
LibRadar: Fast and Accurate Detection of Third-party
Libraries in Android Apps

Ziang Ma, Haoyu Wang, Yao Guo, Xiangqun Chen
Key Laboratory of High-Confidence Software Technologies (Ministry of Education),

School of Electronics Engineering and Computer Science, Peking University
{maziang, howiepku, yaoguo, cherry}@pku.edu.cn

ABSTRACT
We present LibRadar, a tool that is able to detect third-
party libraries used in an Android app accurately and in-
stantly. As third-party libraries are widely used in Android
apps, program analysis on Android apps typically needs to
detect or remove third-party libraries first in order to func-
tion correctly or provide accurate results. However, most
previous studies employ a whitelist of package names of
known libraries, which is incomplete and unable to deal with
obfuscation. In contrast, LibRadar detects libraries based
on stable API features that are obfuscation resilient in most
cases. After analyzing one million free Android apps from
Google Play, we have identified possible libraries and col-
lected their unique features. Based on these features, Lib-
Radar can detect third-party libraries in a given Android
app within seconds, as it only requires simple static analysis
and fast comparison. LibRadar is available for public use
at http://radar.pkuos.org. The demo video is available at:
https://youtu.be/GoMYjYxsZnI

1. INTRODUCTION
Android apps have been studied extensively in recent liter-

ature. One particular feature of Android apps is that most
of them use third-party libraries. For example, app devel-
opers use advertising service libraries to generate revenue;
they can also use social networking libraries and other de-
velopment libraries to facilitate development and add new
features to their apps. Libraries such as social networking li-
braries and mobile analytic tools are very popular [1]. Many
apps use more than 20 third-party libraries [3].

Because third-party libraries account for a large portion
of the code in Android apps, program analysis on Android
apps typically requires detecting or removing third-party li-
braries first. Third-party libraries usually introduce signif-
icant noise and they could significantly affect the results of
many tasks. For example, in app clone detection [9, 16] and
app behavior analysis, most approaches need to extract code
level features from decompiled apps. The results will differ
greatly if third-party libraries are not correctly removed.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICSE ’16 Companion, May 14-22, 2016, Austin, TX, USA
c© 2016 ACM. ISBN 978-1-4503-4205-6/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2889160.2889178

At the same time, wide use of third-party libraries brings
new security and privacy risks. Recent research [14] reveals
that third-party libraries, even the most popular ones, may
pose threats to privacy of mobile users.

It is challenging to identify third-party libraries from com-
piled binary code (or byte code) accurately. Most of the
state-of-the-art approaches use a whitelist of package names
(directories) to identify third-party libraries by comparing
their package names. For example, Centroid [8] uses a list
of 73 libraries to filter third-party libraries, while AdRisk[11]
uses a list of 100 libraries.

However, relying on package names to identify third-party
libraries can be very inaccurate, as package names can be
modified in many ways (e.g., package name obfuscation). In
contrast to package names, API features such as the call
frequencies of different APIs are typically unobfuscated.

We present LibRadar1, a tool to detect third-party li-
braries used in Android apps accurately and instantly. One
key idea of LibRadar is that we use stable code feature,
instead of a whitelist of package names, to detect the third-
party libraries directly within an app.

We first extend a clustering-based technique Wukong [15]
to identify possible libraries from analyzing one million apps
from Google Play. For the over 10,000 library versions iden-
tified through clustering, we use a hashing-based representa-
tion to extract unique features from each library. This step
is time-consuming, but only needs to be done once to gener-
ate the list. We may also need to update the list of libraries
regularly to include new libraries or new library versions.

Once the list of features has been collected, LibRadar is
able to identify the third-party libraries in a given app in-
stantly, as it only requires simple static analysis and feature
comparison. LibRadar is also robust against code obfusca-
tion, because it relies on stable code feature that cannot be
obfuscated with obfuscation tools.

2. TOOL DESIGN
The overall architecture of LibRadar is shown in Figure 1.

LibRadar includes three steps: feature extraction to retrieve
stable code feature and convert them in to a light-weight
hashing-based format, multi-level clustering on a large set
of apps to identify potential library candidates, and instant
detection on a given app to detect the libraries in it based
on the clustered results.

For feature generation, we first decompile the repository of
Android apps from their DEX byte code into intermediate
Smali [4] code using Apktool [2]. We extract stable code

1http://radar.pkuos.org

Signatures of

Third-party

Libraries

Package

Level

Feature

Generation

Package

Level

Clustering

Package

Level

Feature

Generation

Hashed

Features

Feature

Comparison

Used Third-

party

Libraries

1 million

apps

New app

Feature

Hashing

Feature

Hashing

Feature Extraction

Clustering

Detection

Figure 1: Overall architecture of LibRadar.

feature for all the folders in the Smali code. We use feature
hashing to get the signature of each folder.

Then we use a clustering-based approach to identify third-
party libraries. Packages of third-party libraries are clus-
tered into large clusters because a large number of apps use
it. The clustering result is a list of potential libraries and
their hashed features, which will be used by LibRadar to
detect libraries in a given app.

For a given app, we extract the stable code feature for all
the folders in the package structure and use feature hash-
ing to get the signature of each folder. Then we compare
the hashed features with the list of all potential libraries to
detect third-party libraries in this app.

2.1 Feature Extraction
We mainly focus on two challenges in feature extraction:

code obfuscation and efficient feature representation for faster
comparison.

2.1.1 Stable Code Feature
In order to enable fast and accurate comparison, we want

features that remain stable even if the code is obfuscated,
which we call stable code feature. The feature we choose is
the frequency of different Android API calls. This features
cannot be modified during obfuscation and they capture the
low-level behaviors of third-party libraries, thus they could
provide accurate indication during third-party library detec-
tion. API call features are extracted by analyzing the Smali
code.

2.1.2 Feature Hashing
For the extracted features of each package, we represent

them in a light-weight format using feature hashing, mainly
with two reasons: (1) We are applying our enhanced clustering-
based approach to over 1 million apps, which contains more
than 71 million packages, while each package has thousands
of features, making it difficult to directly use these features
in the following clustering phase. (2) LibRadar aims to de-
tect third-party libraries used in a given app instantly. For
a given app, it is time-consuming to compare the overall fea-
tures of all the packages in it with all the features of potential
libraries.

As shown in Figure 2, to get the fingerprint of each pack-
age, we compute the hashing value of the feature vector as
follows:

hashpacm = (

n∑
i=1

(i ∗ Vi))%LARGEPRIME

Note it is possible that different feature vectors get the same
hash value. In order to get a unique fingerprint for each
package, we also use two meta features of extracted feature
vectors: (1) total number of API calls; (2) total kinds of API

1, 0, 7, 6, 25, 0 , ….

8, 2, 0, 0, 4, 1 , ….

9, 0, 2, 3, 16, 0 , ….

V1, V2, V3, V4, …., Vn

…..

feature vectors

pac1

pac2

pac3

pacm

feature hashing

Fnum (total number of

API calls, Intent and

CP invocations)

Fkinds (total kinds of

API calls, Intent and

CP invocations)

hash Fnum Fkinds

fingerprint

meta feature

hashpacm

pac1

pac2

pac3

pacm

562113 720 124

27391 167 78

12420 330 32

hashpacm
720 24

…..

Figure 2: The process of feature hashing.

SMALI

com

tencent

exmobin

core

spot

apks

......

Feature Vector

Feature Vector

Feature Vector

Feature Vector

Feature Vector

Library

Library

Non

library

SMALI Code Multi-level Features Clustering

............

map Feature Vector

Figure 3: Clustering-based library identification.

calls. With the aid of these meta features, the fingerprint of
each package is unique and we have not found cases that two
different feature vectors have same fingerprint in our dataset,
which means that they could achieve the same accuracy but
runs much faster.

2.2 Multi-level Clustering

2.2.1 Overall Process
We use a multi-level clustering method, which is an exten-

sion of the previous proposed clustering-based approach[15]
to identify all possible libraries from Google Play.

As shown in Figure 3, there are two libraries mobwin and
tencent map in the app. We calculate features for all the
packages including com/tencent, com/tencent/exmobwin,
com/tencent/map, com/tencent/exmobwin/core etc. The
feature of a package is a union set of the features of all the
classes and sub-packages under it. Then we cluster these
features, and identify the largest possible library. As a re-
sult, com/tencent/exmobwin and com/tencent/map will be
identified as the package root.

2.2.2 Clustering
When clustering all the features into groups, strict com-

parison is enforced, which means that only when the features
of two packages are exactly the same can they be clustered
into one group.

We assume the app dataset is large enough. A library will
be detected as long as the library is popular enough. We will
first use a threshold (set at 50) to select clusters that belong
to third-party libraries.

The clustering results might include multiple versions of
the same library due to library evolution or compiler opti-
mization. In these cases, the libraries are still used in many
apps, so they are detected as potential libraries too. The
multiple versions will not affect the final detection result
because we can detect only one particular version within a
given app.

2.2.3 Package Name Identification
Because the name of a package could often be obfuscated,

it cannot be used as a meaningful representation of the pack-
age. However, because not all packages are obfuscated, we
are able to infer the package names of a package within a
cluster based on the unobfuscated package names.

Specifically, we keep the package name information at the
clustering step. For each cluster, we have a list of package
names. Meaningful package names with higher frequency
will be highlighted and obviously obfuscated package names
such as com/a/a will be deleted. Finally, most representa-
tive package names are not obfuscated and recognizable.

2.3 Instant Library Detection
For a given app, we extract the stable code feature and

use feature hashing to get the signature of each folder. We
compare the hashed features with all identified libraries at
all different levels. After the comparison, we get a list of
possible libraries included in the given app. Because the
identified libraries contain all different folder levels, some
of them might be inclusive of one another. Thus we need
to remove the libraries that are contained in another library.
This can be done by filtering the list of libraries that matches
the fingerprints by traversing through the folder hierarchy
to identify only those libraries at the highest level.

3. IMPLEMENTATION
3.1 Feature Extracting and Clustering

We have implemented the prototype of LibRadar and make
it available to public. To achieve high coverage and high
accuracy, we have analyzed 1,027,584 free Android apps col-
lected by PrivacyGrade [5] in March 2015. We first prepro-
cess all the apps, decompile them and extract stable code
feature for all of the packages according to the package struc-
ture. Then we cluster these feature vectors and find poten-
tial third-party libraries. The total process takes more than
20 days to complete with 10 Amazon EC2 servers(m3.medium).

As stated earlier, this serves as the preprocessing step for
LibRadar that only needs to be done once. Future updates
can also be done in an incremental way to reduce the pro-
cessing time cost significantly.

3.2 Library Information
As mentioned earlier, LibRadar can find the original pack-

age name for an obfuscated library, which is useful for users
to know the identity of the library. However, we want to
provide more information such that it will help users under-
stand how and why the libraries are used in a given app.

We first sort the detected libraries based on their usage
frequency. Then we manually check the package names of
the top 200 libraries and add descriptions such as library
names, common package names, library categories and of-
ficial websites. These libraries represent more than 80% of
all libraries used (counting all use cases of each library) in
one million Google apps. These information will be shown
in the library detection results of LibRadar.

Permissions used by each library are important informa-
tion for the security and privacy of Android apps. As we
have already identified all APIs and Intents used in each
library, we can generate a list of permissions used by each
library, which is based on the API-permission maps provided
by PScount [6]. The list of permissions will also be shown
in the LibRadar detection results, as in Figure 4.

Figure 4: Permissions used in a detected library.

Figure 5: The LibRadar tool homepage.

4. USAGE EXAMPLE
LibRadar is provided as a web service with both website

support and exposed web APIs. Figure 5 shows the web page
of the LibRadar tool. Besides the uploading and analysis
feature, we also provide information on the most frequently
used libraries (“Top Libraries” on the page).

The user can upload an Android APK file to analyze its
libraries. Take ArticleNews, a famous news app, as an ex-
ample. Click the Upload button and wait for a few seconds,
the results will be as shown in Figure 6. The results include
a list of libraries used in the given app sorted by their pop-
ularity, along with a list of information about each library.

4.1 Performance Information
As shown in Figure 6, LibRadar takes less than 8 seconds

for decoding and data loading, which is mainly consumed
by the Apktool [2]. Library search only takes less than 10
miliseconds because the database is pre-sorted and the stable
code feature are hashed. We tested more than 100 Android
apps and most apps take less than 10 seconds to complete,
which is good enough for instant detection.

4.2 Obfuscated Libraries
Many Android apps are obfuscated and package names are

unable to recognize. In ArticleNews, we could not recognize
what the package c/a/a/a/c and com/ss is, but LibRadar is
able to tell that c/a/a/a/c/ is uk/co/senab/photoview/c/
(Senab photoview library) in fact and com/ss/ refers to
com/aviary (Aviary library) here. These two libraries are
both popular photo rendering libraries for Android develop-
ment. Senab Photoview is a development aid library which
aims to help produce a zooming Android ImageView. Aviary
is an image editing component in the Adobe Creative SDK.
It is difficult to manually recognize obfuscated libraries but
can be done easily with LibRadar.

Figure 6: An example of third-party libraries de-
tected in a given app.

5. RELATED WORK
Most recent studies use whitelist-based approaches to de-

tect libraries in Android apps. For example, AdRisk [11]
proposes to identify potential risks posed by advertisement
libraries and they use a whitelist of 100 advertisement li-
braries. Book et al. [7] use a whitelist of 68 advertisement
libraries to investigate the changes over time in the behavior
of advertisement libraries. For Android app clone detection,
Chen et al. [8] use a list of 73 libraries in their whitelist to
filter third-party libraries when detecting app clones.

Because whitelist-based approaches only compare the pack-
age names, it is fast and could be easily applied to thousands
of apps. However, this approach has low coverage of third-
party libraries and cannot handle name obfuscation, which
is widely used during Android app development nowadays.

AdDetect [13] and PEDAL [12] use machine-learning to
detect advertisement libraries in Android apps and achieve
very high accuracy. However, these approaches only focus
on detecting advertisement library, not all the third-party
libraries. Many other kinds of third-party libraries (e.g.,
social networking, game engine, development tool, map ser-
vice) may be difficult to detect with machine learning.

Because the same libraries are used by many different
apps, it can be detected by clustering over many apps. Ad-
Darwin [10] and WuKong [15] use clustering-based approaches
to detect third-party libraries. Both of them focus on repack-
aging detection and they need to filter third-party libraries
first. One major limitation of clustering-based approaches is
that they rely on the existence of a large number of apps to
build a repository of possible third-party libraries to detect
those libraries appearing in many apps. It is impossible to
perform instant detection based on clustering alone.

In LibRadar, as we have already collected features of all
possible libraries in a preprocessing step by analyzing one
million apps, the features can be used directly for instant
comparison. Thus it works as fast as the whitelist-based

approaches using package names, while it is as accurate as
the clustering-based approaches.

6. CONCLUSION
We have presented LibRadar, a tool to detect third-party

libraries in Android apps accurately and instantly. We per-
form a preprocessing step by analyzing more than a million
apps from Google Play to gather a complete set of features
for all potential Android libraries. The results include the in-
formation of 29,279 potential libraries, by far the largest list
of third-party libraries for Android apps. Based on the list
of library signatures, LibRadar is able to detect the third-
party libraries used in a given app instantly based on simple
static analysis and feature comparison.

7. ACKNOWLEDGEMENT
This work is supported in part by the High-Tech Re-

search and Development Program of China under Grant No.
2015AA01A202, and the National Natural Science Founda-
tion of China under Grant No. 61421091, 61103026.

8. REFERENCES
[1] Android library statistics.

http://www.appbrain.com/stats/libraries/.

[2] Apktool: A tool for reverse engineering Android apk files.
http://ibotpeaches.github.io/Apktool/.

[3] Apps with most 3rd party libraries.
http://privacygrade.org/stats.

[4] An assembler/disassembler for Android’s dex format.
https://github.com/JesusFreke/smali.

[5] Privacygrade: Grading the privacy of smartphone apps.
http://privacygrade.org/.

[6] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie. PScout:
Analyzing the Android permission specification. In Proceedings
of the 2012 ACM Conference on Computer and
Communications Security (CCS’12), 2012.

[7] T. Book, A. Pridgen, and D. S. Wallach. Longitudinal analysis
of Android ad library permissions. In Proceedings of IEEE
Mobile Security Technologies (MoST’13), 2013.

[8] K. Chen, P. Liu, and Y. Zhang. Achieving accuracy and
scalability simultaneously in detecting application clones on
Android markets. In Proceedings of the 36th International
Conference on Software Engineering (ICSE 2014), 2014.

[9] J. Crussell, C. Gibler, and H. Chen. Attack of the clones:
Detecting cloned applications on Android markets. In
Proceedings of the 17th European Symposium on Research in
Computer Security (ESORICS ’12), 2012.

[10] J. Crussell, C. Gibler, and H. Chen. Scalable semantics-based
detection of similar Android applications. In Proceedings of
ESORICS’13, 2013.

[11] M. C. Grace, W. Zhou, X. Jiang, and A.-R. Sadeghi. Unsafe
exposure analysis of mobile in-app advertisements. In
Proceedings of the Fifth ACM Conference on Security and
Privacy in Wireless and Mobile Networks (WISEC’12), 2012.

[12] B. Liu, B. Liu, H. Jin, and R. View. Efficient privilege
de-escalation for ad libraries in mobile apps. In Proceedings of
the The 13th International Conference on Mobile Systems,
Applications, and Services (MobiSys’15), 2015.

[13] A. Narayanan, L. Chen, and C. K. Chan. AdDetect:
Automated detection of Android ad libraries using semantic
analysis. In Proceedings of IEEE Ninth International
Conference on Intelligent Sensors, Sensor Networks and
Information Processing (ISSNIP’14), 2014.

[14] R. Stevens, C. Gibler, J. Crussell, J. Erickson, and H. Chen.
Investigating user privacy in Android ad libraries. In Workshop
on Mobile Security Technologies (MoST), 2012.

[15] H. Wang, Y. Guo, Z. Ma, and X. Chen. Wukong: A scalable
and accurate two-phase approach to android app clone
detection. In Proceedings of the International Symposium on
Software Testing and Analysis (ISSTA 2015), 2015.

[16] W. Zhou, Y. Zhou, X. Jiang, and P. Ning. Detecting repackaged
smartphone applications in third-party Android marketplaces.
In Proceedings of the Second ACM Conference on Data and
Application Security and Privacy (CODASPY ’12), 2012.

