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Abstract—Pedometer apps on smartphones and wearable elec-
tronics are increasingly popular nowadays, as they are widely
used for health monitoring and location-based systems. Most
pedometer apps are based on inertial sensors and each step
counting algorithm works precisely under restricted stepping
modes because steps are detected and validated after comparing
their parameters to pre-determined optimal values related to
particular conditions. In this paper, we propose self-adaptive step
counting in order to improve step counting accuracy under un-
restricted stepping modes on smartphones. Based on our human
stepping model, we propose self-adaptive method that can detect
new steps by monitoring vertical acceleration and validate new
steps by comparing to self-adaptive values, which are adjusted
dynamically after each step occurs. We show the flexibility of
the proposed approach by incorporating it into two existing
step counting algorithms WPD and DTW. We also propose a
new stepping cycle recognition (SCR) algorithm that is self-
adaptive and performs the best under variant stepping modes.
With experiments under different stepping modes including fixed
and variant modes, we show that self-adaptive methods perform
significantly better compared to original methods using fixed
optimal values.

I. INTRODUCTION

Pedometers are useful for everyday exercise measurement

and health monitoring, as well as indoor location tracking

and navigation systems [1][2][3][4][5]. For example, using

step counters, we can calculate the number of calories we

consumed or the average step lengths. With the increasing

ubiquity of smartphones, pedometer apps on Android and iOS

are becoming increasingly popular [6]. Currently, there are

hundreds of pedometer apps on Google Play [7], most of

which count steps by analyzing data obtained from inertial

sensors such as accelerometer and gyroscope. Besides smart-

phones, pedometers are also implemented on many wearable

electronics.

Most existing algorithms [8][9][10][11][12] work by com-

paring acceleration data to pre-determined values, such as the

peak, the frequency or even the whole trace. For example,

dynamic time warping (DTW) is a popular algorithm often

used for measuring similarity of two time series such as the

variation of acceleration in stepping. DTW can be used for step

counting to match a gait template that is identified manually

for every tester [8][13]. These methods work accurately under

fixed stepping modes with parameters conforming to optimal

values.

However, pedometer apps need to work under unrestricted

stepping modes including various walking and running con-

ditions. The placement and holding positions of smartphones

could also vary, such as holding in hands, pockets or handbags

[8][14]. Furthermore, different people have different stepping

habits. The optimal parameter values are different for variant

stepping conditions. As most existing algorithms cannot adjust

optimal values dynamically, they have difficulties to adjust to

arbitrary unrestricted stepping modes.

In this paper, we introduce self-adaptive step counting to

increase the accuracy of pedometer apps on smartphones to

accommodate to unrestricted stepping modes. In particular, we

apply the self-adaptation idea to two existing step counting

algorithms, namely WPD and DTW [8], and also propose a

new algorithm called step cycle recognition (SCR), which is

self-adaptive in nature and able to adapt to new stepping modes

more accurately.

When implementing the existing techniques, we also take

advantage of the gravity sensor and linear accelerometer that

have been equipped on new smartphones such as Google

Nexus 5 [15]. With the gravity sensor, we detect steps by

monitoring vertical acceleration based on the human stepping

model and validate steps by comparing the detected steps

with sample steps similar to existing algorithms. The main

difference is that the samples steps used in the adaptive

algorithms are dynamically adjusted after new steps occur.

In addition to demonstrate the performance of self-

adaptation on existing algorithms, we also propose and im-

plement a more precise and stable step counting algorithm

called stepping cycle recognition (SCR). Because SCR is self-

adaptive in nature, it can overcome the limitations in the

existing WPD and DTW algorithms.

We have tested the self-adaptive algorithms in over 100

cases under 7 different stepping modes including 5 walking

modes, a running mode, and a variant mode with a combi-

nation of different conditions. In the evaluation of 285 data

traces, we show that all proposed methods work much more

precise than the Android native counter, while the self-adaptive

versions are significantly better than the original algorithms

with fixed thresholds. In addition, the proposed new SCR

algorithm performs the best in most situations, especially for

complicated variant stepping mode.

We make the following main contributions in this paper:
• This paper introduces self-adaptive step counting to in-
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crease the accuracy of pedometer apps on smartphones to

accommodate to unrestricted stepping modes. The self-

adaptive method is widely applicable, as it can be inte-

grated into existing popular algorithms such as DTW and

WPD, replacing their fixed optimal values with dynamic

values to increase their accuracy.

• We also propose a new Stepping Cycle Recognition

(SCR) algorithm that is more accurate and stable than

existing algorithms.

• We demonstrate the effectiveness of self-adaptation with

experiments involving various stepping configurations.

The rest of the paper is organized as follows. Section II

presents the background and related work of step counting on

smartphones. Section III describes how self-adaption applies

to existing step counting algorithms such as WPD and DTW.

Section IV describes limitation of the adaptive WPD and DTW

algorithms and presents the basic idea and implementation of

the proposed SCR algorithm. Section V presents the exper-

imental data including performance and energy consumption

of different algorithms. Section VI discusses the results and

future work, and Section VII concludes the paper.

II. BACKGROUND AND RELATED WORK

A. Step Counting

Traditional pedometers count steps by inertia with a metal

pendulum or steel ball inside, while modern pedometers have

built-in MEMS 3-axis accelerometer and microcomputer to

distinguish a real step from different types of vibrations

[5][16][17].

Pedometers apps on smartphones work by analyzing data

from built-in inertial sensors, using algorithms such as peak

detection, zero-cross counting, acceleration differential and/or

step distance computation [9]. The counters are incremented

when the values of all parameters are beyond the threshold

and/or in the range [8][9][10][12].

In a recent work, Jayalath et. al presents a gyroscope based

step counting algorithm under different activities and variant

speed and their average accuracy is above 96% [10].

The study of walking patterns recognition is relevant to our

work. By using acceleration signals, it is possible to recognize

different walking patterns such as walking slowly, walking fast

and going up and down stairs [18][19][20].

The most relevant to our work is from Brajdic and Harle

[8]. They tested the performance of 9 step counting algorithms

using accelerometer on smartphones under 6 different phone

placements. The best overall algorithm is windowed peak

detection (WPD) with error rates of less than 3%. Although

they have also targeted at different phone placement, they have

not considered various walking conditions such as the speed

of walking or running. In fact, we have integrated our self-

adaptive method with two of the algorithms from their work.

B. Using Linear Accelerometer and Gravity Sensors

Although most existing algorithms have been using ac-

celerometers, this paper tries to take advantage of the gravity

Fig. 1. Orientation of a smartphone.

sensors and linear accelerometers, which have been equipped

on the newest smartphones such as Google Nexus 5 [15].

We obtain acceleration without influence of gravity

(ax, ay, az) from linear accelerometer and components of

gravitational acceleration in tri-axial directions of the smart-

phone (gx, gy, gz) from gravity sensor. Based on the data, we

compute the horizontal acceleration (ah), vertical acceleration

(av) and orientation (δ) of the smartphone [15][21]. ah is

an absolute value and av is positive when it is upward and

negative when it is downward [17]. Furthermore, δ is the

directed angle of the smartphone orientation and the horizontal

plane (as shown in Fig. 1), which ranges 0 to 90◦ when the

smartphone faces up and 0 to -90◦ when it faces down.

Zhou et. al presented a method to compute the orientation

(δ) using the gravity sensor with average errors of about 10◦

in their work [22]. We use the following equations to calculate

the horizontal acceleration (ah) and vertical acceleration (av):

g =
√
g2x + g2y + g2z

a =
√
a2x + a2y + a2z

av =
axgx + aygy + azgz

g

ah =
√
a2 − a2v

C. The WPD Algorithm

Brajdic and Harle [8] used a centered moving average (op-

timal value 0.31s) to smooth the acceleration magnitude. They

then applied a windowed peak detection (WPD) algorithm

(optimal value 0.59s) to get the peak values associated with

heel-strike. When walking regularly, the peak values vary in

a small range close to their optimal values.

In their work, the WPD algorithm with error rates of less

than 3% is the best overall algorithm for step counting regard-

less of smartphone placement [8]. As using linear accelerator

and gravity sensor instead of accelerator, our improved WPD

algorithm analyzes the peak value of horizontal acceleration,

vertical acceleration, total acceleration and orientation. To be

more precise, we also focus on the frequency data, such as the

time length of a step and the stride frequency [23].

D. The DTW Algorithm

Dynamic time warping (DTW) is another popular algorithm

often used for measuring similarity of two time series such as

the variation of acceleration in stepping [13].
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Fig. 2. Variation of vertical acceleration of a step.

Brajdic and Harle also implemented a DTW-based step

counting algorithm to match a gait template that was iden-

tified manually for every tester [8]. To reduce errors, they

varied minimal step length (optimal value 0.25s) and maximal

distance (optimal value 0.92s) between 2 steps [8].

In contrast, we use the series of horizontal acceleration,

vertical acceleration and orientation for matching. Besides, we

also make use of stride frequency to decrease errors.

III. SELF-ADAPTIVE STEP COUNTING

This section first presents our human stepping model, then

discusses how to apply self-adaptive methods on the existing

WPD and DTW algorithms based on new parameters.

A. Human Stepping Model

Before introducing self-adaptive methods, we first establish

a human stepping model as the basis of step counting. As

usual, we define a step as a motion that starts when lifting

a foot off the ground and ends when the foot returns to the

ground [24][18].

Fig. 2 shows that vertical acceleration turns to upward

direction from near-zero or downward direction when lifting

a foot off the ground, and then turns to downward direction

when the foot is stepping forward, and finally turns to near-

zero from downward direction when the foot returns to the

ground [19].

As a result, we consider the time when the vertical accel-

eration is just turning to upward direction from downward

direction as the end time of a previous step and the start time

of the next step. Based on earlier publications, the time length

of each step is typically between 0.3s to 1.2s.

In the following sections, we use the human stepping model

to detect the start/end time of steps and apply self-adaptive step

counting to the validation of steps.

B. Self-adaptive WPD

The basic idea of the WPD algorithm is comparing the

measurement values of several parameters to their optimal

values. A step will be validated only if all measurement values

are close to optimal values. Comparing to the original WPD

algorithm, two main changes have been made in our self-

adaptive version of the WPD algorithm:

• We check multiple-dimensional parameters including ac-

celeration in different direction and orientation. Besides,

we check stride frequency instead of using moving aver-

age.

• We use self-adaptive optimal values that are adjusted

dynamically during stepping.

Based on the gravity sensor and the linear accelerator, we

check nine stepping parameters including five peak values of

acceleration, two peak values of orientation and two parame-

ters of stride frequency. Fig. 3 illustrates the acceleration and

orientation during stepping and the nine stepping parameters.

There will be a validated step only when all measurement

values are approximate to their optimal values, and after which

the step counter will increase. The nine parameters used in this

algorithm are listed as follows:

• V AUmax : The maximum of upward acceleration.

• V ADmax : The maximum of downward acceleration.

• HAmax : The maximum of the absolute value of hori-

zontal acceleration.

• HAmin : The minimum of the absolute value of horizon-

tal acceleration.

• TAmax : The maximum of total acceleration.

• ORImax : The maximum of directed angle between the

orientation of smartphone and horizontal plane.

• ORImin : The minimum of directed angle between the

orientation of smartphone and horizontal plane.

• TLS : The time length of a step (from the start time to

the end time).

• SF : The time length of contiguous steps (from the start

time of the previous step to the start time of the next

step).

Fig. 4 shows the variation of horizontal acceleration and

vertical acceleration in walking and running, in which we

see that acceleration change faster and larger during running

than walking. Apparently, peak values and the time series of

each step are quite different. Therefore optimal values of one

given mode may not adapt to another mode. To adapt to every

condition, we adopt self-adaptive optimal values instead of

constant optimal values.

Fig. 5 shows that when stepping regularly, the variation of

the smartphone orientation is fluctuating regularly. Similarly,

frequency parameters including the time length of step (TLS)

and the stride frequency (SF ) vary in a small range respective-

ly in a series of steps [19]. To some extent, if the measurement

SF of a new step is very close to its optimal value, we could

validate the step even several measurement values are not close

to their optimal values.

Fig. 6 shows the basic workflow of the self-adaptive WPD

algorithm. The biggest difference is that in non-adaptive

methods, the sample steps always remain unchanged, while in

self-adaptive methods, we dynamically adjust optimal values
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Fig. 3. Illustration of acceleration and orientation, as well as the nine stepping
parameters.

or sample steps after each step even the step is invalidated.

Table I shows the initial optimal parameter values reached

after multiple experiments and the units of parameters.

We introduce a probabilistic model to compute the proba-

bility of a step when the starting time and the end time of

step are determined. The probabilistic model is based on the

proximity of every measurement value (x) of parameters to

the optimal value (μ) (see Table I). The result is between 0 to

1 and a new step will be validated if the result is above 0.7.

The initial model is:

p =

8∏
i=1

pi
αi + β · (p9 − γ)

where pi(1 ≤ i ≤ 5), pi(6 ≤ i ≤ 7) and p8 are the distance

of parameters about acceleration, orientation and TLS of their

measurement values from their optimal values, respectively.

αi(1 ≤ i ≤ 8) adjusts pi and p is calculated by pi
αi(1 ≤ i ≤

8) directly. p9 is the distance of the measurement value of SF
from the optimal value of SF .

If the measurement value of SF is much smaller than its

optimal value, the time may probably not be the start time

or the end time of a step. Thus no step occurs and p9 will

be very close to 0. Conversely, if the measurement value of

SF is close to its optimal value, there probably will be a step

because of the periodicity of stepping. β and γ are used to

adjust p9. The values of αi(1 ≤ i ≤ 8), β and γ are shown

in Table II.

After reaching the probability threshold of a new step, self-

adaptive WPD adjusts the optimal value of every parameter.

To avoid impractical optimal values of parameters about

Fig. 4. Comparison of horizontal and vertical acceleration during walking
and running.

Fig. 5. Comparison of directed angle of steps and irregular motions.

acceleration, they are related to their initial optimal values:

μacce =

0.8 · ∑
tk≤5s

pk

tk
· μk + 0.2 · ∑

tk≤5s

pk

tk
· μ0∑

tk≤5s

pk

tk

As parameters about orientation and stride frequency may

have great difference in different series of steps, their initial

optimal values and their optimal values calculated at the

beginning of a series of steps have low significance. Their

optimal values are not related to their initial optimal values:

μori/time =

∑
tk≤5s

pk

tk
· μk∑

tk≤5s

pk

tk
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TABLE I
PEAK VALUES AND FREQUENCY INFORMATION USED IN THE SELF-ADAPTIVE WPD ALGORITHM.

Parameters Initial optimal values Range of optimal values Proximity of measurement values (x) to optimal values (μ) Units

V AUmax(p1) 6 1 to 20

p =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, if(0.75μ ≤ x ≤ 2μ)

max{0, 1− 2 · (x−2μ
2μ

)2}, if(x > 2μ)

max{0, 1− 2 · ( 0.75μ−x
0.75μ

)2}, if(x < 0.75μ)
m/s2

V ADmax(p2) 4 1 to 10

HAmax(p3) 6 max{4, HAmin} to 20

TAmax(p4) 9 1 to 30

HAmin(p5) 2 0 to min{6, HAmax} p =

⎧⎪⎨
⎪⎩

1, if(x ≤ 2μ)

1− 0.25 · (x− 2μ)2, if(x > 2μ)

ORImin(p6) - -90 to ORImax
p =

⎧⎪⎨
⎪⎩

1, if(|x− μ| ≤ 15)

max{0, 1− (|x−μ|−15)2

500
}, if(|x− μ| > 15)

degree

ORImax(p7) - ORImin to 90

TLS(p8) 0.4 0.16 to 0.8 p =

⎧⎪⎨
⎪⎩

1, if(|x− μ| ≤ 3)

max{0, 1− (|x−μ|−3)2

50
}, if(|x− μ| > 3) s

SF (p9) 0.56 0.24 to 0.8 p =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1− (x−μ)2

8
, if(|x− μ| ≤ 2)

max{0, 0.5− 0.8 · μ−x−4
x

}, if(μ− x > 4)

0.5, otherwise

Fig. 6. Basic workflow of self-adaptive WPD. If the phase surrounded by
dotted box is omitted, it becomes a non-adaptive WPD algorithms.

As stepping is on both legs and the smartphone is usually

put next to one side of the body, such as in a pocket,

hand or handbag, the testing data of different side of the

body may result in differences. To reduce errors, we use two

groups of optimal values to distinguish the different features

of the motions of two legs. Each step belongs to one group.

Consequently, the group of continuous steps is alternating

under normal conditions.

C. Self-Adaptive DTW

To demonstrate that the self-adaptive idea is widely appli-

cable, we also apply it to a DTW algorithm [8]. We reduce

TABLE II
VALUES OF αi(1 ≤ i ≤ 8), β AND γ .

α1 0.5

α2, α3, α4, α5 1

α6, α7, α8 min{1,
∑

tk≤5s

pk
tk

0.07
}

β 0.6

γ 0.5

the searching space of DTW to increase efficiency. The time

complexity becomes O(n) instead of O(n2). We manually

identify 10 groups of trace data from our experiments as

original sample steps (OSS), with which we could validate new

steps at the beginning. The time series of the latest validated

steps are used as self-adaptive sample steps (SASS). They

can validate the following steps and can be replaced by the

following validated steps.

Each element of the trace data is a triple that consists

of horizontal acceleration (ah), vertical acceleration (av) and

orientation (δ). The distance of two elements is defined as:

d1(x, y) = 0.8 ·max{0, |hax − hay|√
max{ 14 , hay

2 }
− 1.5}

d2(x, y) = max{0, |vax − vay|√
max{ 14 , |vay|

4 }
− 1.5}

d3(x, y) =

{
0.08 ·max {0, |δ1 − δ2| − 5}2, SASS
0, OSS

dist =
(
d21 + d22 + d23

) 1
4

Dynamic programming is used to compute the distance of

two groups of trace data as above, where x and y refer to
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Fig. 7. Variation of vertical acceleration during stepping (top figure) and
irregular motions (bottom figure) respectively.

the xth and yth element of each group, respectively. Smaller

distance of trace data and smaller difference in time length

means that two steps have more similarity. A step will be

validated if it is similar to several sample steps. In our study,

we use weighted average proximity as the criteria. We sort

the proximity values in reverse order. Larger proximity value

has larger weight and the weighted average of more values

is more significant. Old sample steps will be replaced by the

latest validated steps such that the algorithm becomes self-

adaptive.

IV. THE SCR ALGORITHM

During experiments, we found that both the WPD and DTW

algorithms have some limitations. WPD algorithm mainly

focuses on peak and frequency parameters, while DTW mainly

focuses on the variation of trace data. In this section, we will

discuss the limitations of WPD and DTW, and then introduce

a new algorithm called Stepping Cycle Recognition(SCR) to

overcome their limitations.

A. Limitations of WPD and DTW

We use the following two examples to demonstrate the

limitations of WPD and DTW.

Fig. 7 shows that the peak value of vertical acceleration may

not vary a lot between regular stepping and irregular motion,

which means that the variation of the trace data of vertical

acceleration is more significant in validation of new steps than

the peak value of vertical acceleration. Consequently, we need

to consider the whole trace data of vertical acceleration instead

of only the peak value.

Fig. 8 shows that the variation of horizontal acceleration

may not be regular even during stepping. When validating new

steps, we check horizontal acceleration to confirm whether

Fig. 8. Variation of horizontal acceleration during stepping.

TABLE III
VALUES OF α UNDER DIFFERENT VALUE OF |x− y|

Value of α Value of |x− y|
3 [0, 0.05s)

9 [0.05s, 0.1s)

24 [0.1s, 0.15s)

∞ [0.15s,∞)

there is forward trend and backward trend. So we only need

to check the peak value of horizontal acceleration but not the

whole trace data. In addition, the mean value and the standard

deviation of orientation has greater significance in validating

new steps than the peak value or the variation of the trace data

mentioned above.

B. Distance of Steps

Based on the discussion above, we propose a new formula

to calculate the distance of two steps, which is the sum of

three terms. The first term is the distance of the trace data of

vertical acceleration. We use the following equation to get the

distance of vertical acceleration of two moments.

dav (S[x].av, T [y].av)

=

{
α · √2 · |S[x].av − T [y].av| , if(S[x].av · T [y].av < 0)
α
2 · |S[x].av−T [y].av|√

max{ 1
2 ,min{|S[x].av|,|T [y].av|}}

, otherwise

We then apply DTW to get the distance of the vertical

acceleration of step S and step T . S[x] and T [y] refer to the xth

moment of step S and the yth moment of step T, respectively.

Table III shows the value of α, which has positive correlation

with the difference of x and y.

The second term is the distance of the peak value of

horizontal acceleration. The third term is the overlap range

of the orientation of two steps. The value of the third term

is negative if the orientation of two steps have higher overlap

range, while the value is zero if the orientation of two steps

have no overlap range.
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dmax{ah}(S) = 4 ·max2{0, 5−max{S[x].ah}}
dmax{ah}(S, T ) =

|max{S[x].ah} −max{T [y].ah}|
4 ·√min{max{S[x].ah},max{T [y].ah}}

dmin{ah}(S) = max2{0,min{S[x].ah} − 5}
distah

(S, T ) = dmax{ah}(S) + dmax{ah}(T ) + dmax{ah}(S, T )
+ dmin{ah}(S) + dmin{ah}(T )

C. Implementation of SCR

Based on the discussion, we propose a new stepping cycle
recognition (SCR) algorithm, which is shown in Fig. 9. It is

able to dynamically adjust the sample steps or the optimal

values according to the steps occurring recently and compare

the new steps to self-adaptive sample steps when validating

new steps. On this basis, we can recognize the cycle of

stepping by counting similar steps occurring in recent seconds.

Specifically, a new step will be validated if the distance

between the new step and sample steps is smaller than a

threshold d1 and there are at least N(N ≤ 3) steps with a

distance to the new step smaller than a threshold d2(d2 > d1)
occurring in recent ts. Sample steps will be dynamically

adjusted after the validation of new steps, which is similar

to the self-adaptive DTW algorithm. SCR is different in that

new steps may be validated a few seconds after they occur.

The optimal values of d1 and d2 are 8 and 5, respectively.

The values of t and N are related to the time length l of

new steps. ts is the tiny interval between contiguous steps

and the value of ts is 0.08s. When recognizing the cycle, if

there are at most N − 1 steps (not including excluded new

steps) occurring in recent ts with a distance to a new step

less than d2, the new step does not follow the periodicity and

will be excluded. As the DTW method is used in computing

the distance of vertical acceleration, SCR replaces old sample

steps with new steps after the validation of new steps, similar

to self-adaptive DTW.

V. EVALUATION

This section presents the experiments, including perfor-

mance and power consumption of the algorithms proposed in

this paper.

A. Experimental Setup

We have implemented our algorithms on Android and

conducted experiments with Google Nexus 5 under six fixed

stepping modes and a variant stepping mode. The six fixed

stepping modes include walking with smartphone in trousers

front pocket, walking with smartphone in trousers back pocket,

walking with smartphone in coat pocket, walking with smart-

phone held in hand, walking with smartphone in handbag and

running with smartphone in trousers front pocket, respectively.

The variant mode is composed of traces from the six fixed

modes mentioned above. A trace in the variant mode is a

combination of 2 to 4 fixed stepping condition.

Horizontal acceleration, vertical acceleration and orientation

in every 40 milliseconds are recorded from the beginning of

TABLE V
MINIMUM AND AVERAGE POWER CONSUMPTION IN DIFFERENT

SCENARIOS.

Status
Minimum

power (mA)

Average

power (mA)

Screen off 49.9 104.0

Screen on 135.1 197.0

Android native step counter 29.5 155.3

Self-adaptive WPD 31.7 198.8

Self-adaptive DTW 94.6 180.0

SCR 32.1 200.9

each experiment to the end. There are 50 to 150 actual steps

in each trace under fixed modes and there are 200 to 400

actual steps in each trace under the variant mode. The external

environment such as temperature and light intensity is non-

constant.

We have conducted 136 experiments under six fixed modes

and the variant mode. Then we mix these traces in different

orders and generate 149 additional traces under different

modes including fixed and variant modes. In total, we use

285 traces in our evaluation.

B. Performance Comparison

Table IV shows the comparison of six different algorithms

including the native Android step counter, the original and

adaptive WPD (aWPD) algorithms, the original and adaptive

DTW (aDTW) algorithms, and the proposed SCR algorithm.

The error rate is calculated as following. cm and ct represent

the measurement values of steps and the actual number of

steps, respectively.

error rate =
|cm − ct|

ct
× 100%

Under all seven conditions, three self-adaptive algorithms

work much better than the Android step counter. Compared

with original non-adaptive algorithm, the self-adaptive algo-

rithms are able to dynamically adapt to various conditions in-

cluding different speed and different placement. Non-adaptive

methods only adapt to a few conditions that conforms to

optimal values.

C. Power Consumption

We measure the power consumption of our algorithms on

Google Nexus 5 by measuring the working current using the

Monsoon Power Monitor [25]. The scenarios include screen

off, screen on, Android native step counter, self-adaptive WPD,

self-adaptive DTW, and the SCR algorithm. Fig. 10 shows the

variation of average power consumption every 0.1s when dif-

ferent operations are performed. Table V shows the minimum

and average power consumption in different scenarios.

The working current is close to 50mA initially when the

phone screen is off and the pedometer is not running. It

jumps to 120mA when the screen is on. The result shows that

our algorithms consume around 25∼45mA additional power

compared to the Android native counter, which is generally

acceptable as our algorithms perform much more accurately.
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Fig. 9. Basic workflow of SCR. The procedure of the recognizing cycle is shown in the dotted box.

Fig. 10. Power Consumption in different scenarios.

VI. DISCUSSIONS

In the first five cases with regular walking, we can see that

the Android native step counter is not accurate enough in most

cases, which indicates that it is not sufficient to just calling

the APIs when doing step counting. In all cases, the adaptive

versions perform significantly better than the non-adaptive

versions using fixed values. However, since the sample steps

or the optimal values of non-adaptive algorithms are in accord

to walking, the error rates of non-adaptive algorithms are not

too high. On average, the SCR algorithm achieves the best

accuracy, but the self-adaptive WPD and self-adaptive DTW

algorithms are very close and even better in several cases. Our

results are similar to the original WPD algorithm implemented

by Brajdic and Harle under the same 4 walking conditions [8].

In the running case, because the condition varies a lot

compared to walking (Fig. 4), the results are less accurate

for most algorithms, especially the original WPD algorithm.

The SCR algorithm works better than the adaptive WPD and

DTW algorithms while running because the trace data of each

running step varies more rapidly than peak and frequency

parameters, while we only need to check the peak value of

horizontal acceleration without the whole trace.

In the last case when variant stepping mode is used, it

includes a variety of combinations with different phone place-

ments and walking modes. We can see that the self-adaptive

algorithms adapt well to the changes, while the original

algorithms are even worse than the Android native counter

(Fig. 11). We find that when the stepping condition changes,
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TABLE IV
TESTING RESULTS OF DIFFERENT ALGORITHMS UNDER DIFFERENT CONDITIONS. (Note that aWPD and aDTW represent the self-adaptive versions of

WPD and DTW, respectively.)

Stepping
mode

Smartphone placement
Quantity
of data

Data type of
error rate (%)

SCR aWPD WPD aDTW DTW
Android
Native

Best
Algorithm

Average 1.40 3.02 6.18 3.04 7.74 4.96
Trousers front pocket 38 Maximum 3.44 17.80 28.32 9.04 21.25 27.40 SCR

Median 1.09 1.58 3.02 2.20 6.46 3.12
Standard deviation 0.98 3.34 6.87 2.43 4.96 5.77

Average 2.41 2.64 4.46 3.32 9.75 5.71
Trousers back pocket 46 Maximum 6.30 8.49 28.90 7.84 19.74 21.34 SCR

Median 1.95 2.40 2.67 3.04 9.65 4.17
Standard deviation 1.75 1.98 5.60 1.86 4.16 4.68

Average 2.45 1.55 8.10 2.61 7.07 3.88
Walking Coat pocket 45 Maximum 4.70 4.52 23.37 5.69 18.10 7.62 aWPD

Median 2.65 1.47 8.07 2.39 7.25 4.14
Standard deviation 1.15 1.05 6.56 1.52 3.57 1.99

Average 2.87 3.31 7.46 2.90 10.63 5.51
Hand Held 36 Maximum 6.97 7.05 26.92 6.77 44.81 9.17 SCR

Median 3.00 3.04 4.54 2.83 6.54 5.90
Standard deviation 1.31 1.37 6.81 1.51 10.73 2.21

Average 2.07 2.09 1.89 1.86 1.99 8.67
Handbag 31 Maximum 5.44 3.96 5.01 5.09 4.18 17.64 aDTW

Median 2.04 2.02 1.99 1.86 1.90 9.62
Standard deviation 1.48 1.04 1.22 1.18 0.99 5.22

Average 2.74 2.96 87.97 5.45 7.00 15.47
Running Trousers front pocket 38 Maximum 11.09 11.44 100.00 14.83 16.91 57.26 SCR

Median 1.73 1.80 87.35 4.71 7.59 8.75
Standard deviation 2.74 2.80 11.74 4.12 4.77 14.82

Average 2.37 2.49 18.32 3.11 6.23 5.33
Variant Variant 57 Maximum 9.18 10.89 59.12 11.87 20.63 28.37 SCR

Median 1.84 1.90 9.30 2.71 5.57 4.64
Standard deviation 1.87 2.58 18.21 2.51 4.52 4.60

Fig. 11. CDFs of different algorithms under variant stepping condition.

the sample steps as well as the optimal values of self-adaptive

methods are adjusted according to new condition. However,

there are still inevitable measurement errors occurring at

the time of condition change. The proposed SCR algorithm

achieves the best accuracy and is also the most stable in this

case.

VII. CONCLUSION

This paper introduces self-adaptive stepping to improve the

accuracy of stepping under unrestricted walking and running

modes on smartphone. We propose self-adaptive versions of

two existing step counting methods, as well as a new SCR

method that performs the best in our evaluations. Experimental

results show that self-adaptive methods achieve much better

results while introducing small power overhead.

Our future work includes improving the current algorithms

further and investigating in how to automatically apply suitable

algorithms under every unrestricted condition.
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