing a more aggres-
sive clock rate.

Index Terms—CMOS memory integrated circuits, memory ar-
chitecture, process variations.

I. INTRODUCTION

A S technology scales, the feature size reduces thereby re-
quiring a sophisticated fabrication process. The manu-

facturing process causes variations in many different param-
eters in the device, such as the effective channel length ,
the oxide thickness , and the threshold voltage . These
variations increase as the feature size reduces due to the dif-
ficulty of fabricating small structures consistently across a die
or a wafer [3]. Controlling the variation in device parameters
during fabrication is becoming therefore a great challenge for
scaled technologies.

The performance of integrated circuits can be greatly affected
by these variations. The process variations are random in nature
and are expected to become significant in the smaller geom-
etry transistors commonly used in memories [11]. The question

Manuscript received April 11, 2007; revised September 29, 2007. Current
version published November 19, 2008.

M. Bennaser is with the Department of Computer Engineering, Kuwait Uni-
versity, Khaldiya, Kuwait (e-mail: bennaser@eng.kuniv.edu.kw).

Y. Guo is with the School of Electrical Engineering and Computer Science,
Peking University, Peking 100871, China (e-mail: yaoguo@cs.pku.edu.cn).

C. A. Moritz is with the Department of Electrical and Computer Engineering,
University of Massachusetts, Amherst, MA 01003 USA (e-mail: andras@ecs.
umass.edu).

Digital Object Identifier 10.1109/TVLSI.2008.2001299

Fig. 1. Application performance for different cache access cycles (see Table IV
for the ratio occurrence of these variations).

is whether there is significant delay variation that will drive a
change in memory architecture design.

In state-of-the-art digital design, to ensure the correct execu-
tion in the memory circuit, the cache access delay must be de-
cided based on the worst-case latency within the process varia-
tion range [12]. For example, even a small latency increase due
to variation may require the whole cache access latency to be in-
creased by one or more processor cycles. The increase of delay
due to process variations will be severely impact in low power
circuits.

Preliminary simulations results with HSPICE show that
process variations on effective channel length, power supply
voltage and threshold voltage at 32-nm CMOS technology
can affect the performance, after all factors are considered, at
around 2–3 under the worst-case operating conditions [7]. To
account for the worst-case scenario we might need to increase
the cache access time by 2–3 cycles or adopt other design
approaches. Application performance could be impacted by as
much as 30%–40% as shown in Fig. 1.

These results suggest that process variations must be taken
into consideration while designing circuits and perhaps even
architectures. There are several ideas that could be exploited
in a memory system: 1) reduce performance by operating at
a lower clock frequency (conservative approach); 2) increase
cache access latency assuming worst-case delay (conservative
approach); and 3) variable-delay cache architecture (adaptive
approach proposed in this paper). The first approach would
clearly have a large impact on overall performance. The second
approach would also have a significant impact as shown in
Fig. 1.

While there has been a lot of work on statistical methods
to modeling and compensating process variation at the circuit

1063-8210/$25.00 © 2008 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 1, 2008 at 20:59 from IEEE Xplore. Restrictions apply.

1632 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 16, NO. 12, DECEMBER 2008

level [16], [17], there has been little work on modeling vari-
ations at the architecture level. This paper presents a model
that allows architects to reason about how process variations
affect cache design. In [18], Agarwal et al. introduce process-
tolerant cache architecture to improve the yield in nanoscale
memories. The proposed scheme detects and replaces faulty
cells by dynamically resizing the cache. Humenay [12] intro-
duce a pre-register transfer level (RTL), architectural modeling
methodology that incorporates the impact of process variations
on multi-core chips. Perhaps the most relevant prior work is the
“FMAX” model introduced by Bowman [19]. FMAX is a pre-
dictive model for capturing the maximum frequency distribution
of a microprocessor.

The goal of this paper is to estimate both the worst-case and
typical delay variation expected in a state-of-the-art cache and
to introduce an adaptive cache system that would mitigate the
impact of process variations without taking any of the conserva-
tive design paths suggested earlier. This paper is an extension of
our previous conference paper [7] with a complete design and
evaluation of all cache circuits and architectural components.

The proposed adaptive cache circuit is transparent to other
subsystem and has negligible power and area overhead. Instead
of accessing the cache with a fixed latency assuming worst-case
latency, the proposed architecture can have different latency in-
formation stored in the delay storage unit for each cache line.
The adaptive technique is enabled by a built-in self-test (BIST)
circuitry, which tests the entire cache and detects the speed of the
cache access. The speed results are then written into the delay
storage. While we access each cache line, we will know the la-
tency for that cache line and the pipeline will act accordingly to
save the waiting cycles. The expectation is that most of the cache
lines will have lower latency compared the worst-case scenario.

The rest of this paper is organized as follows. In Section II, we
briefly describe a state-of-the-art low power cache that we have
designed in our research group as the starting point for our eval-
uation. Section III presents a detailed analysis on the impact of
process variation on this cache under worst-case and expected
behavior conditions. To estimate the typical delay in a cache,
we determine the distribution of delays by performing Monte
Carlo sampling at different supply voltages, threshold voltages,
and transistor lengths. In Section IV, we describe new architec-
ture techniques to mitigate the effect of process variations and
propose a variable-cycle adaptive cache. We show simulation
results in Section V by running applications on a superscalar
processor with this design. We have implemented the cache at
circuit level and extended the SimpleScalar [5] architecture sim-
ulator. We use a set of SPEC2000 [2] benchmarks to compare
the performance with a conventional approach. We conclude in
Section VI.

II. LOW POWER BASELINE CACHE

Before we start to evaluate the impact of process variations on
caches, we would like to establish a baseline cache with state-of-
the-art low power techniques. First, we introduce an initial cache
with no dedicated power optimization techniques. The initial
cache design is a 16 kB, uses nine-transistor NOR-type match
line CAM cells [15] and the 6T SRAM cells, for the tag array
and the data array circuits, respectively. A single-ended sense

TABLE I
ACTIVE POWER REDUCTION TECHNIQUES

TABLE II
LEAKAGE POWER REDUCTION TECHNIQUES

amplifier was used for match-line signal sensing in the tag array
and a cross-coupled inverter latch was used for read data sensing
in the data array. For the bank decoder, we select a four-input
static NOR gates-based design; for the cache line decoder, we
apply two-level decoding: first level three-input dynamic NAND

and second level two-input static NOR gate.
Table I shows the cache design with low power optimiza-

tion techniques added. Table II shows the leakage reduction
techniques. The cache was designed using 32-nm PTM device
model 1 [1] and simulated with a supply voltage of 0.9 V and a
clock of 1 GHz. The nominal value used for is 0.2 V and the
nominal value for is 25.3-nm. A 5-pi wire model is used.
The wire parameters were obtained from [1].

The simulations were done in HSPICE circuit simulator using
the BSIM4.0 model at temperature equal to 75 C. The dynamic
power is measured for a single word cache read.

Fig. 2 summarizes the delay and power consumption in this
cache before and after applying all the low power techniques to
the initial cache design.

III. IMPACT OF PROCESS VARIATION

In this section, we analyze the impact of different sources
of process variations in caches under worst-case and expected
behavior operating conditions. The goal here is to establish a
worst-case baseline that might be used in conventional conser-
vative designs and a typical behavior that could be used to esti-
mate the benefits of migrating to an adaptive design.

In order to evaluate the impact of the parameter variations on
circuit speed, we consider variability on the critical path. Indeed,
the frequency , at which a circuit can be operated, is deter-
mined by the slowest path delay [13]. The critical path of our
CAM-tag cache is shown in Fig. 3. A CAM-based cache stores
tags in a CAM array and stores data in SRAM arrays. CAMs

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 1, 2008 at 20:59 from IEEE Xplore. Restrictions apply.

BENNASER et al.: DATA MEMORY SUBSYSTEM RESILIENT TO PROCESS VARIATIONS 1633

Fig. 2. Total cache power and delay.

Fig. 3. Critical path of a CAM-tag cache.

perform tag checks in parallel. If a match is found, the cache
provides the data in the associated cache line to the processor.
Otherwise, a cache line replacement takes place.

The CAM-Tag critical path in our design is composed of the
global address decoder to select a bank, tristate input/output
(I/O) to drive the search bitlines, the dynamic match compara-
tors in the CAM cells, wordline gating, the data SRAM array,
column multiplexer, sense amplifier and the tristate I/O drivers
connecting back to the CPU. The tristate bus that connects one
32-bit subbank column back to the CPU 32-bit load data path
has the same fan-in in all configurations.

Process variations in caches affect the performance of circuits
like sense amplifiers that require identical device characteristics,
and SRAM cells that require near-minimum-sized cell stability
for large arrays in embedded, low-power applications. In addi-
tion, the delay of the address decoders suffer from the process
variations that can result in shorter time left for accessing the
SRAM cells.

A. Worst-Case Conditions

Under worst-case operating conditions, we assume that pa-
rameter variations happen at each transistor in the cache critical
path.

1) Channel Length Variation: Effective channel length
variation is due to limitation in the lithographic process.

These variations result in changes in device performance
characteristics. A total of 40% variation in effective channel

Fig. 4. Effect of � variation on cache delay.

Fig. 5. Effect of � variation on cache delay.

length is expected within a die [3]. We have found that the use
of longer effective channel lengths tends to increase the input
capacitance of the gates associate with the wordline and bitline
in caches, thus increasing access time as shown in Fig. 4. The
access time can vary by as much as 2.1 .

2) Threshold Voltage Variation: Threshold voltage can vary
due to: 1) changes in oxide thickness; 2) changes in the dopant
levels in the substrate, poly-silicon and implants; and 3) sur-
face charge. Accurate control of is very important for many
performance and power optimizations and for correct execution
[6]. Higher transistor threshold voltage , due to process vari-
ations, affects the access time due to the lower read current as
shown in Fig. 5. The impact on the access time could be as much
as 2.7 .

3) Supply Voltage Variation: One of the most important en-
vironmental factors that cause variations in operating condition
is supply voltage . In deep submicrometer technology, the
supply voltage is typically scaled down to reduce power con-
sumption; effects such as the current–resistance (IR) voltage
drop and L di/dt noise can affect the voltage level at the power
supply thereby modifying the characteristics of the transistors
in the circuits.

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 1, 2008 at 20:59 from IEEE Xplore. Restrictions apply.

1634 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 16, NO. 12, DECEMBER 2008

TABLE III
EFFECT OF POWER SUPPLY VOLTAGE VARIATIONS

TABLE IV
PARAMETER VALUES AND ��� VARIATIONS

A total variation of 15% in was considered [3] with
a nominal value of 0.9 V. Table III summarizes our results
showing delay for our cache design. A reduction in supply
voltage causes an increase in the access time of the cache by up
to 12% of the nominal value.

The deviations in effective channel length and threshold
voltage are shown to have a more significant contribution to
the delay than variations in power supply voltage. The impact
on cache access time due to process variations and longer
wordline/bitline could become very significant. The worst-case
access delay could be impacted by around 2–3 (compared
to the nominal value) when counting all the possible process
parameters.

B. Expected Conditions

The simple use of worst-case values for all parameters that
have been shown in Section A can result in larger path delay esti-
mates than typical. These will certainly be pessimistic but would
need to be considered in conventional designs. This section
presents the delay distribution in a cache due process variation.

To accurately predict cache critical path delay distribution
at the circuit level, cache delay variability can be studied
through Monte Carlo in HSPICE circuit simulations. Process
variations are typically represented by continuous probability
distributions, and are often assumed as normal distribution [4].

The distribution of delay of a cache critical path was deter-
mined by performing Monte Carlo sampling at different supply
voltages, threshold voltages, and transistor lengths. Under the
assumption of separated normal distributions of , , and

variations, Monte Carlo simulations verify model predic-
tions over a wide range of process and design conditions. We
have used the Monte Carlo simulation with 5000 trials where
the variation sources all vary simultaneously. We simulate the
critical path and measure delay with all the parameters varying
with 3ó and mean values as specified in Table IV.

The probability density function (PDF) of the cache delay
was measured (see Fig. 6) for each process parameter. In ad-
dition, we have run the simulation with all the parameters vary
simultaneously in another experiment. We have found most the

Fig. 6. Distribution of the cache access latency.

cache accesses under the impact of supply voltage or threshold
voltage parameters would be relatively close to the nominal
delay. The deviations in are shown to have a significant
contribution to the delay distribution (wider curve). It is also
very close to the case with all the parameter combined.

Out of 5000 random samples, assuming a 1 cycle cache at
1 GHz, 2000 samples of the cache accesses are expected to be
faulty, resulting in a probability of failure of 40%. However,
with an increased cache delay of two cycles allowed and after
adjusting the path across the components to accommodate a
larger variation in the SRAM access, the probability that this
cache will have to take two cycles has been found to be only
25%. We have also found that even in this case a small fraction
of accesses would fail suggesting that there are cases that would
need three cycles for correctness.

IV. ARCHITECTURAL TECHNIQUES

At the architectural level, we might be able to help to mitigate
the negative impact of process variation such that the low-power
circuits and correct operations can still be applied. There are
several ideas that could be exploited to cope with this problem
while not giving up performance. These could range from uti-
lizing smaller first level caches (that would meet the preferred
access time even under worst-case variation) to more adaptive
cache architectures that we will present next.

A. Conservative Cache

As we have shown in Section III, process variations affect the
latency significantly for each cache access. The cache access
latency difference could be as much as 3 if we consider all
the possible variations in process parameters. The conservative
cache would have to be based on the worst-case process varia-
tion analysis (as shown in Section III). Alternatively, one could
make the cache access time slightly more aggressive (than the
conservative one) but then the yield would be likely affected.

In a conservative cache design, to ensure the correct execu-
tion in the pipeline architecture, the cache access delay cycles
must be decided based on the longest delay possible within the
process variation range. For example, even a small latency in-
crease due to variation may require the whole cache access la-
tency to be increased by one or more processor cycles. This can
severely degrade the overall application performance.

For example, even if we could access 90% of the cache lines
within one cycle, for the remaining 10%, we might need two

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 1, 2008 at 20:59 from IEEE Xplore. Restrictions apply.

BENNASER et al.: DATA MEMORY SUBSYSTEM RESILIENT TO PROCESS VARIATIONS 1635

Fig. 7. Proposed adaptive cache architecture (shown in a single five-stage
pipeline).

or three cycles to finish the access due to the delay increase
resulting from process variations. In this situation, we might
need to assume the worst-case scenario, which is three cycles
for all the cache accesses. This will, as a result, severely affect
the total performance and is clearly not a choice that we can use
even if some architectural tricks could be applied to hide the cost
(e.g., overlapping memory access with other instructions).

For example, clever scheduling techniques might try to in-
crease the distance between memory reads and consumer in-
structions to hide a longer latency. As we have seen, however,
there is a limit to how much that can help as very often basic
blocks are short and the scheduler cannot move dependent in-
structions several cycles away.

B. Proposed Adaptive Cache

In the proposed adaptive cache design, instead of accessing
the cache with a fixed latency assuming worst-case conditions,
the adaptive architecture can have different access latency for
different cache lines. The typical case analysis encourages ef-
forts towards developing adaptive design methodologies that
suppress the impact of process fluctuations on performance. The
expectation is that most of the cache lines will have much lower
latency compared to the worst-case scenario.

Fig. 7 shows a possible adaptive architecture. One of the im-
portant blocks in the proposed architecture is the delay storage
unit. This unit stores the speed information and is read along
with the data array on every cache access. The operation on the
delay storage has two phases: classification and execution.

Delay information for each cache line is first achieved during
a classification process where each cache line is probed individ-
ually and its delay information is written into the delay storage
unit. Then, during the execution phase, the delay information is
fetched from the delay storage and each cache line can be ac-
cessed based on its estimated speed.

With the addition of the delay storage, we are able to access
the cache with an adaptive speed. The adaptive architecture will
enable us to maximize the performance compared to the tradi-
tional fixed latency cache architecture.

Fig. 8. Adaptive cache architecture during classification phase.

C. Mechanism and Implementation

Fig. 8 shows the proposed delay-resilient cache architecture
during the classification phase. The cache is equipped with a
BIST circuitry, which tests the entire cache and detects the speed
of each cache line during the classification phase.

The basic idea is to let the sense amplifiers to sample the bit-
lines during read operation in three stages. In the first stage, the
sense amplifier will sense the bitlines in one clock cycle. While
in the second stage, the sense amplifier will take two cycles to
sense the bitlines, and in the third stage, the sense amplifier has
to be fired in three cycles.

During the classification phase, if a cache component is
affected by process variations (for example, higher in
SRAM cell), the SRAM cell might not be able to establish
enough voltage differentials between bitlines by the end of the
first cycle, thus, the access delay is more than one cycle.

In the second stage, the sense amplifier is fired in two cycles.
If the sense amplifier still cannot get the value that has been pre-
viously stored in the SRAM cell, it means the delay is more than
two cycles. In the third stage, the sense amplifier will be fired in
the three cycles. Therefore, comparing the outputs of each sense
amplifier with the original value stored, we can identify the ac-
tual cache access latency for this cache line. With this technique,
we can detect a maximum delay of three cycles (a failure will
occur if the actual latency is more than three cycles). This delay
information will be stored in the delay storage unit.

Each cache line is tested using BIST when the test mode
signal is on. For example, a block is considered fast, medium,
or slow. BIST feeds this information into the delay storage.

The delay storage is implemented as a small memory array of
two bits per cache line. Therefore, each row in the delay storage
stores the speed information of all the SRAM cells in each cache
line. For example, the two bits are “11” if the corresponding
cache line latency is three cycles; “10” if the corresponding la-
tency is two cycles, or it is “01” for one cycle (“00” can be also
used to indicated a failure). These bits are determined at the time
of testing and stored by BIST circuit.

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 1, 2008 at 20:59 from IEEE Xplore. Restrictions apply.

1636 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 16, NO. 12, DECEMBER 2008

Fig. 9. Adaptive cache architecture during the execution phase.

Delay storage provides the speed information to the con-
troller. The speed information stored in the delay storage is
used by the controller to control the speed of the sense ampli-
fiers during regular read operations. We can build the controller
using combinational circuits that will provide the enable signals
to the sense amplifiers at different speed.

During the execution phase (see Fig. 9), both the data array
and delay storage units are accessed in parallel using the row
address of the index bits. The delay information is fetched from
the delay storage and fed to the controller. If the cache line is
slow, the controller will delay the enable signals to the sense
amplifiers. The sense amplifiers would need to be triggered at
different time points depending on the speed access.

This scheme is transparent to other subsystem and has negli-
gible power and area overhead. The area penalty for this cache
is minimal, as we only need to use 2 bits (our example with 1–3
cycles’ latencies) for each cache line (or 256 bits) to encode the
speed.

V. RESULTS AND ANALYSIS

In the previous sections, we presented the power and the
delay as well as the process variation related implications in
our low power cache. This section provides an analysis of the
new added components to our adaptive cache. In our analysis,
we have evaluated the area overhead associated with the extra
BIST, delay storage, and control circuitry by using the Syn-
opsys Design Compiler tool to generate the netlist for the extra
hardware needed for the adaptive cache (see Fig. 10).

We have found the overall area overhead to be less than 1% of
the total cache area (see Table V). Because the delay storage is
a small structure (two bits per cache line), and not on the cache
critical path, its own delay variation due to process variation
is small compared to the cache. Since the data array and delay
storage units are accessed in parallel during the execution phase
using the row address of the index bits, there will be no delay
overhead by introducing the delay storage. In addition, we have
evaluated the power consumption overhead associated with this
extra circuitry; we have found the overhead to be 2% of the total
cache power for a single word read.

A. Performance Speedup

The adaptive cache architecture is implemented in the Sim-
pleScalar architecture simulator [2]. Simulation parameters are

Fig. 10. BIST circuit.

TABLE V
OVERHEAD ASSOCIATE WITH THE ADAPTIVE DESIGN

TABLE VI
SIMPLESCALAR PARAMETERS FOR CPU

summarized in Table VI. We have conducted simulations of
SPEC2000 benchmarks using the adaptive approach. We vary
the cache access latency from 1 to 3 cycles. The adaptive cache
based on the delay distribution is determined by the Monte Carlo

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 1, 2008 at 20:59 from IEEE Xplore. Restrictions apply.

BENNASER et al.: DATA MEMORY SUBSYSTEM RESILIENT TO PROCESS VARIATIONS 1637

Fig. 11. Performance improvement between the adaptive cache versus a con-
servative cache using three-cycle access time.

Fig. 12. Comparison of performance speedup for 16-kB cache on four-way
issue and eight-way issue SimpleScalar architecture.

simulation. Based on our analysis, the adaptive cache is ex-
pected to have 75% of 1 cycle, 25% of 2 cycles, and negligible
3 cycle’s cache line accesses.

Results on application performance are shown in Fig. 11. The
comparison is made between a conservative cache that requires
three cycles per access and an adaptive cache that has variable
cache access latencies.

Our results show that the adaptive cache design in a four-way
issue processor can achieve a 9% to 31% performance improve-
ment on the applications studied, while providing resilience
against failures due to process variations comparison is made
to a conservative design assuming worst-case latency.

B. Sensitivity to Issue Width

Fig. 12 shows the performance speedup improvement for dif-
ferent instruction issue widths on several SPEC2000 applica-
tions. Speedup values are normalized with respect to the worst-
case delay of three cycles. As we can see, the eight-way issues
design benefits more than the four-way issues from the adaptive
cache architecture.

Using the adaptive cache architecture can also mean that one
can set the clock rate slightly more aggressively: the increase
in clock rate would likely compensate for a larger fraction of
memory accesses falling into higher-latency memory access cat-
egories in a processor. Furthermore, when low power is impor-
tant, a slightly slower cache (e.g., due to asymmetric cell designs
[8] with some high transistors to reduce cell power) would
mean a redistribution between 1–3 cycle accesses.

VI. CONCLUSION

Process variations will become worse with technology
scaling; techniques are necessary at the architecture and circuit
levels to reduce the impact of these variations while providing
the highest performance for given power constraints. In this
paper, we have found significant delay variation between
worst-case and expected behavioral analysis, motivating us to
design adaptive cache architecture. We have shown that process
variation can have a significant impact on delay (2–3) under
worst-case operating conditions, while under the expected
condition a large fraction of accesses would be still close to
the nominal value. The adaptive cache architecture proposed
can improve the application performance in a superscalar
design by as much as 31% depending on the application and
configurations used, compared to a conservative design. This
scheme is transparent to other subsystems and has negligible
power and area overhead. The adaptive cache architecture
also allows a designer to choose the first-level cache access
latency more aggressively and possibly increase the clock rate
in a processor design where cache access is the main critical
path. Furthermore, it could help strike a better balance between
power and delay optimizations in a design.

REFERENCES

[1] Nanoscale Integration and Modeling Group, ASU, Tempe, AZ, “Pre-
dictive technology model,” 2008. [Online]. Available: http://www.eas.
asu.edu/~ ptm

[2] The Standard Performance Evaluation Corporation, Warrenton, VA,
“SPEC homepage,” 2000. [Online]. Available: http://www.spec.org

[3] D. Boning and S. Nassif, “Models of process variations in device
and interconnect,” in Design of High-Performance Microprocessor
Circuits, A. Chandrakasan. Piscataway, NJ: IEEE Press, 2001, ch.
6, pp. 98–115.

[4] K. Bowman, X. Tang, J. Eble, and J. Menldl, “Impact of extrinsic and
intrinsic parameter fluctuations on CMOS circuit performance,” IEEE
J. Solid- State Circuits, vol. 35, no. 8, pp. 1186–1193, Aug. 2000.

[5] D. C. Burger and T. M. Austin, The SimpleScalar Tool Set, version 2.0
Univ. Wisconsin, Madison, Tech. Rep. CS-TR-1997–1342, 1997.

[6] X. Tang, V. K. De, and J. D. Meindl, “Intrinsic MOSFET parameter
fluctuations due to random dopant placement,” IEEE Trans. Very Large
Scale Integr. (VLSI) Syst., vol. 5, no. 4, pp. 369–376, Dec. 1997.

[7] M. Bennaser, Y. Guo, and C. A. Moritz, “Designing memory subsys-
tems resilient to process variations,” in Proc. IEEE Comput. Soc. Annu.
Symp. VLSI, Porto Alegre, Brazil, Mar. 2007, pp. 357–363.

[8] N. Azizi, A. Moshovos, and N. Farid, “Low-leakage asymmetric-cell
SRAM,” in Proc. Int. Symp. Low Power Electron. Des., 2002, pp.
48–51.

[9] S. Mutoh, T. Douseki, Y. Matsuya, T. Aoki, S. Shigematsu, and J. Ya-
mada, “1-V power supply high-speed digital circuit technology with
multithreshold-voltage CMOS,” IEEE J. Solid-State Circuits, vol. 30,
no. 8, pp. 847–854, Aug. 1995.

[10] Y. Ye, S. Borkar, and V. De, “A new technique for standby leakage
reduction in high-performance circuits,” in Symp. VLSI Circuits Dig.
Techn. Papers, Jun. 1998, pp. 40–41.

[11] D. Burnett, K. Erington, C. Subramanian, and K. Baker, “Implications
of fundamental threshold voltage variations for high-density SRAM
and logic circuits,” in Proc. Symp. VLSI Technol., Jun. 1994, pp. 14–15.

[12] E. Humenay, D. Tarjan, and K. Skadron, “Impact of parameter varia-
tions on multi-core chips,” presented at the Workshop Arch. Support
Gigascale Integr., Boston, MA, Jun. 2006.

[13] S. Hao, K. Kim, and Y. H. Kim, “Critical path analysis considering the
signal transition time,” in Proc. Int. Conf. VLSI CAD, Oct. 1999, pp.
37–40.

[14] M. Zhang and K. Asanovic, “Highly-associative caches for low-power
processors,” presented at the Koolchips Workshop, 33rd Int. Symp. Mi-
croarch., Monterey, CA, Dec. 2000.

[15] K. Schultz, “Content-addressable memory core cells: A survey,” In-
tegr., VLSI J., vol. 23, no. 2, pp. 171–188, Nov. 1997.

[16] M. Orshansky and K. Keutzer, “A general probabilistic framework for
worst case timing analysis,” in Proc. Des. Automat. Conf., Jun. 2002,
pp. 556–561.

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 1, 2008 at 20:59 from IEEE Xplore. Restrictions apply.

1638 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 16, NO. 12, DECEMBER 2008

[17] A. Agarwal, D. Blaauw, and V. Zolotov, “Statistical timing analysis for
intra-die process variations with spatial correlations,” in Proc. ICCAD,
Nov. 2003, pp. 900–907.

[18] A. Agarwal, B. Paul, H. Mahmoodi, A. Datta, and K. Roy, “A process-
tolerant cache architecture for improved yield in nanoscale technolo-
gies,” IEEE Trans. Very Large Integr. (VLSI) Syst., vol. 13, no. 1, pp.
27–38, Jan. 2005.

[19] K. Bowman, S. Duvall, and J. Meindl, “Impact of die-to-die and
within-die parameter fluctuations on the maximum clock frequency
distribution for gigascale integration,” IEEE J. Solid State Electron.,
vol. 37, no. 2, pp. 183–190, Feb. 2002.

Mahmoud Bennaser (S’06) received the B.S.
degree in computer engineering from Kuwait
University, Khaldiya, Kuwait, in 1999, and the
M.S. degree in computer engineering from Brown
University, Providence, RI, in 2002. He is currently
pursuing the Ph.D. degree in computer engineering
from University of Massachusetts, Amherst.

His research interests include computer architec-
ture, and low-power circuit design.

Mr. Bennaser was a recipient of the certificate of
academic excellence for the years 1995–1998 and a

scholarship from Kuwait University to pursue the M.S. and Ph.D. degrees in
computer engineering in 2000.

Yao Guo (M’06) received the Ph.D. degree in com-
puter engineering from the University of Massachu-
setts, Amherst, in 2007.

He is an Assistant Professor with the School
of Electrical Engineering and Computer Science,
Peking University, Peking, China. His research
interests include operating systems, low-power
design, compilers, embedded systems, and software
engineering.

Csaba Andras Moritz (M’85) received the Ph.D. de-
gree in computer systems from the Royal Institute of
Technology, Stockholm, Sweden, in 1998.

He is an Associate Professor with the Department
of Electrical and Computer Engineering, University
of Massachusetts, Amherst. From 1997 to 2000,
he was a Research Scientist with the Laboratory
for Computer Science, Massachusetts Institute of
Technology, Boston. He was a Consultant for several
technology companies in Scandinavia and held
industrial positions ranging from CEO, CTO, to

founder. He founded and led BlueRISC, a low-power security microprocessor
company. His research interests include computer architecture, compilers, low
power design, and nanoscale systems.

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 1, 2008 at 20:59 from IEEE Xplore. Restrictions apply.

