
Operating Systems for Internetware: Challenges and Future Directions

Hong Mei, Yao Guo
Key Laboratory of High-Confidence Software Technologies (Ministry of Education),

Peking University, Beijing, 100871, China
Email: {meih, yaoguo}@pku.edu.cn

Abstract—An operating system is an essential layer of system
software that is responsible for resource management and
application support on a computer system. As the evolvement
of computer systems, the concept of OSs has also been
evolved into many new forms beyond the traditional OSs
such as Linux and Windows. We call this new generation
of OSs as ubiquitous operating systems (UOSs). Among
many new types of UOSs, we are particularly interested
in the operating systems for Internetware, i.e., Internetware
Operating Systems. Internetware is a paradigm for new types
of Internet applications that are autonomous, cooperative,
situational, evolvable, and trustworthy. An Internetware OS
represents our perspective on the OS for future Internet-
based applications. This paper discusses the examples, technical
challenges and our recent effort on Internetware OSs, as well
as our vision on the future of Internetware OSs. We believe
that, in the foreseeable future, Internetware OSs will become
ubiquitous and could be built for many different types of
computer systems and beyond.

Keywords-Operating systems, Internetware, software-defined
everything, ubiquitous operating systems.

I. INTRODUCTION

An operating system (OS) is a layer of system software

that runs between applications and computer hardware,

managing hardware resources such as processors, memory

and storage, while providing support to the software

applications running above it [1]. Although the earliest

computers such as ENIAC did not have an OS, most of the

later computer systems require the installation of an OS to

help bridge the gap between applications and hardware. It is

unrealistic to build applications to run on modern bare-metal

machines without OSs running in between.
As shown in Figure 1, an OS provides resource

management capabilities on processors, storage, and

peripheral device components, while providing systems

calls and human-computer interfaces for applications and

end-users. It exhibits different views when we look at an

OS from different perspectives:

• From the perspective of a computer system, an OS

can be viewed as a resource manager. An OS manages

and coordinates the utilization of all kinds of low-level

hardware and software resources, while supporting the

efficient utilization of these resources. At the same time,

an OS also bridges heterogeneous hardware resources

through hardware drivers, in order to improve the

interoperability among the whole computer system.

Resource Management
(processors, storage, peripheral devices)

Human-Computer Interface
(shell/GUI Window System)

System Calls

Application Application Application…

Figure 1. The architecture of a traditional OS.

• From the perspective of system users, an OS can be

viewed as a virtual machine (VM). On one hand, an OS

provides abstraction to hide the details in the hardware

resources. On the other hand, it also provides user-

friendly user interfaces (UI). For software developers,

an OS also determines the programming model for the

applications running above it.

• From the perspective of application software, an OS can

be viewed as a development and execution platform. It

provides necessary supports for the development and

execution of all application software. For example, an

OS typically includes an execution environment for

application software, runtime resource management and

scheduling, as well as tools for software development

and maintenance.

A. A Brief History of OS

There were no OSs on the earliest computers, as

software applications run directly on bare-metal machines.

As the complexity of a computer system kept increasing,

it becomes harder and harder to manage the resources on

a computer directly in an application. As a result, more

and more common functionality are abstracted as drivers

and libraries, creating a system software layer running

between applications and hardware, which can be shared

between different applications. This software layer were then

named operating systems as it was originally developed

to abstract the operating capabilities to ease the tasks

of computer operators. However, current OSs no longer

focus on the operation of a computer system, instead

1377

2018 IEEE 38th International Conference on Distributed Computing Systems

2575-8411/18/$31.00 ©2018 IEEE
DOI 10.1109/ICDCS.2018.00138

on resource management and application development and

runtime support for a given system.

Modern OSs mostly employ the similar architecture as

the UNIX OS, while customizing their functionalities for a

particular type of computer systems. For example, desktop

OSs such as Windows or MacOS focus on better graphical

user interfaces (GUI) to provide better user experiences for

personal users. Mobile OSs such as Android and iOS are also

based on UNIX-like kernels, while adding a mobile platform

layer to support the development and execution of mobile

apps, in order to provide better experiences for mobile users.

As the fast adoption of computer networks since 1980s,

it becomes critical for an OS to provide networking

capabilities, thus creating many new OSs named as

networking operating systems. The earliest networking OSs

such as Novell Netware focused on the interconnection of

computers within a local network. These OSs were later

discontinued as most of these capabilities are incorporated in

newer versions of desktop OSs, as connecting to the network

has become a must-have for many users.

In addition to networking extensions to OSs, another

important direction for networking support in a tradition

OS is through networking middleware [2]. Middleware

is defined as a layer between applications and the OS,

providing a series of APIs for mainly networking support.

Middleware help hide the complexity and heterogeneity of

the low-level infrastructure (including networks, computers,

OSs and programming languages), such that applications

only need to concern about its main execution logics.

B. New Types of OSs

With the emergence of Internet, the talk of an Internet

OS began to surface in mid-1990s during the war between

Netscape and Microsoft. Marc Andreessen of Netscape

announced a set of new products that would help transform

their browser into an “Internet OS”, which would provide

the tools and programming interfaces for a new generation

of Internet-based applications. The idea of Internet OS

has kept floating around in the past 20 years, as many

different implementations have been proposed, including the

Java-based operating system JavaOS [3] and most recently,

Google’s browser-based operating system Chome OS [4].

Many of these OSs were focused on providing networking

capabilities or incorporating Internet-related data (resource)

management functionalities with OS-like structures. For

example, taking the perspective of “Internet as a computer”,

an Internet OS focuses on providing better support on

software applications running on the Internet. Many Internet

applications do not run on a single computer, or even on a

single computer cluster. Their components (or services) may

run on computers on geographically distributed computer

systems (or even virtual machines), providing specific

services through Internet connections. These new kinds

of networking OSs often run above existing OSs such

as Windows or Linux, while constructing a new layer

above the existing OSs to provide support for Internet-

based applications and services. These networking OSs are

structured as “Meta-OSs”, which means that they are OSs

running above existing (traditional) OSs.

Besides Internet OS, many new types of OSs are also

Meta-OSs. For example, the most popular OS for robots,

ROS [5], provides robot application development support

and robot communication capabilities through a set of robot-

related SDKs and libraries. Unlike Linux or Windows,

ROS is a meta-OS running above Linux or Windows.

However, similar to Linux or Windows, it includes OS-like

resource abstractions and management capabilities, as well

as application development and runtime support.

C. Ubiquitous Operating Systems

Mark Weiser envisioned a future of ubiquitous

computing [6], where computing exists everywhere.

To achieve true ubiquitous computing, every object and

entity in the world may be programmable, for example,

smart bulbs can sense the environment and change its colors

accordingly. We have not reached the point where we need

to build an OS for a smart bulb. However, we already need

to build an OS for a robot, a smart home, or a network

adaptor (i.e., SDN). As it seemed unrealistic when Mark

Weiser proposed ubiquitous computing more than a quarter

of a century ago, we argue that OSs will be ubiquitous too.

Ubiquitous operating systems (UOSs) [7] represent a

new set of operating systems beyond the traditional OSs

such as Linux and Windows. As the basic functionality

of an OS is managing underlying resources and providing

programming capability to the applications running above,

a new layer of software can be regarded as a form

of OS if it provides these kinds of functionalities. For

example, Android itself is not a traditional OS, as it

builds upon an existing Linux kernel. However, Android

provides specialized resource management for smartphones,

while providing a programming and runtime framework for

Android apps. Thus, most people would regard Android as

a mobile operating system (i.e., a UOS) itself, although it

is essentially a middleware layer if we look at it from a

traditional perspective.

Looking forward to the future, we believe that UOSs

can be built for devices large and small, at the scale of

single computers as well as clusters, at both the hardware

and software levels, and for applications ranging from smart

homes to smart cities. Although these OSs might look very

different from one another, they all embody the same general

principles and characteristics as traditional OSs – namely,

resource virtualization and function programmability.

We can categorize existing and future UOSs into three

different types:

• UOSs for different computing devices. These are

mainly extended from (and include) traditional OSs

1378

such as Linux and Windows. Examples include mobile

operating systems such as iOS and Android, embedded

OSs such as Android Thing, or robot OSs such as

ROS. We have already witnessed that different OSs

have been built for small embedded systems, mobile

smartphones and tablets, traditional desktop PCs and

laptops, standalone workstations and networked servers.

In the future, OSs will be extended to almost all old and

new IT systems, including both tiny computing devices

in edge computing, and large computing environments

such as supercomputers.

• UOSs for new types of applications. The previous

type of UOSs focus on computing devices that a UOS

needs to manage from a bottom-up view. In contrast,

from a top-down view, we envision that a UOS can

be built for each new type of applications in different

domains. From this perspective, a UOS focuses on

providing application programming interfaces (APIs)

and library support for building new types of

applications. For example, a UOS can be built for

new application domains such as big data, Internet of

Things, or even artificial intelligence.

• UOSs for networked systems. This view of UOSs

is based on the observation that an OS can run

across different networked devices such as a cloud. For

example, A UOS can be built for a networked system

including not only computation servers, but also mobile

terminals. In such cases, a UOS needs to consider how

to manage distributively networked resources, as well

as how to provide programming functionality for new

applications running on a networked system. These

UOSs are mostly meta-OSs, which include OSs for

cloud computing environments, as well as OSs for

various enterprises, organizations, or institutions, as

well as government agencies.

Please note that, sometimes, a UOS can be classified into

not only one, but multiple categories. For example, mobile

OSs such as Android can be considered as not only a UOS

for new types of mobile devices, but also a UOS for new

types of mobile apps. The categories here are provided only

to help us understand the evolvement and implications of

new types of UOSs.

II. INTERNETWARE OPERATING SYSTEMS

Internetware [8], [9], [10] is a new software paradigm

for Internet computing. This term was coined to describe

the new types of software applications on Internet with

characteristics that are autonomous, cooperative, situational,

evolvable, emergent, and trustworthy. The Internetware

software model consists of a set of autonomous software

entities distributed over the Internet, together with a

set of connectors to enable collaborations among these

entities in various ways. Internetware software entities can

sense dynamic changes in the running environment and

continuously adapt to these changes through structural and

behavioral evolutions. The research of Internetware includes

its models, development methodology and runtime support,

and quality measurement and insurance [11].

Figure 2 shows the concept of an Internetware OS,

which represents our perspective on the OS for future

Internet-based applications. An Internetware OS is a type

of UOS for networked systems. The structure of an

Internetware OS is similar to the layered structure of a

tradition OS, in the sense that it also provides the resource

management functionalities and provides development and

runtime support the applications running above it. However,

because Internetware applications are not confined within a

single computer system and could run on large-scale systems

such as cloud, or even the Internet, thus an Internetware OS

is a meta-OS running above existing OSs such as Windows

and Linux. The resources managed by an Internetware OS

are also generalized in the sense that it can be any types of

resources existed on the Internet.

A. Examples of Internetware OSs

In this paper, as an Internetware OS is defined as an OS

for new types of Internet applications, thus many existing

OSs are qualified as Internetware OS, including:

• Robot OS: The Robot Operating System (ROS) [5] is

a flexible framework for writing robot software. It is a

collection of tools, libraries, and conventions that aim to

simplify the task of creating complex and robust robot

behavior across a wide variety of robotic platforms.

Although it is not a traditional OS, ROS provides a set

of abstractions and APIs that can be used in developing

robot applications across different robotic platforms.

Thus, ROS is a meta-OS that provides development

and runtime supports of robotic applications. ROS has

become the most popular robot OS and has adopted

and ported to dozens of different robotics systems.

• HomeOS: As a Microsoft initiative that aims to enable

smarter homes for everyone [12], the major goal of

HomeOS is to simplify the management of technology

and to simplify the development of applications in the

home. HomeOS provides a centralized, holistic control

of devices in the home. It provides to users intuitive

controls to manage their devices, and to developers

higher-level abstractions to orchestrate the devices in

the home. HomeOS even has its own app store called

HomeStore, through which users can easily add and

obtain applications that are compatible with devices in

their homes and obtain any additional devices that are

needed to enable desired applications. It was developed

as a research prototype and deployed to more than a

dozen homes.

• City OS: There are many initiatives that claim they

are building different city OSs. One of the earliest

city OSs is the PlanIT Urban Operating System [13],

1379

Internetware
Applications

Internet Resource management

Internetware APIs

Private
Cloud

Public
Cloud

Terminal Sensors

Development and Runtime Support
for Internetware Applications

Internetware
Applications

Internetware
Applications

Internetware
Applications

…………

In
te

rn
et

w
ar

e
O

pe
ra

tin
g

Sy
st

em

Figure 2. The concept of an Internetware OS.

which claims to be the smartest, most flexible way

to converge infrastructure with a world of sensors,

devices and people across developments of scale and

entire cities. It provides abstractions and management

interfaces to city systems such as energy, water, waste

management, transportation, telecommunication, and

healthcare, while providing programming APIs that

ensure interoperability between different platforms.

• Cloud OS: Conceptually, a cloud OS [14] does what

a traditional OS does C manage applications and

hardware - but at the scope and scale of cloud

computing. Compared to a traditional OS, a cloud

OS replaces file systems with object storage, enabling

infinitely scalable storage capacity and I/O throughput.

Instead of managing processes, a cloud OS deals with

virtual machines (VMs) and tasks. More importantly,

a cloud OS also offers various cloud-based APIs, that

can be used to in cloud applications to utilize the cloud

resources. Some APIs, such as object storage APIs,

have even become common across all major public

cloud providers. Many cloud service providers have

created their own cloud OSs, such as Microsoft Azure,

Amazon AWS, and Huawei FusionSphere. There are

also popular open-source cloud OSs such as OpenStack

and Apache CloudStack.

• IoT OS: Google’s Android Things (Brillo) OS [15]is an

Android-based embedded operating system platform.

It is aimed to be used with low-power and memory

constrained Internet of Things (IoT) devices. Android

Things allows developers to build a smart device using

Android APIs and Google Services. It is similar to

Android, as it can be applied with the usual Android

development stackłAndroid Studio, the official SDK,

and Google Play Services, however, it is customized to

make it applicable to IoT applications. Android Things

is a simplified and polished Android to make it run

smoothly on low-power IoT devices. It also introduces

a new communication protocol called Weave.

B. Technology Support for Internetware OSs

As a new type of UOS, Internetware OSs require the

support of the following core techniques: virtualization,

application programming interface (API), security and

privacy, and customization.

1) Virtualization: Internet is developing into a huge

virtualized computing platform, providing distributed

storage and computing capability to the applications running

on it (i.e., Internetware) and end-users. Internetware OS

manages distributed software and hardware resources with

virtualization, and offers scalable resource accesses and

computing capabilities based on the application or user

requirements.

Virtualization technologies appeared first in the IBM

mainframe systems in the 1960s. These machines created

virtual machines (VMs), which are managed by virtual

machine monitors (VMMs) [16]. Each VM can run an

operating system independently, thus many OSs can run

on a single machine. Virtualization has become more

popular in recent years, with the prevalence of multi-core

system, clusters and cloud computing. Virtualization not

only reduces the IT cost, it can also improves the security

and reliability of the systems.

1380

Today, the concept of virtualization is used not only for

various computing resources, i.e., virtual machines. From

the perspective of Internetware OS, virtualization means that

we can abstract all the underlying software and hardware

resources through virtualization, then offers them to the

application software and users through unified application

programming interfaces (APIs). As a result, we are referring

to the “virtualization” in a generalized sense. Not only can

we virtualize computing resources, we can also virtualize

storage resources, data resources, sensors, network devices,

terminal devices, and even user information.

There have been many advances in the area of

virtualization for new computing models such as cloud

computing and mobile computing, for example, OS kernel

virtualization [17], data center virtualization [18], nested

virtualization [19], [20], light-weight virtualization for

smartphone devices [21], etc. In order to provide better

support for Internetware OSs, we need to investigate on more

general virtualization technologies for various devices and

resources, as well as how to better optimize these systems.

2) Application Programming Interfaces (APIs):
Application programming interface (API) provides a way to

connect the different component within a software system.

It can also be used to represent the programming interfaces

provided by the operating system or function libraries. As

the size the software system keeps increasing, we often

need to split a complicated system into many smaller

components, thus it becomes very important to design

appropriate programming interfaces.

Tradition OSs are actually API providers themselves. An

OS provides various libraries to applications running on it.

An application typically requires calling the content of these

libraries, or utilizing the hardware and resources, through the

APIs provided by an OS. In the Internet era, Internetware

rely heavily on APIs (or services) to access the storage

and computing resources, which could reside locally or in a

remote location.

The concept of API economy [22] has emerged in recent

years, as the importance of APIs keeps increasing. Not

only are APIs the interfaces between computer programs,

they have also become the digital links for modern

enterprises to provide services, applications and systems.

API economy promotes open interfaces for data and

computation, as well as numerous new applications based

on these interfaces. From this angle, API economy promotes

a type of Internetware OS that provides APIs and supports

the development and execution of new types of applications.

3) Security and Privacy: In the Internet era, the

openness and emergence of Internetware bring severe threats

to security of privacy. More and more user data and

computation have been moved to public cloud platforms

such as Amazon AWS or AliCloud, thus introducing the

potential leakage of privacy, as well as issues in data

security [23]. In response to these threats, we need to

investigate the following techniques:

• The security mechanisms for the Internetware OS

infrastructure: how to ensure the confidentiality and

integrity of data, how to ensure the security between

the system layer and the application layer, etc.

• The data security and privacy protection for

Internetware OS storage: how to reduce the safey risks

of data, how to avoid the privacy risks, as well as

privacy-related laws and regulations, etc.

• Identity authentication and access control for

Internetware OSs: the trust boundary of, user

management, mechanisms for identity authentication,

access control models, etc.

• Security management of the application execution

in Internetware OSs: including the security and

availability management of cloud computing, security

vulnerabilities, security protection, etc.

4) Customization: Due to the model of centralized

computing, Internetware OSs might evolve into a

management system comprising a huge number of

resources and applications. However, for an OS oriented

for end users, not all these resources are need because

each user has different requirements. In addition, it is

difficult for the users to find the specific resource they need

because there are simply too many resources available. As

a results, an Internetware OS needs to support personalized

customization based on the huge repository of common

resources. While it can support public software and services,

it is also convenient to build an Internetware OS for public,

enterprise, family or even an individual human being, all

supported by the capability of personalized customization.

Componentization is software development mechanism

aiming at automated software composition. Many

researchers have proposed and developed various prototypes

for componentized OSs in early years. In the Internet era,

the diversity of Internetware introduces more challenges to

the customization capabilities of Internetware OSs. We need

to investigate different customization technologies including

componentization techniques, in order to improve the

adaptability of Internetware OSs for different application

models and different user environments.

C. Our Practices

We have been researching and building an OS for

Internetware that includes a set of software-defined

features to abstract the low-level resource management

functionalities of Internetware applications [24], [25].

Figure 3 shows the prototype architecture of our

Internetware OS, which we regard as a prototype OS for

future Internet-based applications. Within the Internetware

OS, an Internetware application runs on top of the existing

hardware systems including the cloud and edge devices. The

Internetware OS core provides abstractions to manage both

cloud and edge resources, while an application framework

1381

Figure 4. A prototype architecture for CampusOS. A prototype has been
developed and deployed at Peking University to support the development
and runtime management for various campus applications [27].

layer accommodates applications for different domains –

for example, enterprise computing, mobile computing, and

data as a service (DaaS).

1) YanCloud: As a cloud OS built for private cloud

computing systems within an organization, YanCloud [26]

is developed to support multiple types of virtualization

technology, such that it is able to provide management of

almost all existing virtual machines including Xen, VMWare

and KVM, etc. One of the most prominent features of

YanCloud is that it provides software-defined capabilities to

generate cloud management applications with architecture-

based model-driven runtime management.

YanCloud is designed as a middleware layer that provides

management capabilities on different virtual machines, as

well as programmability capability for cloud management

applications. Thus it can be regarded as a UOS for cloud

computing systems. YanCloud has been deployed in many

business organizations, and has been installed as an OEM

cloud OS for cloud servers from major manufacturers such

as Lenovo and Founder.

2) CampusOS: We have also developed a prototype

of CampusOS [27], which aims at providing OS-level

support for campus applications within a university campus.

CampusOS manages resources in a campus, including

personal (student and faculty) information, course schedules,

activity information, etc. It also provides abstractions to

manage these resources, as well as software-defined APIs

and SDKs to support campus application development and

execution.

Figure 4 presents the hierarchical architecture of

CampusOS. The bottom layer is the CampusOS Core and

the underlying implementations of the whole system. This

layer corresponds to the development of the CampusOS

system. The middle layer consists of service drivers on the

server side and the CampusOS SDK and service daemons

on the client side. This layer corresponds to the development

and extension of the CampusOS features. The top layer

is based on the CampusOS SDK, including CampusStore

(similar to app store) and campus applications.

We design CampusOS as an open, community-oriented

operating system for university campuses. Just like

traditional operating systems, CampusOS provides

programming interfaces, libraries, and runtime management

of applications, although at a higher level. Many components

of CampusOS depend on traditional operating systems like

Windows and Linux, as well as networked resources in the

cloud and on the Internet.

CampusOS is intended to serve as an open platform

for campus applications, which means that not only can

developers publish new applications to CampusOS, but they

can also add new features to CampusOS. CampusOS is

designed with the principle of extensibility in mind, such

that new features can be easily added into it. When some

developers come up with interesting new features, they can

choose to share the features with other developers by adding

them to CampusOS. With more and more features added into

CampusOS, more complex campus applications can be built,

which will in turn attract more users and more developers,

thus forming an ecosystem.

3) YanDaaS: Most recently, we have proposed and

developed an instance of Internetware OS for data

management and sharing between different types of legacy

software systems. As its name implies, YanDaaS is an OS

providing Data-as-a-Service functionalities.

The main goal of YanDaaS is to help connecting these

isolated legacy software systems and applications through

automated API generation and new application development

without the source code of these legacy systems [28].

The data schemes and data access APIs of these legacy

systems can be generated with a black-box runtime analysis

mechanism, through computational reflection guided by

software architectures. As a result, the recovered runtime

software architecture can govern the structure and behavior

of the legacy systems and enable their interoperability and

integration with new systems.

YanDaaS can be regarded as a DaaS OS for legacy

systems that provides software-defined data access and

management capabilities. It has been successfully deployed

to hundreds of industrial legacy systems covered by the

national “Smart City” program in China.

III. FUTURE DIRECTIONS OF INTERNETWARE OSS

We envision that some attractive Internetware OSs will

emerge in the near future, which include:

• Enterprise OS: In future, we may need an OS to

provide management capabilities for each and every

organization. In order for an OS to manage a real-world

organization, it should be able to support management

of enterprise resources such as people, funds, and

(real) machines, as well as providing support for

(real) process management and output management.

1382

CCloud Resources

Compute Storage Network Devices

Enterprise Computing App
Framework

Mobile Computing App
Framework

Internetware OS Core

Smart Grid Smart CampusSmart Cities
Smart

Enterprises

Resource
management

System calls

Application
frameworks

Applications

Edge Resources

PCs Phones Tablets TVs

…

……

Data-as-a-Service (DaaS)
App Framework

Internetware
Processing APIs

Internetware
Data APIs

Internetware
Networking APIs

Internetware
Device APIs

Figure 3. A prototype architecture for Internetware operating systems. Internetware applications run on top of the cloud and edge devices. The Internetware
OS core provides abstractions to manage both cloud and edge resources, while an application framework layer accommodates applications for different
domains.

Enterprise OSs can be built by reconstructing the

current management systems (such as MIS or ERP)

already deployed in many enterprises, while adding

programming APIs to support flexible enterprise

application development.

• OS for industrial control and manufacturing

businesses: As a special type of enterprises,

many manufacturers have long utilized software

to control their manufacturing processes and pipelines.

Many manufacturers have also deployed automated

production systems as well as robotic control systems.

Although many of these industrial control systems

have been controlled with simple software layers

such as embedded systems, new software-defined

abstractions and communication capabilities will

become inevitable as more intelligence and automation

will be built into these industrial control systems in

the near future. Building OSs for these manufacturers

will help improve the efficiency and intelligence of

their production control systems.

• OS for Human-Cyber-Physical convergence: There

is a trend in software applications and systems

where we have observed the convergence of three

previously isolated domains: human beings, cyber

systems, and the physical world. Human-cyber-physical

convergence will bring many interesting applications

beyond the current cyber-physical systems or Internet-

of-Things. However, new software-defined abstractions

and capabilities will be needed to support the

management, application development, as well as

communications within and between these human-

cyber-physical systems.

IV. CONCLUDING REMARKS

With the generalization of the OS concept, we believe

that OSs will become ubiquitous in the near future, resulting

in many interesting ubiquitous OSs (UOSs). In the context

of Internetware, we envision that Internetware OS, as an

important type of UOSs, will emerge to support the efficient

development and execution of new types of Internetware

applications.

However, several key technical challenges still need to

be resolved, including the architecture of Internetware OSs,

performance and applicability issues, as well as security

and privacy considerations. Nonetheless, we believe future

Internetware OSs will keep emerging from new computing

domains and beyond, including but not limited to, areas such

as robotics, enterprise computing, manufacturing, big data,

and artificial intelligence. Along this direction, our future

work include developing Internetware OSs for new areas

such as unmanned systems, manufacturing, as well as new

computing models such as neuron computing.

ACKNOWLEDGMENTS

This work was partly supported by the National

Key Research and Development Program (No.

2017YFB1001904) and the National Natural Science

Foundation of China (No. 61772042).

1383

REFERENCES

[1] H. Mei and Y. Guo, “Network-oriented operating systems:
Status and challenges,” Science China Information Sciences,
vol. 43, no. 3, pp. 303–321, mar 2013, (in Chinese).

[2] P. A. Bernstein, “Middleware:a model for distributed system
services,” Communications of the Acm, vol. 39, no. 2, pp.
86–98, 1996.

[3] P. W. Madany, S. Keohan, D. Kramer, and T. Saulpaugh,
“Javaos: A standalone java environment,” Sun Microsystems,
Mountain View, CA, White Paper, 1996.

[4] S. Pichai and L. Upson, “Introducing the Google Chrome
OS,” The Official Google Blog 7, 2009.

[5] M. Quigley, B. P. Gerkey, K. Conley, J. Faust, T. Foote,
J. Leibs, E. Berger, R. Wheeler, and A. Y. Ng, “Ros: An
open-source robot operating system,” in ICRA workshop on
open source software, 2009.

[6] M. Weiser, “The computer for the 21st century,” SIGMOBILE
Mob. Comput. Commun. Rev., vol. 3, no. 3, pp. 3–11, Jul.
1999. [Online]. Available: http://doi.acm.org/10.1145/329124.
329126

[7] H. Mei and Y. Guo, “Toward ubiquitous operating systems: A
software-defined perspective,” Computer, vol. 51, no. 1, pp.
50–56, January 2018.

[8] F. Yang, J. Lv, and H. Mei, “Technical framework for
internetware: An architecture centric approach,” :f, vol. 51,
no. 6, pp. 610–622, 2008.

[9] H. Mei, G. Huang, H. Zhao, and W. Jiao, “A software
architecture centric engineering approach for internetware,”
Science in China, vol. 49, no. 6, pp. 702–730, 2006.

[10] H. Mei, G. Huang, and T. Xie, “Internetware: A software
paradigm for internet computing,” Computer, vol. 45, no. 6,
pp. 26–31, June 2012.

[11] H. Mei and J. Lv, Internetware: A New Software Paradigm
for Internet Computing. Springer, 2016.

[12] C. Dixon, R. Mahajan, S. Agarwal, A. J. Brush, B. Lee,
S. Saroiu, and P. Bahl, “An operating system for the home,”
in Proceedings of the 9th USENIX Conference on Networked
Systems Design and Implementation, ser. NSDI’12. Berkeley,
CA, USA: USENIX Association, 2012, pp. 25–25.

[13] Living PlanIT SA, “Urban OS,” http://living-planit.com/,
2017.

[14] D. G. Chandra and D. B. Malaya, “A study on cloud os,”
in International Conference on Communication Systems and
Network Technologies, 2012, pp. 692–697.

[15] Google, “Android Things,”
https://developer.android.com/things/index.html, 2017.

[16] A. G. Olbert, Extended control program support: VM/370:
a hardware assist for the IBM virtual machine facility/370.
ACM, 1978.

[17] R. Nikolaev and G. Back, “Virtuos: an operating system with
kernel virtualization,” in Twenty-Fourth ACM Symposium on
Operating Systems Principles, 2013, pp. 116–132.

[18] S. Angel, H. Ballani, T. Karagiannis, G. O’Shea, and
E. Thereska, “End-to-end performance isolation through
virtual datacenters,” in Usenix Conference on Operating
Systems Design and Implementation, 2014, pp. 233–248.

[19] M. D. Day, M. D. Day, Z. Dubitzky, M. Factor, N. Har’El,
A. Liguori, A. Liguori, O. Wasserman, and B. A. Yassour,
“The turtles project: design and implementation of nested
virtualization,” in Usenix Conference on Operating Systems
Design and Implementation, 2010, pp. 423–436.

[20] F. Zhang, J. Chen, H. Chen, and B. Zang, “Cloudvisor:
retrofitting protection of virtual machines in multi-tenant
cloud with nested virtualization,” in ACM Symposium on
Operating Systems Principles, 2011, pp. 203–216.

[21] J. Andrus, C. Dall, A. V. Hof, O. Laadan, and J. Nieh,
“Cells: A virtual mobile smartphone architecture,” in
Proceedings of the Twenty-Third ACM Symposium on
Operating Systems Principles, ser. SOSP ’11. New York,
NY, USA: ACM, 2011, pp. 173–187. [Online]. Available:
http://doi.acm.org/10.1145/2043556.2043574

[22] I. Gat, T. Remencius, A. Sillitti, G. Succi, and J. Vlasenko,
“The api economy: Playing the devil’s advocate,” Cutter IT
Journal, 2013.

[23] Z. Xiao and Y. Xiao, “Security and privacy in cloud
computing,” IEEE Communications Surveys & Tutorials,
vol. 15, no. 2, pp. 843–859, 2013.

[24] H. Mei, “Understanding ”software-defined” from an os
perspective: technical challenges and research issues,” Science
China Information Sciences, vol. 60, no. 12, p. 126101, 2017.

[25] H. Mei and Y. Guo, “Development and present situation
of Internetware operating systems,” Science & Technology
Review, vol. 34, no. 14, pp. 33–41, 2016, (in Chinese).

[26] X. Chen, Y. Zhang, X. Zhang, Y. Wu, G. Huang, and H. Mei,
“Towards runtime model based integrated management of
cloud resources,” in Proceedings of the 5th Asia-Pacific
Symposium on Internetware, ser. Internetware ’13. New
York, NY, USA: ACM, 2013, pp. 1:1–1:10. [Online].
Available: http://doi.acm.org/10.1145/2532443.2532444

[27] P. Yuan, Y. Guo, and X. Chen, “Towards an operating system
for the campus,” in Proceedings of the 5th Asia-Pacific
Symposium on Internetware, ser. Internetware ’13. New
York, NY, USA: ACM, 2013, pp. 24:1–24:4. [Online].
Available: http://doi.acm.org/10.1145/2532443.2532468

[28] G. Huang, X. Liu, X. Lu, Y. Ma, Y. Zhang, and
Y. Xiong, “Programming situational mobile web applications
with cloud-mobile convergence: An internetware-oriented
approach,” IEEE Transactions on Services Computing,
vol. PP, no. 99, pp. 1–1, 2016.

1384

