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Abstract—Multi-core processors are becoming the dominant
choice due to energy and thermal considerations, which also
applies to embedded and real-time systems. While fixed-priority
scheduling with task-splitting in real-time systems are widely
applied, current approaches have not taken into consideration
energy-aware aspects such as dynamic voltage/frequency schedul-
ing (DVS). In this paper, we propose two strategies to apply
DVS to fixed-priority scheduling algorithms with task-splitting
for periodic real-time tasks on multi-core processors. We first
propose a strategy that does traditional DVS for each processor
after scheduling (post-DVS), which ensures all tasks meet the
timing requirements on synchronization. We then propose a new
strategy, which determines the frequency of each task before
scheduling (pre-DVS) according to the total utilization of task-
set and number of cores available, so that the system could take
full advantage of all the cores. The combination of frequency
pre-allocation and task-splitting makes it possible to maximize
energy savings with DVS. We perform a series of simulations to
compare the performance of each algorithm with two state-of-the-
art scheduling algorithms with task-splitting. Simulation results
show that the pre-DVS algorithm we proposed has performed
satisfactorily on both schedulability and energy consumption in
comparison to the previous approaches.

Index Terms—Real-time systems, multi-core scheduling, dy-
namic voltage scaling (DVS), energy optimization

I. INTRODUCTION

Multi-core processors have been adopted not only in high-
performance servers and personal computers, but also for
embedded and real-time systems. Many real-time scheduling
algorithms for multi-core processors have been proposed in
recent years, among which the semi-partitioned fixed-priority
multi-core scheduling algorithms [3], [4] could achieve higher
utilization bound. On the other hand, energy consumption
is critical for many battery-operated embedded and real-time
systems. However, although techniques such as dynamic volt-
age/frequency scaling (DVS) [7] have been available in most
modern processors, these energy-aware aspects have not been
considered in the recently proposed semi-partitioned fixed-
priority multi-core scheduling algorithms with high utilization
bound.

In order to understand the energy implications of these semi-
partitioned fixed-priority multi-core scheduling algorithms,
this paper explores the possibility of applying DVS to two
recently proposed semi-partitioned fixed-priority multi-core
scheduling algorithms: SPA2 [3] introduced by Guan et al. and
PDMS HPTS DS (PHD) [4] introduced by Lakshmanan et
al.. Among the two techniques, SPA2 could reach a utilization

bound of 69.3% and PHD 65%, both considerably higher
compared to the previous approaches in priority-based multi-
core scheduling.

Because neither algorithm has considered energy, we intro-
duce two different methods to apply DVS to the above two
multi-core scheduling algorithms (SPA2 and PHD):

• DVS after scheduling (post-DVS): We first develop a
extended DVS algorithm based on the traditional DVS
algorithm for fixed-priority scheduler [6], and apply
it after scheduling with task-splitting to evaluate the
schedulability and energy savings. To be specific, we set
the maximal frequency for certain split sub-tasks, so that
all the former sub-tasks could finish before the latter ones
release. This ensures that the scheduling will meet the
timing requirements on synchronization for scheduling
with task-splitting.

• DVS before scheduling (pre-DVS): We then propose a
new algorithm, which determines the frequency of each
task before scheduling in order to achieve better perfor-
mance on both schedulability and energy consumption.
Pre-DVS actually schedules the tasks with prolonged
execution time based on DVS and could ensure that
all the tasks meet the timing requirements after DVS.
Specifically, the frequency is determined by the total
utilization of task-set and number of cores available,
pursuing the maximal balance of tasks in each processor
and therefore getting considerably more energy saving
compared to the post-DVS approach.

In order to evaluate the two approaches mentioned above,
we developed a simulator to compare their schedulability and
energy consumption with various total utilization and number
of processors.

When considering their schedulability, PHD performs much
better than SPA2 when the utilization is over 70% (Both
algorithms can be one hundred percent schedulable when the
utilization is below 65% due to their utilization bounds). PHD
can keep a schedulability more than 90% until the utilization
comes up to 90%, while SPA2 sharply decreases to zero.

In terms of energy consumption, PHD with post-DVS
algorithm nearly get close to the worst case. While the other
three strategies show considerable energy savings, among
which PHD with pre-DVS saves most energy because of
its equal distribution of tasks to every processor available.
Overall, the simulation results show that PHD with the pre-
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DVS algorithm has demonstrated lower energy consumption
compared to the other three strategies while maintaining the
good schedulability of PHD.

The main contribution of this paper is that we explored
the possibility of applying DVS to semi-partitioned fixed-
priority multi-core scheduling algorithms. We have presented
two different approaches to apply DVS, and simulation results
shows that energy-aware scheduling is achievable without
affecting the schedulability of two state-of-the-art algorithms.
To the best of our knowledge, this is the first work considering
energy-efficient multi-core scheduling with task-splitting.

II. PRELIMINARIES

This section introduces the background information and
assumptions, as well as notations used in this paper.

A. Task Model

We shall use the following notation throughout this paper.
We consider a task-set T1, T2, ..., Tn comprising of N periodic
tasks. This task-set is assigned to M processor cores. We
use the classical (C,P,D) model to represent the parameters
of a task T , where C is the worst-case computation time at
maximal frequency of each job of T , P is the period of T , and
D is the deadline of each job of T relative to job release time.
For a task without split, its deadline D equals to its period P .
When it comes to a subtask of a split task, its deadline D
is less than its period P , in order to set aside time for other
subtasks from the same split task.

Tasks Ti : (Ci, Pi, Di) are ordered such that i < j implies
Di < Dj . Since our proposed algorithms use deadline-
monotonic scheduling as the scheduling algorithm on each
processor, we can use the task indices to represent the task
priorities, i.e., i has higher priority than j if and only if i < j.
The utilization of each task i is defined as Ui = Ci/Ti. The
total utilization Utot is given by

∑
Ui.

While scheduling, some tasks are split and assigned to
different processors. We call these tasks split task, which
are split into several subtasks. For a split task Ti, T k

i denotes
the kth subtask of Ti. We call the last subtask of Ti its tail
subtask, and other subtasks its body subtasks.

The subtasks of a split task need to be synchronized to
execute correctly. That means, T k+1

i cannot start execution
until T k

i is finished. Therefore, the time for a subtask T k
i to

execute is shorter than its period, in order to share time with
other subtasks from the same split task. For a subtask T k

i split
from task Ti, its deadline Dk

i satisfies the equation Dk
i =

Pi −
k−1∑
j=1

Rj
i , where Rk

i means the actual time span of the

subtask from its release to completion.

B. Energy Model

For processors based on CMOS technology, the power
consumption is dominated by dynamic power dissipation Pd,
which is given by: Pd = Cef × V 2

dd × f , where Vdd is the
supply voltage, Cef is the effective switching capacitance, and
f is the processor clock frequency. For simplicity, processor
frequency can be considered roughly linearly to the supply
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Fig. 1. Synchronous Violation with Traditional DVS

voltage: S = k × (Vdd−Vt)
2

Vdd
, where k is a constant and Vt

is the threshold voltage [2]. Thus, Pd is almost cubically
related to f : Pd ≈ Cef × f3

k2 . Since the time needed for a
specific task is: time = C

f , where C is the number of cycles
to execute the task, the energy consumption of the task, E,
is E = Pd × time ≈ C × Cef × f2

k2 . When decreasing
processor speed, we can also reduce the supply voltage. This
reduces processor power cubically and energy quadratically at
the expense of linearly increasing the task’s latency.

For simplicity, we assume the power dissipation function
p(f) = f3, and the total power of a multi-core processor is
simply a sum of the power dissipated in each core: ptot =∑

pi.

III. THE POST-DVS APPROACH

Pillai and Shin have introduced a DVS algorithm for fixed-
priority schedulers [6], achieving energy savings by reducing
the operating frequency and voltage when remaining tasks
need less than the remaining time before next deadline.
However, for scheduling with task-splitting, one cannot reduce
the frequency freely, because the synchronous requirements of
split-task may be violated when postponing the execution time
of each subtask, as the example shown in Fig. 1.

In order to achieve energy savings for scheduling with
task-splitting, we develop a new post-DVS algorithm based
on the previous work, which did not take task-splitting into
consideration. We reselect the frequency when any of the tasks
is released or finishes, according to the earlier one between
next deadline and next release time, and the remaining total
cycles current tasks still need. Before selecting frequencies, we
first examine whether the task/subtask is a body subtask. If it
is a body subtask, we just execute it under maximal frequency
and reselect the frequency when this subtask finishes, so that
the synchronous requirement is satisfied.

The detailed description of the algorithm for post-DVS
scheduling with task-splitting is shown in Algorithm 1. In
function available time until next time line(), time line
means release time or deadline. So the function returns the
smaller one between available time until the next deadline and
available time until the next release time.
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Algorithm 1: Post-DVS for Scheduling with Task-Splitting

1: select frequency():
2: sm :=available time until next time line()
3: f := fmax ∗

∑
di/sm

4: upon task release(Ti):
5: C lefti := Ci

6: sm :=available time until next time line()
7: allocate cycles(sm)
8: if Ti is body subtask then
9: f := fmax

10: else
11: select frequency()
12: end if
13: task completion(Ti):
14: C lefti := 0
15: di := 0
16: select frequency()

17: during task execution(Ti):
18: decrement C lefti and di

19: allocate cycles(k):
20: for i := 1 to N do
21: if C lefti < k then
22: di := C lefti
23: k := k − C lefti
24: else
25: di := k
26: k := 0
27: end if
28: end for

We can prove that the above post-DVS algorithm will
not violate any of the timing requirements (the proof is not
included due to space limitation).

IV. THE PRE-DVS APPROACH

In this section, we first consider the potential of energy
optimization, and then propose a new DVS algorithm which
determines the frequency of each task before scheduling (pre-
DVS) that can save more energy compared to post-DVS.

A. Energy Optimization

Given a task-set with periodic real-time tasks and a pro-
cessor with M cores, we need to find a schedulable task-to-
core assignment that minimizes the energy consumption under
DVS. Thus, two conditions [1] must be satisfied:

1) The assignment must evenly divide the total load Utot

among all the processors.
2) In each processor with total utilization S, the frequency

f must be constant and equal to S.
That is, each processor must manage to run under constant

frequency f that satisfies f/fmax =
∑

Ui/M , where fmax is
the maximal frequency a processor’s multiple supply voltages
could provide. We call this frequency the “ideal frequency”:

fideal = fmax ×
∑

Ui/M

With frequency pre-allocation and task-splitting, it is pos-
sible to get very close to the minimization of energy, as long
as the assignment is schedulable.

B. Algorithm Description

Even though the two conditions for energy minimization are
usually hard to satisfy, we could still try to achieve a result as
close as possible. Below are the detailed steps of the proposed
pre-DVS algorithm.

Step 1. We try to set all the tasks’ execution frequency to
the same ideal level: f = fideal = fmax ×

∑
Ui/M .

Step 2. Because some tasks may not execute in such low
frequency due to their relatively high utilization, which might
be greater than f/fmax, we deal with the tasks in two different
ways: if a task Ti satisfies Ui > f/fmax, we set its frequency
fi as fmax × Ui. Otherwise, we set its frequency fi as f .

Step 3. After changing the frequency of each task, we need
to extend their execution time accordingly. For convenience in
the next step, we just regard the extended execution time as
new execution cycles, and store the original execution cycles.
Thus, for each task, Ci = Old Ci.

Step 4. We try the new task-set with the scheduling
algorithm (PHD for example). If it is schedulable, we can
decide that the minimal f that is schedulable for certain task-
set and processors. Otherwise, we need to gradually increase
the frequency f and repeat Step 2, 3, 4 until it is schedulable.

As a result, we could assign the tasks to processors as
balanced as possible and achieve significant energy savings
with the pre-DVS algorithm. Experiments in the next section
will show that such algorithm could maintain the good schedu-
lability of PHD while consuming much less energy.

Algorithm 2: Pre-DVS for Scheduling with Task-Splitting

1: for each f available among the range of [fmax×
∑

Ui/M ,
fmax] do

2: for each i ∈ [1, N ] do
3: Old Ci := Ci

4: end for
5: if Ui <= f/fmax then
6: fi := f
7: Ci := Ci × fmax/f
8: else
9: fi := fmax × Ui

10: Ci := Pi

11: end if
12: if Schedulable() = TRUE then
13: Done
14: else
15: for each i ∈ [1, N ] do
16: Ci := Old Ci

17: end for
18: end if
19: end for
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The detailed description of the algorithm Pre-DVS Schedul-
ing with Task-Splitting is shown in Algorithm 2.

V. SIMULATION

We have developed a simulator to evaluate the schedula-
bility and energy savings from dynamic voltage scaling in a
multi-core real-time system for both pre-DVS and post-DVS
approaches on the two scheduling algorithms SPA2 and PHD.

A. Simulation Methodology
We developed a simulator for the operation of hardware ca-

pable of voltage and frequency scaling with real-time schedul-
ing. This simulator takes input as utilization per processor
and number of processor, and calculates the schedulability
and power consumption for each of the algorithms we have
studied: SPA2 with post-DVS, PHD with post-DVS, SPA2
with pre-DVS and PHD with post-DVS.

To achieve an ideal effect from DVS, we assume that the
multiple supply voltages is continuous. That is, the processor
could execute in any frequency below the max frequency. We
have also simulated energy results modeling a real processor
based on Intel PX270, the results show similar trends (the
results for PX270 are not included due to space limitation).

Only energy consumed by the processor is computed, and
variations due to different types of instructions executed are
not taken into account. With this simplification, the task exe-
cution model can be reduced to counting cycles of execution,
and execution traces are not needed. In particular, this does not
consider preemption and task switching overheads, or the time
required to switch operating frequency or voltages. There is no
loss of generality from these simplifications. The preemption
and task switch overheads are the same with post-DVS or pre-
DVS, so they have no (or very little) effect on relative power
dissipation numbers.

The real-time tasks are specified using pairs of (C,P ),
indicating their computation cycles and period. The task-sets
are generated as follows. Each task has an equal probability
of having a period among [10, 20, 30, 40, 50, 60, 70, 80,
90, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000].
This simulates the varied mix of short and long period tasks
commonly found in real-time systems. The computation time
is uniformly distributed over [0, P]. Finally, the last task
computation requirements are scaled by a constant chosen such
that the sum of the utilizations of the tasks in the task-set
reaches a desired value. We simulate each task on platforms
with 2, 4, 8 or 16 processors. For a fixed number of processors
M , we varied

∑
Ui between M/10 (Utilization = 0.1) and

M (Utilization = 1).

B. Simulation Results
We performed simulations for the four approaches, which

include the two post-DVS approaches (PHD+DVS and
SPA2+DVS), and the two pre-DVS approaches (DVS+PHD
and DVS+SPA2). Each utilization and processor number
level in the results corresponds to simulations of 10,000
task-sets. The results shown are average numbers from 10,000
simulations.

1) Schedulability: Fig. 2 shows simulation results of
schedulability for all the approaches. Schedulability stands
for the possibility that a task-set with determinate total
utilization is schedulable to a determinate number of
processors under an algorithm.

From Fig. 2, we can see clearly that all the algorithms
have a schedulability of 100% when the average utilization
is under 70%, which corresponds to the utilization bound
given by previous work – 65% for PHD and 69.3% for SPA2.
However, the two scheduling algorithms show a remarkable
difference when the average utilization exceeds 70%. SPA2
does not perform so well as its utilization bound, due to its
severe restrictions set by Liu & Layland’s Utilization Bound
[5] during scheduling. On the contrary, PHD has a much
better schedulability at high utilization because it fills every
processor as full as possible without unnecessary restrictions.
Of course, it is difficult for either algorithm to schedule most
of task-sets when the total utilization equals to the number
of processors. So almost all the algorithms’ schedulability
decrease to zero when the average utilization reaches 100%.

In addition, we realize that the time when we perform
DVS (either pre-DVS or post-DVS) does not make much
difference on schedulability. After all, pre-DVS will try all the
frequencies until it is schedulable or the frequency becomes
maximal as post-DVS does. So any task-set that is schedulable
with post-DVS algorithms could be schedulable with pre-DVS
algorithms as well. On the other hand, pre-DVS algorithms try
to reduce the frequency by prolonging the time a task executes.
So it is hard to find a task-set schedulable with pre-DVS while
unschedulable with post-DVS, although it does exist in rare
instances. As a whole, the schedulability of pre-DVS and post-
DVS are at approximately the same level, as shown in the
simulation results.

2) Power: Fig. 3 shows the power numbers for all the
approaches.The power numbers in our results are normalized
to the power under a processor’s maximal frequency.

From Fig. 3, we notice that when the average utilization
is close to zero, all the algorithms’ power numbers reduces
to zero as expected, because there are few tasks to execute
and DVS just reduces the frequency to zero to save energy
(of course this is the ideal case because ). When the average
utilization comes to 1, all the algorithms’ power numbers
reaches the number of processors, because all the processors
have to be full and keep at maximal frequency as long as the
task-set is schedulable.

When the utilization gets close to about 50%, PHD with
post-DVS gradually shows much higher energy consumption
compared to the other three techniques. This is because PHD
greedily assigns tasks to as few processors as possible and
just keeps other processors idle, while DVS could not take
effect when a processor is completely full or empty. As a
result, the power of PHD with post-DVS always approximately
equals to the task-sets’ total utilization, showing an almost
linear relationship.

As to the other three algorithms, they have different ways to
schedule the tasks evenly to all the processors, and therefore
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Fig. 2. Schedulability simulation results
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Fig. 3. Power simulation results

achieve a considerable energy saving. The SPA2 algorithms
assign tasks in a width-first way. Pre-DVS algorithms increase
all the tasks utilization as high as possible, so that they have
to fill all the processors.

In all the cases, we found that PHD with pre-DVS achieves
the most energy savings, while PHD with post-DVS achieves
the lease energy saving. For example, for the 8-core case with
70% utlization, PHD with pre-DVS reduces energy by 59.6%,
compared to only 43.0% savings for PHD with post-DVS.
The benefits of the other two techniques (SPA2 with pre-DVS
and post-DVS) are roughtly 50%. We believe it is because
pre-allocation of frequencies and a depth-first way assigning
with task-splitting produce the most balancing scheduling, thus
taking most advantages of all the processors.

From the simulation results, we can see that it is practical
to apply energy-saving techniques such as DVS to multi-core
scheduling algorithms with task-splitting. Although all the
four approaches we have studied could save considerable
power consumption with DVS, the PHD scheduling algorithm
with pre-DVS shows both excellent schedulability and energy
savings among all the approaches.

VI. CONCLUSION

In this paper, we have explored the possibility of combining
dynamic voltage (frequency) scheduling with semi-partitioned
fixed-priority multiprocessor scheduling with task-splitting for
real-time systems. We proposed two different techniques to
apply the DVS algorithm to multi-core scheduling approaches

with task-splitting features. The techniques proposed include
performing DVS after scheduling (post-DVS) and performing
DVS before scheduling (pre-DVS).

We simulated the proposed techniques under different pro-
cessor setups. Simulation results show that it is possible to
achieve significant energy savings with DVS while preserving
the schedulability requirements of real-time schedulers for
multi-core processors.
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