
168

DistFL: Distribution-aware Federated Learning for Mobile Scenarios

BINGYAN LIU∗,MOE Key Lab of HCST, Dept of Computer Science, School of EECS, Peking University

YIFENG CAI∗,MOE Key Lab of HCST, Dept of Computer Science, School of EECS, Peking University

ZIQI ZHANG,MOE Key Lab of HCST, Dept of Computer Science, School of EECS, Peking University

YUANCHUN LI,Microsoft Research

LEYE WANG, Dept of Computer Science, School of EECS, Peking University

DING LI,MOE Key Lab of HCST, Dept of Computer Science, School of EECS, Peking University

YAO GUO†,MOE Key Lab of HCST, Dept of Computer Science, School of EECS, Peking University

XIANGQUN CHEN,MOE Key Lab of HCST, Dept of Computer Science, School of EECS, Peking University

Federated learning (FL) has emerged as an effective solution to decentralized and privacy-preserving machine learning

for mobile clients. While traditional FL has demonstrated its superiority, it ignores the non-iid (independently identically

distributed) situation, which widely exists in mobile scenarios. Failing to handle non-iid situations could cause problems such

as performance decreasing and possible attacks. Previous studies focus on the “symptoms” directly, as they try to improve the

accuracy or detect possible attacks by adding extra steps to conventional FL models. However, previous techniques overlook the

root causes for the “symptoms”: blindly aggregatingmodels with the non-iid distributions. In this paper, we try to fundamentally

address the issue by decomposing the overall non-iid situation into several iid clusters and conducting aggregation in each

cluster. Specifically, we propose DistFL, a novel framework to achieve automated and accurate Distribution-aware Federated
Learning in a cost-efficient way. DistFL achieves clustering via extracting and comparing the distribution knowledge from the

uploaded models. With this framework, we are able to generate multiple personalized models with distinctive distributions

and assign them to the corresponding clients. Extensive experiments on mobile scenarios with popular model architectures

have demonstrated the effectiveness of DistFL.

CCS Concepts: •Human-centered computing → Ubiquitous and mobile computing systems and tools; •
Computing methodologies → Neural networks.

Additional Key Words and Phrases: federated learning, neural networks, distribution knowledge, privacy

∗
The first two authors contributed equally.

†
Correspondence to: Yao Guo.

Authors’ addresses: Bingyan Liu, lby_cs@pku.edu.cn, MOE Key Lab of HCST, Dept of Computer Science, School of EECS, Peking University,

Beijing, China, 100871; Yifeng Cai, caiyifeng@pku.edu.cn, MOE Key Lab of HCST, Dept of Computer Science, School of EECS, Peking

University, Beijing, China, 100871; Ziqi Zhang, ziqi_zhang@pku.edu.cn, MOE Key Lab of HCST, Dept of Computer Science, School of EECS,

Peking University, Beijing, China, 100871; Yuanchun Li, Yuanchun.Li@microsoft.com, Microsoft Research, Beijing, China, 100871; Leye Wang,

leyewang@pku.edu.cn, Dept of Computer Science, School of EECS, Peking University, Beijing, China, 100871; Ding Li, ding_li@pku.edu.cn,

MOE Key Lab of HCST, Dept of Computer Science, School of EECS, Peking University, Beijing, China, 100871; Yao Guo, yaoguo@pku.edu.cn,

MOE Key Lab of HCST, Dept of Computer Science, School of EECS, Peking University, Beijing, China, 100871; Xiangqun Chen, cherry@pku.

edu.cn, MOE Key Lab of HCST, Dept of Computer Science, School of EECS, Peking University, Beijing, China, 100871.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that

copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first

page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy

otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from

permissions@acm.org.

© 2021 Association for Computing Machinery.

2474-9567/2021/12-ART168 $15.00

https://doi.org/10.1145/3494966

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 5, No. 4, Article 168. Publication date: December 2021.

https://doi.org/10.1145/3494966

168:2 • Liu and Cai, et al.

Local
Models

Clustered
Local	Models

Cl
ie
nt
	e
nd

Se
rv
er
	e
nd

Upload	models
to	server

…
Malicious
model

… …… …
Aggregation

Local
Models

Aggregation

Cl
ie
nt
	e
nd

Se
rv
er
	e
nd

Upload	models
to	server

…
Malicious
model

…Local
Models

A	global	model Models	adapted	for	each	cluster

(a)	Traditional	FL (b)	Distribution-aware	FL

Aggregation Aggregation Aggregation

Distribution-aware
clustering

Fig. 1. Comparison between traditional FL and our distribution-aware FL. Here different colors represent different distribu-
tions.

ACM Reference Format:
Bingyan Liu, Yifeng Cai, Ziqi Zhang, Yuanchun Li, LeyeWang, Ding Li, Yao Guo, and Xiangqun Chen. 2021. DistFL: Distribution-

aware Federated Learning for Mobile Scenarios. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 5, 4, Article 168

(December 2021), 26 pages. https://doi.org/10.1145/3494966

1 INTRODUCTION
As General Data Protection Regulation (GDPR) [54] has been officially proposed to guarantee user privacy, it is

no longer appropriate to transfer user data for cloud centralized training. Under this condition, federated learning
(FL), which enables a number of devices to collaboratively generate a global model without exposing their client

data, has become an important and emerging research topic in recent years [56, 57, 61]. A conventional FL

solution consists of three steps: (1) the server end distributes a model to each client
1
; (2) each client trains the

offloaded model locally and uploads it to the server; (3) the server collects and coordinates these models by some

aggregation algorithms (e.g., FedAvg [40]) to generate a global model that owns the knowledge of each client.

These three steps may repeat many times until the model converges.

Despite achieving tremendous success, conventional FL techniques may not be practical in certain scenarios

that involve mobile devices. Existing FL techniques assume that the overall data distributions of all clients are

iid (independently identically distributed). However, in mobile scenarios, this assumption may not always be

valid. Data collected by a mobile device can be strongly biased on its context. For instance, pictures collected by a

white-collar office worker may only contain indoor views while data from a traveller may be biased on outdoor

landscapes. Simply averaging the models trained on these biased data sets may not achieve desired results.

Violating the iid assumption could be problematic for existing FL techniques in two ways. First, it may

dramatically decrease the accuracy of trained machine learning models. In our experiment, conventional FL

techniques, such as FedAvg [40], can only achieve an accuracy of 21% to 40% with strongly biased data tasks.

1
In the rest of this paper, we use client to refer to mobile device.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 5, No. 4, Article 168. Publication date: December 2021.

https://doi.org/10.1145/3494966

DistFL: Distribution-aware Federated Learning for Mobile Scenarios • 168:3

Second, in an even worse scenario, a malicious client can deliberately create a poisonous data set that misleads

the global model to wrong predictions [3, 51].

The research community has noticed the problem of violation of the iid assumption and many techniques

have been proposed to fix the symptoms. For example, some researchers propose to achieve personalization

by manually conducting a loss-based clustering [12] or a local adaptation after the FL process [29], which can

improve the accuracy of traditional FL on non-iid data. People also propose to utilize model weights [28, 59]

or borrow extra data [23] to assist the detection of malicious clients and remove them. Unfortunately, existing

techniques suffer from limitations such as requiring massive manual tuning or lacking of sufficient accuracy.

We notice that the techniques mentioned in the above paragraph only focus on the “symptoms” rather than

the root cause. Conventional FL techniques are inaccurate or vulnerable because data from clients are usually

from different distributions while previous techniques still blindly aggregate models from these clients. They

just specifically improve the accuracy or detect malicious clients by adding extra steps to the conventional FL

process. However, these techniques fail to identify, distinguish and process clients with different data distributions

separately, which is the fundamental cause of the symptoms of conventional FL techniques.

Unfortunately, to the best of our knowledge, there is no existing technique that directly addresses the root

cause of non-iid data distribution issues in FL. To fill the gap, in this paper, we try to fundamentally address the

issue caused by the non-iid situation by proposing distribution-aware FL, a technique that clusters uploaded
local models in terms of their distribution knowledge and then aggregates them in each cluster. In this way,

the overall non-iid situation can be approximately decomposed into several iid clusters and conventional FL

techniques could be applied to each iid cluster. We believe this distribution-based clustering is possible because

usually there are a large number of clients involved in the mobile FL system, some of which will inevitably come

from the identical/similar data distribution and thus generate models with a similar distribution. For example,

some mobile users may have a similar preference and thus collect data with a similar distribution.

Specifically, we propose DistFL, a framework that aims at achieving automated and accurate Distribution-
aware Federated Learning in a cost-efficient way. As shown in Figure 1, compared with traditional FL, our

framework conducts a selective aggregation step based on the results of distribution-aware clustering. In this

way, we are able to generate several personalized models with distinctive distributions and distribute them to

corresponding clients with a similar distribution. Note that the malicious clients can also be clustered into a

single group, eliminating their influence on normal clients and making FL more robust.

Achieving distribution-aware FL is non-trivial. The key challenge is how to identify the data distribution of

each client. Note that in FL, data on each client are private. DistFL cannot directly access these data. In other

words, DistFL needs to infer the data distribution of each client based on the uploaded models. However, directly

extracting input data distribution from a DNN could be hard as the DNN is usually viewed as a black box whose

knowledge is uninterpretable. To address this challenge, we borrow the idea of synthesis technique [39]: we use

the uploaded models to generate a set of bogus data and use it to measure the similarity of models. We say two

models are similar if they generate similar classification results on the same data set, which is the generated

bogus data set in our case. Here the classification results refer to the probability distribution output at the last

layer of the model, which is applicable to any DNN architectures. By measuring the similarity between models,

we can infer the data distribution that these models are generated from so that we can cluster models that are

trained with similar data distributions.

Clustering uploaded models with the inferred bogus data set requires overcoming three technical challenges.

We list them as follows:

• How to effectively generate bogus data that reflect the distribution of data from a model? A straight forward

idea to generate bogus data is to directly use existing synthesis techniques. However, this simple idea

suffers three main limitations: (i) existing synthesis techniques pay more attention to the label information,

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 5, No. 4, Article 168. Publication date: December 2021.

168:4 • Liu and Cai, et al.

which can reflect the specific category features while may not benefit the clustering process on models with

different distribution features; (ii) The synthesis process is computationally expensive especially when the

number of labels is huge (e.g., The ImageNet dataset [7] has 1000 labels); (iii) Existing synthesis techniques

focus on image tasks and do not try to generalize to other domains. In a word, it is not appropriate to use

this method directly to generate representations of data distribution.

• How to guarantee the efficiency during the generation process? In real-world mobile scenarios the number

of clients might be huge, which means that if we directly generate the distribution knowledge from each

model, the computation costs may be unacceptable. So there is a high demand to design some optimization

techniques in order to accomplish this process efficiently. This is a challenging problem considering the

tremendous number of clients.

• How to automatically and accurately figure out the cluster strategy? Unlike the previous work [12] that

accomplishes the clustering process by manually setting the number of clusters and using loss-based metric,

we seek to an automated and precise method to decide the cluster information with the help of the extracted

distribution knowledge.

DistFL addresses the first challenge mainly based on the following observation: The statistical information,
which can represent the distribution knowledge [33], are exactly encoded in the widely used BatchNorm (BN) layers
(i.e., running_mean, running_variance) of a DNN. This finding inspires us to generate some "data" that can well fit

the statistics of the BN layers. With the help of the synthesis technique [39], we are able to finally generate the

"data" with distribution knowledge. To address the second challenge, we design two optimization methods to

make the generation faster, ensuring the efficiency of the whole extraction process. To address the third challenge,

we introduce a distribution-based clustering technique, where we feed the extracted "data" into each uploaded

model and obtain the corresponding probability distribution vector at the Softmax layer. By calculating the KL

divergence between them, we are able to generate a similarity matrix, which provides guidance for clustering by

setting an apparent threshold, getting rid of manual tuning. In terms of the clustering results, we finally conduct

aggregation inside each cluster and generate several personalized models for corresponding clients.

To summarize, DistFL consists of the following three steps: (1) a distribution extraction step to generate some

data with distribution knowledge based on the uploaded models (see §4.2); (2) a distribution-based clustering

step to achieve automated and accurate clustering process by utilizing the generated distribution knowledge

(see §4.3); (3) an aggregation step to selectively federate models with similar distributions (see §4.4). Besides, we

would like to highlight that our framework does not need any raw data or feature information. Instead, we only

operate the uploaded models in the server end, which indicates that our approach can be seamlessly integrated

into the traditional FL pipeline to effectively cope with the existing non-iid situation.

We evaluate DistFL on four simulated mobile scenarios since it is difficult to conduct FL in real-world mobile

applications. The simulated scenarios include category-imbalance scenario, environment-difference scenario,

privacy-protection scenario and attack-injection scenario, where we use public computer vision (CV) datasets

and human activity recognition (HAR) datasets for concrete simulation (see §5.1). Experimental results on these

scenarios show that our proposed framework can reduce the relative error to other state-of-the-art personalization

methods by up to 33.68%. In addition, we are able to accurately detect the malicious clients and remove their

influence, especially when the scale of malicious clients is large. For example, when there are 80% attackers in

the FL system, our approach can still achieve 8.05% accuracy improvement and 7.33% ASR (attack success rate)

dropping compared to other defense methods, which validates the superiority of DistFL. Finally, we conduct an

experiment on a real-world dataset and provide some in-depth analyses to further illustrate the effectiveness of

the proposed framework.

The contributions of this paper are summarized as three folds.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 5, No. 4, Article 168. Publication date: December 2021.

DistFL: Distribution-aware Federated Learning for Mobile Scenarios • 168:5

• We propose distribution-aware federated learning, a new paradigm to improve both the personalization

and robustness performance of FL for mobile scenarios. By clustering similar models into iid groups and

dealing with them separately, we can significantly mitigate the data heterogeneity and malicious clients

influence caused by the non-iid situation.

• We design and implement DistFL to accomplish our goal, which achieves clustering through extracting and

utilizing the distribution knowledge from the federated models. The whole process is efficient, automated

and accurate. To the best of our knowledge, this is the first framework to explore and study the paradigm

of distribution-aware federated learning.

• We conduct extensive experiments on multiple scenarios with different model architectures. The results

demonstrate that the proposed DistFL performs better than state-of-the-art approaches.

2 RELATED WORK
This section presents a brief summary of existing literature related to our study.

2.1 Mobile Federated Learning
Federated learning (FL) is a prevalent distributed machine learning paradigm with improved privacy, which

has been applied in many privacy-sensitive areas. For example, Google has developed the first product-level

federated learning application Gboard for next-word prediction [16]. NVIDIA has begun to cooperate with

medical institutions aiming at building the first federated AI platform for medical diagnosis and drug researches

[36]. In addition, both industry and academic community have released some basic FL frameworks or benchmarks

to support and contribute this promising field [6, 17, 47, 55]. According to a recent survey [27], federated learning

can be categorized into two typical types by the scale of federation: cross-silo and cross-device. Here we mainly

focus on the cross-device setting, where the participants are a large number of mobile or wearable devices rather

than big organizations or data centers. In other words, this paper pays more attention to mobile federated
learning, which has also been widely studied in recent years. For instance, Feng et al. [8] borrowed the idea

of federated learning to predict human mobility. Samarakoon et al. and Lu et al. [37, 49] designed a distributed

federated learning system for connected vehicles. Guo et al. [15] proposed an edge-accelerated federated learning

framework for POI recommendation. Next we describe some existing issues and investigate corresponding

solutions in the context of mobile federated learning.

2.1.1 Data Heterogeneity Problem and Personalization on Mobile FL. A key problem in mobile FL is that the data

on the users’ personal devices are usually non-iid (independently identically distributed) [21] due to different user

environments or user preference. Faced with the challenge of statistical differences, a series of studies have been

proposed to personalize the model. In particular, Zhao et al. [61] maintained a shared dataset across clients to

improve training on non-iid data, which is impractical since it is intractable to find such a dataset and may cause

privacy leakage. Liang et al. [29] used traditional FL to generate a global model and further fine-tune it with data

in each local client. However, this method needs massive computation costs and cannot completely address the

data heterogeneity problem since it still requires a traditional FL process (i.e., aggregating models with different

distributions) before fine-tuning. Ghosh et al. [12] proposed the K-Cluster method to conduct FL, where they first

set K clusters manually before different clients are respectively clustered and optimized in terms of the output

loss. However, loss-based clustering is not accurate since the loss cannot reflect valuable distribution knowledge

in the model. Moreover, this clustering algorithm needs to set the number of clusters manually before learning,

which leads to big uncertainty because nobody has the ability to give a precise judgment to the number setting in

advance. Different from these methods, DistFL partitions clients through inferring the data distribution directly

from federated models, making the clustering process more efficient, automated and accurate.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 5, No. 4, Article 168. Publication date: December 2021.

168:6 • Liu and Cai, et al.

2.1.2 Attack on Mobile FL. DNN attack is a hot and important research topic even before the emergence of

FL [14, 35, 48]. The key idea is to inject some triggers inside the model to achieve malicious behaviors. Unlike

existing attacks that target only one model in the centralized scenario, in mobile FL, the attack can happen in a

single or several clients and is introduced on their local models to mislead the global model. We believe attacks

on mobile FL are harder to defend because it is difficult to detect and locate the source of malicious behaviors

considering the tremendous number of clients.

A recent survey [38] has summarized two types of attacks under the FL scenario: poison attacks [3, 4, 10, 51]

and inference attacks [20, 41, 44, 62]. The goal of poison attacks is to induce the FL model to output the target

label specified by the adversary. For example, Tolpegin et al. [51] implemented data poison attack by flipping the

labels of training data from one class to another class in the local training epoch to mislead the global model

output. Bagdasaryan et al. [3] conducted model poison attack by replacing the local model with elaborate weights,

which can achieve a significantly higher attack success rate than data poison attacks. For inference attacks, model

updates are utilized to infer an amount of private information, such as class representatives [20], membership as

well as properties associated with a subset of the training data [41].

2.1.3 Defense on Mobile FL. Many efforts have been made to design defensive strategies to resolve attacks on

mobile FL. Towards poison attacks, Konstantinov & Lampert [23] proposed the idea to maintain a small dataset

in the server to provide extra guidance to mitigate the attack. However, the server end may not own such data

and it is difficult to determine which data should be collected. Besides, Li et al. [28] proposed to use conv layers’

weights of uploaded models to build an auto-encoder to detect malicious clients and Yu & Wu [59] attempted to

directly use the weights to distinguish malicious clients for robust aggregation. Fu et al. [9] applied a weighting

scheme to give a low weight to uploaded attacked models, mitigating their negative influences. Different from

these methods that devote to borrowing extra data or simply utilizing model weights, our approach isolates these

malicious clients into a single cluster by detecting whether their distribution knowledge is abnormal, which is

more accurate and efficient.

For inference attacks, researchers applied differential privacy (DP) [1] to federated learning by (1) clipping

each client’s update, and (2) adding random noise [11, 60]. As a result, the privacy property of user data can be

formally protected. In our experiments, we also implement DP on the client local model to defend the attack and

test whether our approach is still effective under this privacy-protection scenario.

2.2 Knowledge Extraction from DNNs
DistFL is motivated by the idea of synthesis while paying more attention to generate distribution knowledge in
an efficient manner. Generally, DistFL’s process of generating bogus data can be categorized as the problem

of extracting knowledge from DNN models. There are two lines of such work. The first is to use knowledge

distillation (KD) [19], where the model knowledge can be extracted/transferred to another model by mimicking

the output or intermediate features. During the last few years, KD has been widely used in various fields, such as

model compression [30, 31, 42], compact neural network architecture design [46] and semantic segmentation

[34]. However, KD relies on the raw data to conduct training on the server end, which is unacceptable for FL due

to privacy concerns. Besides, image synthesis [39] can also be used to conduct knowledge extraction, where the

model knowledge is derived to image-like data. For example, DeepDream [43] and DeepInversion [58] tried to

synthesize high fidelity and high resolution natural images from a trained DNN by gradient techniques. However,

most of them focus on concrete label information and require massive computation costs.

3 PRELIMINARIES
This section starts with a problem analysis and then explains the distribution knowledge in detail. Finally, we

formulate our objective.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 5, No. 4, Article 168. Publication date: December 2021.

DistFL: Distribution-aware Federated Learning for Mobile Scenarios • 168:7

3.1 Problem Analysis
The aim of this subsection is to analyze how the data heterogeneity problem and the client malicious behaviors

affect the FL process. Here we do not consider the inference attacks since they do not inject any malicious

behaviors to the local model and thus will not harm FL.

For the data heterogeneity problem, each client owns a specific data distribution due to its environment or

preference, which naturally satisfies the non-iid situation. For malicious behaviors in FL (i.e., poison attacks),

they try to mislead specific data to wrong results, which can be considered to inject abnormal data information

into the model. In other words, these attacks change the original data distribution of clients and also form a

type of non-iid situation (normal and abnormal). So we can find that both of the issues come from aggregating

models with non-iid distributions, which motivates us to address them fundamentally from a new perspective:

Is it possible to decompose the non-iid situation into several iid situations by distribution-aware clustering? If this
clustering can be achieved, the data heterogeneity problem will disappear and models with malicious behaviors

can be clustered into a single group, getting rid of their harmful influence on normal clients. In this paper, we

design and implement distribution-aware FL to accomplish our goal.

3.2 Statistical Information and Distribution Knowledge
3.2.1 Statistical Information. Here the statistical information refers to a type of statistic that can well describe

the overall distribution situation of a dataset. Usually the distribution parameters such as mean and var are used
to represent the information [33]. Note that these parameters are exactly encoded in the widely used BatchNorm

(BN) layers (i.e., running_mean, running_variance) of a modern DNN model, which can be easily obtained in our

scenario because all of the local models have been uploaded to the central server.

3.2.2 Distribution Knowledge. In our work, we attempt to extract the distribution knowledge from a DNN

model to implement the later clustering. Intuitively, the distribution knowledge characterizes the situation

of data distribution. In real-world applications, the same object image collected from different environments,

the same activity coming from different people, the number of certain data based on different users, or some

malicious behaviors injected by different attackers can be considered as typical examples that can lead to various

distributions. In other words, the distribution knowledge indicates that the specific feature information (e.g., the

feature of the object image), which may be related to certain data, is identical while the overall data distribution

situation (e.g., the environment that the object images are in) may be significantly different. Therefore, we believe

the distribution knowledge has a close relation to environments, special user preferences, and targeted behaviors,

which is commonly seen in mobile scenarios.

In order to extract the distribution knowledge, we first denote it as a set of bogus data generated from an

uploaded model that complies to the original distribution of the model’s input data. As aforementioned, the

original data distribution can be characterized by the statistical information (i.e., distribution parameters), which

motivates us to generate data whose statistical information is similar to the original ones. Specifically, we employ

the synthesis technique to optimize the noises to fit the distribution parameters for generating the distribution
knowledge. Details can be founded in Section 4.2.

3.3 Problem Formulation
We now introduce the symbols and annotations to formally define the optimization objective. Generally speaking,

there are two parties involved in the FL process: client end and server end. The client end owns local datasets

𝐷 = {𝐷1, 𝐷2, ..., 𝐷𝑁 } and use them to conduct training, generating local models𝑀 = {𝑀1, 𝑀2, ..., 𝑀𝑁 }. Here 𝑁
denotes the number of clients. The server end collects these models and aggregates them to generate a global

model𝑀𝑔𝑙𝑜𝑏𝑎𝑙 = 𝐴𝑔𝑔(𝑀1, 𝑀2, ..., 𝑀𝑁), where 𝐴𝑔𝑔 represents the aggregation algorithm (e.g., FedAvg). Unlike the

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 5, No. 4, Article 168. Publication date: December 2021.

168:8 • Liu and Cai, et al.

traditional FL that outputs a global model, our objective is to generate several personalized models based on

different distributions. In order to provide a formal definition of distribution-aware federated learning, we first
give an assumption.

Assumption 1. Suppose X represents the data distribution. In the mobile FL system, there exist 𝑄 types of data
distributions X1,X2, ...,X𝑄 and each local model𝑀𝑖 ∈ 𝑀 reflects one of them.

This assumption is commonly seen in the practical mobile FL scenario, where different distributions may come

from diverse environments, user preference or injected malicious behaviors. Note that any client can find at least

one client with similar distributions considering the huge number of clients in the mobile FL system and thus

𝑄 < 𝑁 . Based on the assumption, we define distribution-aware federated learning as follows.

Definition 1. Distribution-aware Federated Learning (DistFL): Suppose clients can be ideally partitioned
into Q clusters (𝐺1,𝐺2, ...,𝐺𝑄) in terms of their data distributions. At the aggregation stage, instead of aggregating all
models as the traditional FL does, we conduct aggregation algorithms inside each cluster, generating Q personalized
models (𝑀1

𝑝 , 𝑀
2

𝑝 , ..., 𝑀
𝑄
𝑝) for clients, getting rid of the influence of the non-iid situation.

To accomplish DistFL, we first construct a mapping 𝐹 : 𝑀𝑡𝑎𝑟𝑔𝑒𝑡 → 𝐾𝑡𝑎𝑟𝑔𝑒𝑡 , in order to map the target model

𝑀𝑡𝑎𝑟𝑔𝑒𝑡 to𝐾𝑡𝑎𝑟𝑔𝑒𝑡 , where𝐾𝑡𝑎𝑟𝑔𝑒𝑡 is the distribution knowledge embedded in𝑀𝑡𝑎𝑟𝑔𝑒𝑡 . In terms of𝐾𝑡𝑎𝑟𝑔𝑒𝑡 , we attempt

to characterize the relation among the models (clients) and allocate them into different clusters (𝐺1,𝐺2, ...,𝐺𝑄).
In the following sections, we introduce a series of techniques to obtain 𝐾𝑡𝑎𝑟𝑔𝑒𝑡 , the concrete cluster information

(𝐺1,𝐺2, ...,𝐺𝑄) and the final personalized models (𝑀1

𝑝 , 𝑀
2

𝑝 , ..., 𝑀
𝑄
𝑝).

4 THE DISTFL FRAMEWORK
This paper proposes an extraction-clustering based framework to achieve DistFL defined in Definition 1. In this

section, we first give an overview of our framework and then describe each of the core components in detail.

4.1 Overview
We first discuss the overall process of DistFL.

Figure 2 illustrates the three key components in our framework, which we briefly summarize as follows:

• Distribution extraction: We first need to extract distribution knowledge for later clustering. Specifically,

we randomly initialize a noise and feed it into an uploaded model(step 1). Then in step 2 and step 3, we select
the extraction targets that may contain distribution information of the models and adapt the noise to data

with distribution knowledge using backpropagation (i.e., synthesis techniques [43, 58]). In order to make

the process more efficient, we conduct a pre-aggregation scheme to generate a global model and only extract

the knowledge from it. Besides, the extraction targets of the model are decided by an importance-based
target selection method, which aims to remove some redundant information to save adaptation costs. As a

result, we are able to extract the distribution knowledge of the target model (here𝑀𝑡𝑎𝑟𝑔𝑒𝑡 = 𝑀𝑔𝑙𝑜𝑏𝑎𝑙) and

generate 𝐾𝑡𝑎𝑟𝑔𝑒𝑡 .

• Distribution-based clustering: After obtaining the distribution knowledge 𝐾𝑡𝑎𝑟𝑔𝑒𝑡 , we feed them into

each uploaded model to observe their response (step 4). Concretely, we generate the probability distribution
vector at the Softmax layer (step 5). By calculating the KL divergence [52] between these vectors, we are

able to construct a similarity matrix, which provides guidance to cluster models without manual efforts

(step 6 and step 7). In this way, the cluster information (𝐺1,𝐺2, ...,𝐺𝑄) is formed.

• Aggregation: Instead of blindly aggregating all of the uploaded models as traditional FL does, our approach

conducts a selective aggregation process by only aggregating models inside the same cluster, generating

corresponding personalized models (𝑀1

𝑝 , 𝑀
2

𝑝 , ..., 𝑀
𝑄
𝑝) for clients with different data distributions.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 5, No. 4, Article 168. Publication date: December 2021.

DistFL: Distribution-aware Federated Learning for Mobile Scenarios • 168:9

Pre-aggregated model	

co
nv

Ba
tc
hN

or
m

Re
LUFeature

Maps

Noise

…

0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 0 0 0 0 0 1 1 1 1 1

1 1 1 1 1 0 0 0 0 0 1 1 1 1 1

1 1 1 1 1 0 0 0 0 0 1 1 1 1 1

1 1 1 1 1 0 0 0 0 0 1 1 1 1 1

1 1 1 1 1 0 0 0 0 0 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 0 0 0 0 0

Similarity	matrix

Model	1

Model	2…
Model	N

BN channels

Determine	importance	
based	on	scaling	factors

6.	Computing
KL	divergence

7.	Clustering

Distribution	
Knowledge

2. Selecting		
extraction	targets

❶ Distribution	extraction

❷Distribution-based	 clustering

1. Feed	forward

4. Feed
forward (1.3,2.2,…0.7)

(0.6,3.1,…2.5)

(4.2,6.3,…1.1)

5.	Generating	probability	distribution	vector

❸ Aggregation

3. Generating	data-like		
distribution	knowledge

…
…

…
…

Fig. 2. Pipeline of our framework. The distribution extraction step extracts the distribution knowledge from the target model
and the distribution-based clustering step leverages the extracted knowledge to cluster models with similar data distributions.
Finally, the aggregation step aggregates models inside each cluster, generating specialized models for each cluster.

We dynamically implement these steps in each round of FL until convergence. Note that the whole process is

operated in the server, without consuming extra resources on the resource-constrained clients.

4.2 Distribution Extraction
The first step is to extract the distribution knowledge from uploaded models. Given an uploaded model, DistFL

generates the bogus input that represents the input data distribution of the model. To achieve this, we borrow the

idea of the image synthesis technique [43], whose goal is to synthesize high fidelity and high resolution natural

images given a single model, which can be regarded as the knowledge of the model. Here we do not use GAN

[13] because it requires not only the model but also the user raw data to generate bogus data, which is unrealistic

in our scenario.

Specifically, given a randomly initialized noise 𝑥 ∈ R𝐶×𝐻×𝑊
, and a target label 𝑦, the synthesis technique is

able to generate label-related images (knowledge) by optimizing the following objective

min

𝑥𝑟
L(𝑥,𝑦) + 𝑅(𝑥) (1)

where C, H, and W are the number of channels, height and width of the noise. 𝑥𝑟 is the reconstructed image.

L(·, ·) denotes the loss function and 𝑅(·) represents an image regularization term to improve the visual quality.

In our work, different from previous works that devote to generating high fidelity natural images with

target labels, we focus on optimizing the noises to fit the statistics encoded in the BatchNorm (BN) layers (i.e.,

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 5, No. 4, Article 168. Publication date: December 2021.

168:10 • Liu and Cai, et al.

running_mean, running_variance) of the uploaded model as much as possible, no matter whether the generated

items are natural images or not. Therefore, our approach can be applied to any tasks by changing the dimension

of the initialized noise. For instance, to the task of human activity recognition (HAR), the noise is a 1-dimension

vector, which can also achieve good performance as shown in our experiments (see 5.3). Here we still take the

image task as an example for a better comparison to traditional synthesis techniques.

Concretely, given a series of noises 𝑋 = {𝑥1, 𝑥2, ..., 𝑥𝑧} (𝑧 represents the number of noises) and the target model

𝑀𝑡𝑎𝑟𝑔𝑒𝑡 , we attempt to address an optimization problem as follows

min

𝐾𝑡𝑎𝑟𝑔𝑒𝑡

𝐻∑
𝑖=1

(
| |𝜇𝑖 (𝑋) − 𝐵𝑁𝑖 (𝑟𝑢𝑛𝑛𝑖𝑛𝑔_𝑚𝑒𝑎𝑛) | |2 + ||𝜎2𝑖 (𝑋) − 𝐵𝑁𝑖 (𝑟𝑢𝑛𝑛𝑖𝑛𝑔_𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒) | |2

)
(2)

where 𝐾𝑡𝑎𝑟𝑔𝑒𝑡 = {𝑘1𝑡𝑎𝑟𝑔𝑒𝑡 , 𝑘2𝑡𝑎𝑟𝑔𝑒𝑡 , ..., 𝑘𝑧𝑡𝑎𝑟𝑔𝑒𝑡 } is the reconstructed distribution knowledge from the target model

𝑀𝑡𝑎𝑟𝑔𝑒𝑡 . 𝜇𝑖 (𝑋) and 𝜎2𝑖 (𝑋) denote the mean and variance estimates of feature maps to the 𝑖𝑡ℎ layer, which are

generated by feeding the noises into the model for an inference process. 𝐻 represents the number of BN layers

of the model. 𝐵𝑁𝑖 (𝑟𝑢𝑛𝑛𝑖𝑛𝑔_𝑚𝑒𝑎𝑛) and 𝐵𝑁𝑖 (𝑟𝑢𝑛𝑛𝑖𝑛𝑔_𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒) are the parameters in the 𝑖𝑡ℎ BN layer, which

can reflect the statistical information. | | · | |2 represents the 𝐿2 𝑛𝑜𝑟𝑚. After solving this optimization problem by

gradient-descent based back propagation, we can obtain the final distribution knowledge 𝐾𝑡𝑎𝑟𝑔𝑒𝑡 .

4.2.1 Efficiency Optimization 1. The naive approach of knowledge extraction is to generate the distribution

knowledge for each of the uploaded models respectively. However, in an FL system, we may have a huge

number of clients, each of which holds a local model. Thus directly extracting the distribution knowledge from

all uploaded models could be time-consuming and computationally expensive. To improve the efficiency of

knowledge extraction, instead of extracting the distribution from all of the uploaded models, we apply a pre-
aggregation scheme to generate a global model and use it to extract the distribution knowledge. The intuition is

that no matter what changes the attackers make to their local models, the aggregation process must be enabled.

Otherwise, FL cannot be continued, let alone injecting malicious behaviors. Besides, the aggregated model must

be a usable model for later deployment, indicating that we are able to extract the distribution knowledge from it

although the distribution may be abnormal.

Specifically, we first generate the global model𝑀𝑔𝑙𝑜𝑏𝑎𝑙 by averaging all of the uploaded models as the FedAvg

algorithm does [40]:

𝑀𝑔𝑙𝑜𝑏𝑎𝑙 =
1

𝑁

𝑁∑
𝑖=1

𝑀𝑖 (3)

The generated𝑀𝑔𝑙𝑜𝑏𝑎𝑙 can be regarded as the target model𝑀𝑡𝑎𝑟𝑔𝑒𝑡 .

4.2.2 Efficiency Optimization 2. As DNNs become larger and larger for processing more complex tasks, the

number of BN layers have also increased dramatically. Under this situation, selecting all of the BN layers to

conduct aforementioned optimization may cause considerable computation costs. Therefore, to make the process

more efficient, we present an importance-based target selectionmethod to selectively extract the important channels
of BN layers to implement the optimization. Here the importance is measured by the scaling factor attached in

each BN channel and we pick out 𝐸% (i.e., the ratio of selected channels to the whole channels of the BN layer)

channels with the larger factor value in each layer. Thus, the optimization problem is reformulated as

min

𝐾𝑡𝑎𝑟𝑔𝑒𝑡

𝐻∑
𝑖=1

(
| |𝜇𝑖 (𝑋) − 𝐵𝑁 𝑆

𝑖 (𝑟𝑢𝑛𝑛𝑖𝑛𝑔_𝑚𝑒𝑎𝑛) | |2 + ||𝜎2𝑖 (𝑋) − 𝐵𝑁 𝑆
𝑖 (𝑟𝑢𝑛𝑛𝑖𝑛𝑔_𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒) | |2

)
, (4)

where 𝑆 represents the selected BN channel set in the corresponding layer.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 5, No. 4, Article 168. Publication date: December 2021.

DistFL: Distribution-aware Federated Learning for Mobile Scenarios • 168:11

In terms of Equation 4, we are able to generate the distribution knowledge of the target model 𝑀𝑡𝑎𝑟𝑔𝑒𝑡 and

obtain the final 𝐾𝑡𝑎𝑟𝑔𝑒𝑡 .

4.3 Distribution-based Clustering
This component determines the concrete cluster information (𝐺1,𝐺2, ...,𝐺𝑄) based on the extracted 𝐾𝑡𝑎𝑟𝑔𝑒𝑡 .

Because the extracted knowledge is in a form of "data", we can directly feed them into each uploaded model to

observe the responses, which can then be used to guide clustering.

Our intuition is that, given the same distribution knowledge, models with similar distributions will give similar

responses. Therefore, clustering models has the same effect as clustering their corresponding responses, which

simplifies our goal. Specifically, given an uploaded model𝑀𝑐 and the target distribution knowledge 𝐾𝑡𝑎𝑟𝑔𝑒𝑡 , we

feed each input 𝑘𝑖𝑡𝑎𝑟𝑔𝑒𝑡 into the model and concatenate the probability distribution vector at the final Softmax

layer

𝑉𝑐 = 𝑐𝑜𝑛𝑐𝑎𝑡{𝑀𝑐 (𝑘𝑖𝑡𝑎𝑟𝑔𝑒𝑡)}𝑖=1,2,...,𝑧 (5)

In this way, we generate 𝑉1,𝑉2, ...,𝑉𝑁 from each uploaded model to represent its response to the certain distribu-

tion knowledge (i.e., 𝐾𝑡𝑎𝑟𝑔𝑒𝑡). Notice that the responses generated from each model are a series of probability

distribution vectors, and thus we can calculate their similarity with the KL divergence [25], which has been

proved effective in measuring the difference degree between two probability distributions. Next, we calculate the

KL divergence between these vectors as follows

𝐷𝑖𝑣 (𝑝, 𝑞) = 𝐷𝐾𝐿 (𝑉𝑝 | |𝑉𝑞) (6)

Based on Equation 6, we can generate a similarity matrix 𝑆𝐼𝑀 , where 𝑆𝐼𝑀𝑝𝑞 represents the distribution similarity

degree for the 𝑝𝑡ℎ model to the 𝑞𝑡ℎ model and the lower value implies higher similarity. In terms of 𝑆𝐼𝑀 , we

are able to easily determine the number of clusters and which model is in which cluster (i.e., (𝐺1,𝐺2, ...,𝐺𝑄))
by setting a threshold (the threshold is apparent as shown in the right part of Fig 6, where every 5 clients with

similar distributions have a significantly higher similarity compared to others and thus can be clearly clustered),

getting rid of the complex and inaccurate manual efforts.Specifically, given an uploaded model, we set a threshold

to pick out the similar models based on 𝑆𝐼𝑀 to form a rough iid cluster. For other unselected models, we follow

the above step and form another iid cluster. In this way, we can finally partition these models into different iid

clusters without manual setting of the concrete number of clusters.

Besides, we would like to point out that although we do not know the concrete information of the dataset or

problem settings (e.g., how many clusters), the manual threshold is always effective because the computed matrix

𝑆𝐼𝑀 has clearly described the difference between models generated from the iid data distribution and the non-iid

data distribution, which benefits the threshold-based partition. In other words, the value of 𝑆𝐼𝑀 is close in the iid

group while varying greatly between two groups (i.e., iid and non-iid). Therefore, the threshold can be always

and easily generated in terms of the distance among the 𝑆𝐼𝑀 values and we finally form different model groups

based on it. In summary, what makes the threshold works is that the uploaded models intrinsically come from

different distributions according to our Assumption 1 and the matrix 𝑆𝐼𝑀 is able to characterize their similarity,

which make the threshold feasible in partitioning them.

4.4 Aggregation
Model aggregation is the final step to finish FL. A prevalent and effective aggregation is FedAvg [40], which has

been proved effective especially when the data is iid. Here we adopt this aggregation algorithm because we have

partitioned uploaded models into several iid clusters. Concretely, for the cluster𝐺𝑖 , we average the models inside

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 5, No. 4, Article 168. Publication date: December 2021.

168:12 • Liu and Cai, et al.

this cluster (i.e.,𝑀1

𝐺𝑖
, 𝑀2

𝐺𝑖
, ..., 𝑀

𝑁𝑖

𝐺𝑖
) and generate the corresponding personalized model𝑀𝑖

𝑝

𝑀𝑖
𝑝 =

1

𝑁𝑖

𝑁𝑖∑
𝑗=1

𝑀
𝑗

𝐺𝑖
, (7)

where 𝑁𝑖 is the number of models inside the cluster 𝐺𝑖 . In this way, we are able to obtain the final personalized

models (𝑀1

𝑝 , 𝑀
2

𝑝 , ..., 𝑀
𝑄
𝑝) and deploy them to corresponding clients.

4.5 Theoretical Analysis
In this subsection, we provide theoretical analysis to support our framework. A possible direction is to quantify

the uncertainty of models built by different aggregation algorithms based on the theory proposed by Gal [22].

After exploration, we find that the key factor to affect model uncertainty is the amount of data. In other words,

the more data we have, the smaller uncertainty the model holds. In our FL scenario, the client data is not changed

when applying different aggregation algorithms and thus we cannot explain the improved performance from this

perspective. Here we use the weight divergence to provide feasible theoretical analysis.

Specifically, we analyze the weight divergence among the candidate models that need to be aggregated in

traditional FL and DistFL, which has been proven to be a key factor to the final FL performance (i.e., higher

divergence leads to worse performance [61]). According to the work [61], the weight divergence satisfies the
following inequality

𝒘 (𝑓)

𝑚𝑇
−𝒘 (𝑐)

𝑚𝑇

 ≤ 𝑁∑
𝑘=1

𝑛 (𝑘)∑𝑁
𝑘=1

𝑛 (𝑘)

(
𝑎 (𝑘)

)𝑇

𝒘 (𝑓)
(𝑚−1)𝑇 −𝒘 (𝑐)

(𝑚−1)𝑇

+ 𝜂

𝑁∑
𝑘=1

𝑛 (𝑘)∑𝑁
𝑘=1

𝑛 (𝑘)

𝐶∑
𝑖=1

𝑝𝑟𝑜 (𝑘) (𝑦 = 𝑖) − 𝑝𝑟𝑜 (𝑦 = 𝑖)

 𝑇−1∑
𝑗=1

(
𝑎 (𝑘)

) 𝑗
𝑔max

(
𝒘 (𝑐)
𝑚𝑇−1−𝑘

) (8)

where 𝑁 is the number of clients.𝒘𝒎𝑻 denotes the model weight at the𝑚𝑇 round. 𝑓 and 𝑐 represent the federated

setting and the centralized setting. 𝐶 is the number of category and 𝑦 is the ground truth. 𝑔𝑚𝑎𝑥 denotes the max

gradient and 𝑎 is a hyper-parameter. 𝑝𝑟𝑜 (𝑘) represents the probability of the 𝑘𝑡ℎ client and 𝑝𝑟𝑜 is the overall

distribution under the centralized setting.

Here we mainly focus on how to compare the candidate models’ weight divergence between traditional FL and

our DistFL. Based on the inequality, the distribution heterogeneity (i.e.,

∑𝐶
𝑖=1

𝑝𝑟𝑜 (𝑘) (𝑦 = 𝑖) − 𝑝𝑟𝑜 (𝑦 = 𝑖)

in the

inequality) plays a key role in the divergence degree: higher heterogeneity leads to larger divergence. In traditional

FL, the distribution heterogeneity is high since the data distribution under the candidate models is typically non-

iid. Different from it, DistFL partitions uploaded models into several iid clusters to conduct aggregation, which

significantly mitigates the heterogeneity and decreases the weight divergence degree. Therefore, compared with

traditional FL, DistFL maintains a low weight divergence degree during aggregation, contributing to improved

performance.

5 EVALUATION
This section presents the evaluation of DistFL over different mobile scenarios and compares it against various

baseline methods. Specifically, we primarily look at the following two aspects:

• What is the performance of DistFL on our simulated mobile scenarios and the real-world scenario? How

does it compared to existing methods? (§5.2, §5.3, §5.4, §5.5, §5.6, §5.7)

• Is the extracted distribution knowledge effective in distinguishing models with different distributions?

How to select parameters for better efficiency during the extraction process?(§5.8)

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 5, No. 4, Article 168. Publication date: December 2021.

DistFL: Distribution-aware Federated Learning for Mobile Scenarios • 168:13

Table 1. The simulation settings of different datasets. Note that the HAR-ADL dataset is collected from real mobile users,
which means that it does not have the specific distribution type.

Dataset Distribution type Client index #Training sample #Testing sample

CIFAR-10

Type1 1,2,...,20 800 2000

Type2 21,22,...,40 800 2000

Type3 41,42,...,60 800 2000

Type4 61,62,...,80 800 2000

Type5 81,82,...,100 800 2000

Office-Home

Ar 1,2,...,5 1940 485

Cl 6,7,...,10 3490 873

Pr 11,12,...,15 3550 887

Rw 16,17,...,20 3485 871

HAR-ADL unknown 1,2,...,20 5408 1984

5.1 Experimental Settings
In the following, we will describe the simulation settings of our experiments since it is hard to conduct experiments

on real-world mobile applications. The source code is available at https://github.com/YikFungTsai/DistFL.

5.1.1 Used Public Datasets. We mainly use public computer vision (CV) datasets and human activity recognition

(HAR) datasets for simulation. Concretely, we select CIFAR-10 [24], Office-Home [53] and HAR-ADL [2] to

simulate various situations. The detailed usage and processing of these datasets are explained in the next part.

5.1.2 Simulated Mobile Scenarios. We design four commonly seen mobile scenarios based on public datasets,

whose detailed simulation settings are illustrated in Table 1. Here we briefly summarize each scenario as follows.

(1) Category-imbalance scenario. This scenario means that different clients may hold different categories due to

the user preference. For example, one client may own many "dog" images while another prefers to collect

"cat" images. Similar to the previous work [40], we simulate this situation by the public CIFAR-10 dataset,

which contains 10 different image categories. Considering that the client end may own limited data, we

uniformly select 4000 samples from the training set and allocate them into 100 clients, where every 20

clients belong to a type of distribution. Therefore, in total we have 5 types of distribution, each of which

holds two disjoint categories of CIFAR-10. For testing, we use the official testing set and partition them

into 5 parts based on the 5 types of distribution. Here we use TypeX (X=1,2,...,5) to denote each type of

distribution.

(2) Environment-difference scenario. This scenario suggests that the main recognition object is identical while

the background is different due to diverse environments. Under this circumstance, we use the Office-Home

dataset for simulation, which contains 15,500 images with four distinctive domains: Artistic images (Ar),

Clipart images (Cl), Product images (Pr) and Real-World images (Rw). Each domain has 65 identical object

categories but different backgrounds. As a recent work does [32], we first partition each domain into a

training set (80%) and a testing set (20%) since this dataset has no official train/test split. For training sets,

we further divide each domain into 5 parts and each client owns one part. Therefore, in total we have 20

clients with 4 types of data distribution and each type is evaluated on the testing set of the corresponding

domain.

(3) Privacy-protection scenario. Considering the inference attack may steal some sensitive user information

from the uploaded models or gradient updates, we apply differential privacy (DP) for the local training to

defend this type of attack as prior works do [11, 60]. Under this privacy-protection scenario, we want to

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 5, No. 4, Article 168. Publication date: December 2021.

https://github.com/YikFungTsai/DistFL

168:14 • Liu and Cai, et al.

examine whether our approach can still work given the DP-based local models. Here we take Office-Home

as an example to observe the performance on different privacy budgets.

(4) Attack-injection scenario. This scenario indicates that there exist some attackers who inject some malicious

behaviors to their local models to mislead FL. Here we mainly focus on the poison attack in the context of

FL because the inference attack can be effectively defended if we adopt DP techniques. Specifically, we

implement the label flipping attack [51] and the model replacement attack [3] to some clients for simulation.

Notice that many baseline methods do not target the non-iid problem, thus we only simulate the iid setting

on CIFAR-10 (i.e., 50 clients, each of which has 10 categories with 1000 samples) to make a fair comparison.

Besides, we use the HAR-ADL [2] dataset to simulate both the category-imbalance and the environment-difference

scenario, which is collected from accelerometers and gyroscopes of 30 smartphone users who perform 6 different

activities (i.e., walking, walking_upstairs, walking_downstairs, sitting, standing, laying). Because HAR-ADL is

a real world dataset, where different users may have specific user preference under diverse environments, we

believe it can cover both of the first two scenarios. Specifically, we select 20 users as 20 clients and use a simple

2-layer CNN to conduct experiments.

5.1.3 Models. We use three types of model architectures: simple 2-layer CNN, VGGNet [50] and ResNet [18], to

test the performance of our approach. Towards VGGNet, we replace the original fully connected layers with a

global average pooling layer in order to alleviate overfitting [45].

5.1.4 Compared Baseline Methods. We compare the proposed approach to two lines of work. The first one is the

personalization methods targeting at the non-iid problem in FL systems. Specifically, the following methods are

compared:

• Local: This method means that we only train a model at each local client without federation.

• LG-Net [29]: LG-Net first learns a global model by traditional FL and then fine-tunes the model with the

data in each client.

• K-Cluster [12]: Similar to our approach, K-Cluster also aims to cluster the uploaded models and conduct

aggregation accordingly. However, this method is only based on simple loss values and requires setting

the cluster manually, which is inaccurate and impractical since it is hard to know the cluster information

before learning.

Another line of work is the defense methods, which aim to resist poison attacks for FL systems. Concretely, we

implement three methods for comparison:

• Credit [28]: Credit attempts to use conv layers’ weights of uploaded models to build an auto-encoder such

that the abnormal clients can be selected out.

• IRLS [9]: IRLS applies a weighting scheme that gives a lower weight to uploaded attacked models, thus

mitigating their negative influence.

• GRA [59]: The goal of GRA is to directly use the weights to distinguish malicious clients for robust

aggregation.

Besides, the typical FedAvg [40] is also compared as a baseline for both of the two lines.

5.1.5 Implementation Details. We performed all experiments with the PyTorch framework, based on a server that

has 4 GeForce GTX 2080Ti GPUs, 48 Intel Xeon CPUs, and 128GB memory. In the category-imbalance scenario,
we tested the performance on VGG-11 and ResNet-18 with the CIFAR-10 dataset, where input images are 32*32

and normalized to zero mean for each channel. We assigned the learning rate to 1e-4 for VGG-11 and 1e-2 for

ResNet-18 respectively. In the background-difference scenario, we used the pre-trained ResNet-50 model to test

the performance on the Office-Home dataset, where we randomly cropped the input images to 224*224 and

these images are also normalized to zero mean for each channel. The learning rate was set to 1e-2. Besides, we

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 5, No. 4, Article 168. Publication date: December 2021.

DistFL: Distribution-aware Federated Learning for Mobile Scenarios • 168:15

Table 2. Results on the category-imbalance scenario with CIFAR-10. Each "Type" represents a unique data distribution.

Method VGG-11 ResNet-18
Type1 Type2 Type3 Type4 Type5 Avg Type1 Type2 Type3 Type4 Type5 Avg

FedAvg 38.65 40.35 21.25 32.55 37.05 33.97 28.60 35.10 25.30 32.00 30.45 30.29

Local 81.50 81.37 69.38 81.44 83.11 79.36 74.00 70.40 63.37 74.16 76.09 71.60

LG-Net 83.36 85.94 76.87 85.43 84.99 83.32 80.43 79.65 68.05 79.71 82.15 78.00

K-Cluster 88.60 92.55 79.45 91.20 91.35 88.63 86.40 86.55 74.80 55.95 58.25 72.39

Ours 89.70 93.05 89.50 91.40 91.75 91.08 87.80 88.25 76.60 87.00 87.40 85.41

Table 3. Results on the environment-difference scenario with Office-Home. Here Art, Clipart, Product, Real-World are the
four data domains under different environments.

Method Art Clipart Product Real-World Avg

FedAvg 78.35 71.82 89.52 83.36 80.76

Local 54.06 54.30 79.79 75.84 62.72

LG-Net 75.91 74.18 89.06 84.59 80.94

K-Cluster 74.67 77.09 89.63 84.39 80.46

Ours 79.49 78.62 93.01 87.73 83.71

conducted experiments in the HAR-ADL dataset with a simple 2-layer CNN, where we sampled data at every 50

Hz and set the learning rate to 1e-2.

Towards the privacy-protection scenario and the attack-injection scenario, we followed the processing settings

in aforementioned scenarios and then applied different schemes (i.e., DP and attacks) into the FL pipeline. By

default, all of the models were trained using SGD with a momentum of 0.9. We set the local training epoch to 5

and conducted 50 federated rounds to guarantee convergence. In addition, the hyper-parameter 𝑧 and 𝐸%, which

represent the number of initialized noises and the channel percentage of BN layers, were respectively set to 200

and 50%. Finally, we repeated all the experiments 3 times and took the average of them as the reported results.

5.2 Results on the Category-imbalance Scenario
As we stated in the experimental settings, there are 5 types of distributions and we test the average performance

on each type. Table 2 illustrates the results on VGG-11 and ResNet-18. We can clearly see that the proposed DistFL

consistently achieves higher accuracy than other methods across all of the types. On average, the improvement is

over 2% for VGG-11 and 7% for ResNet-18 compared to other methods. This validates that by distribution-aware FL,

we can greatly boost the performance for the category-imbalance scenario. Besides, it is worth noting that: (1) The

FedAvg baseline is worse than the Local training, which suggests that the typical FL algorithm fails to cope with

this non-iid setting and it is even not necessary to conduct federated learning under this condition; (2) The overall

performance on VGG-11 outperforms ResNet-18, demonstrating that the skip connections existed in ResNets may

harm the FL process when each client owns images with different categories. Despite the interference, DistFL

still exceeds other methods by a large margin, which further confirms the effectiveness of our approach.

5.3 Results on the Environment-difference Scenario
5.3.1 Performance on Office-Home. Here Office-Home is used to simulate the environment-difference scenario

and each domain in the dataset is considered as a type of distribution. We use ResNet-50 as the backbone since it

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 5, No. 4, Article 168. Publication date: December 2021.

168:16 • Liu and Cai, et al.

Table 4. The accuracy (%) achieved by different methods on HAR-ADL. Note that this dataset is collected from real world
users, which can cover both the category-imbalance and environment-difference scenarios.

Client FedAvg Local LG-Net K-Cluster K-Cluster K-Cluster OursIndex (K=2) (K=3) (K=4)

1 96.55 83.91 97.70 83.91 100.00 98.85 100.00

2 100.00 38.16 100.00 88.16 100.00 100.00 100.00

3 58.14 91.86 75.58 80.23 100.00 96.51 96.51

4 78.95 30.26 94.74 94.74 97.37 97.37 97.37

5 100.00 96.34 100.00 70.73 98.78 98.78 98.78

6 89.61 76.62 98.70 92.21 98.70 98.70 98.70

7 67.61 81.69 53.52 46.48 57.75 54.93 67.61

8 68.06 68.06 34.72 68.06 52.78 38.89 72.22

9 100.00 87.34 97.47 98.73 97.47 100.00 100.00

10 100.00 71.25 97.50 80.00 80.00 97.50 97.50

11 98.78 93.90 75.61 80.49 98.78 85.37 95.12

12 65.22 45.65 86.96 79.35 100.00 90.22 97.83

13 83.33 87.78 97.78 98.89 98.89 97.78 98.89

14 56.86 98.04 58.82 66.67 100.00 59.80 100.00

15 91.36 86.42 85.19 98.77 96.30 83.95 98.96

16 95.83 91.67 100.00 97.92 88.54 100.00 98.96

17 96.94 94.90 96.94 96.94 96.94 94.90 98.98

18 90.63 90.63 98.96 98.96 100.00 100.00 100.00

19 100.00 21.67 100.00 100.00 100.00 100.00 100.00

20 98.96 89.58 96.88 98.96 96.88 100.00 98.96

Avg 86.84 76.29 87.35 86.01 92.96 89.68 95.82

is commonly evaluated on this dataset. We average the achieved accuracy of each domain/type and report the

domain performance in Table 3. Obviously, we can see that DistFL shows superiority in all domains with up to

3.38% average improvement (i.e., on the Product domain), demonstrating its applicability when the environments

of clients are diverse. In addition, there are two interesting observations: (1) Different from the category-imbalance

scenario, in this scenario the FedAvg baseline can significantly outperform the Local training, which means that

we can benefit from FL although the environment of client data is different; (2) The state-of-the-art method

K-Cluster might be not very applicable to this setting considering that the achieved average accuracy is even

lower than the FedAvg baseline. We believe this is because the environment difference is hard to be distinguished

only using the inference loss calculated in this method, thus leading to wrong clustering results.

5.3.2 Performance on HAR-ADL. HAR-ADL is a human activity recognition (HAR) dataset whose data are

collected from different real-world users. Therefore, the distribution is typically non-iid, including both the

category-imbalance and environment-difference situations. Different from the Office-Home dataset that has

specific distribution types, it is hard to estimate the detailed distribution information of HAR-ADL, which poses

a higher demand to implement clustering automatically. Therefore, for the K-cluster method, we manually try

several hyper-parameter settings (i.e., K=2,3,4) and record their corresponding results. Table 4 demonstrates the

overall performance with different methods. We can observe that: (1) On average, our DistFL can outperform

other methods by a large margin, which suggests that distribution-aware FL does benefit the real-world user

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 5, No. 4, Article 168. Publication date: December 2021.

DistFL: Distribution-aware Federated Learning for Mobile Scenarios • 168:17

0.1 0.3 0.5 1 none
Epsilon

50

55

60

65

70

75

80

85

To
p-

1
Ac

c(
%

)
FedAvg
LG-Net
K-Cluster
Ours

Fig. 3. Results on the privacy-protection scenario. Here we test the effectiveness of different methods by enforcing different
privacy budgets (i.e., epsilon).

0.1 0.3 0.5 1 none
Epsilon

20

30

40

50

60

70

80

90

To
p-

1
Ac

c(
%

)

FedAvg
LG-Net
K-Cluster
Ours

Fig. 4. Results on the mixed scenario (i.e., category-imbalance and privacy-protection). Here we test the effectiveness of
different methods by enforcing different privacy budgets (i.e., epsilon).

scenario; (2) For K-cluster, the performance varies significantly given different hyper-parameter settings. This

demonstrates that K-cluster is largely dependent on the accurate manual setting, making it hard to be used in

real-world applications since we cannot give the suitable manual setting before FL; (3) Besides the cluster-based

method, other personalization methods can only reach an accuracy of 87.35%, which is roughly 10% lower than

our approach. In other words, these methods fail to achieve good performance when the category-imbalance and

environment-difference situations happen simultaneously.

5.4 Results on the Privacy-protection Scenario
We simulate this scenario by adding differential privacy (DP) based noise to the local models for stronger privacy

guarantees. The intensity of the noise is controlled by the privacy budget 𝜖 . The smaller 𝜖 is, the larger noises

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 5, No. 4, Article 168. Publication date: December 2021.

168:18 • Liu and Cai, et al.

Table 5. Results on the attack-injection scenario. Here is the defense performance to the label flipping attack on VGG-11.
ACC is the testing accuracy on the final aggregated model and ASR represents the attack success rate.

Method 5 10 15 20 40

ACC(%) ASR(%) ACC(%) ASR(%) ACC(%) ASR(%) ACC(%) ASR(%) ACC(%) ASR(%)

FedAvg 67.89 5.18 59.33 19.57 59.33 40.33 40.85 52.87 36.61 70.08

Credit 69.48 3.82 62.22 14.62 49.44 37.65 42.12 51.92 36.45 70.45

IRLS 70.24 3.03 69.93 3.77 68.14 4.19 68.06 4.28 37.09 65.87

GRA 67.40 4.23 63.26 4.37 60.65 7.13 58.14 8.69 57.25 10.71

Ours 70.71 2.82 70.01 2.72 69.65 2.93 69.47 2.98 65.30 3.38

Table 6. Results on the attack-injection scenario. Here is the defense performance to the model replacement attack on
ResNet-18.

Metric FedAvg Credit IRLS GRA Ours

ACC(%) 31.84 72.68 72.63 71.53 72.69
ASR(%) 56.15 2.26 2.35 2.48 2.22

are added, which indicates stronger defense to the inference attack. Under this privacy-protection scenario, we

explore whether our approach is still effective in clustering models with different distributions.

Here we use the results on Office-Home & ResNet-50 as an example and apply different 𝜖 values to local models

to control the degree of privacy protection. As shown in Figure 3, the average accuracy of four domains with

several methods is reported under the different 𝜖 . From the figure, we can draw the following conclusions: (1) a

larger 𝜖 (weaker privacy guarantee) usually leads to higher accuracy, which is intuitive since it introduces smaller

noises to the models; (2) as we strengthen the degree of privacy protection (decrease 𝜖), the performance on all of

the methods is degraded. In particular, when we decrease the 𝜖 from 0.3 to 0.1, almost all of the methods drop

significantly and become nearly invalid; (3) our approach can achieve consistently higher accuracy regardless of

the intensity of 𝜖 , which further indicates the effectiveness of DistFL.

5.4.1 Performance on A Mixed Scenario. To explore whether our framework is effective in the mixed scenario,

we further conduct an experiment on both the category-imbalance and privacy-protection scenario. Concretely,

we employ the simulation setting in the category-imbalance scenario and incorporate different privacy budgets

(i.e., 𝜖) to local models to enable privacy protection. Here we use the VGG-11 as the backbone and the average

performance among these clients is recorded for comparison. Figure 4 demonstrates the results. We can observe

that the proposed framework can achieve better accuracy performance than others for all of the privacy budgets

(e.g., 4.88% improvement when 𝜖 = 0.1), validating its usefulness in the mixed scenario. Besides, the baseline

FedAvg performs significantly worse than other methods, which keeps the same observation as the category-

imbalance scenario where the non-iid situation largely degrades the performance of traditional aggregation used

in FedAvg.

5.5 Results on the Attack-injection Scenario
Although DP can be introduced to provide stronger privacy protection as stated in the last subsection, it is

impossible to defend the poison attacks, which inject malicious behaviors on the internal models. In this scenario,

we demonstrate how to inject poison attacks and the corresponding defense performance with different methods.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 5, No. 4, Article 168. Publication date: December 2021.

DistFL: Distribution-aware Federated Learning for Mobile Scenarios • 168:19

5.5.1 Threat Models. We construct two threat models by implementing two types of poison attacks. The first

one is the label flipping attack [51], where the labels of honest training examples of one class are flipped to

another class while the features of the data are kept unchanged. Another is the model replacement attack [3],

which accomplishes the attack by replacing the local model with elaborate weights to mislead FL. Note that

this replacement attack will generate an unusable local model that cannot be processed using our extraction

techniques. Thus, we resort to a pre-aggregation scheme since the aggregated model is always a usable model.

5.5.2 Defense on These Attacks. We use two metrics to evaluate the defense performance: testing accuracy on the
final aggregated model and ASR. The first metric is to examine whether the influence of malicious clients can

be removed. ASR represents the attack success rate, which is higher if the misleading accuracy on the targeted

input increases. In our scenario, ASR is defined as the success probability of perturbing a specific image class to a

target class, which can be calculated by

𝐴𝑆𝑅 =

∑ |𝐷𝑠 |
𝑖=1
I(𝑀𝑎𝑔𝑔 (𝑥𝑖) == 𝑦𝑡𝑎𝑟𝑔𝑒𝑡)

|𝐷𝑠 |
(9)

Here |𝐷𝑠 | is the number of the specific image class and𝑀𝑎𝑔𝑔 is the aggregated model. 𝑦𝑡𝑎𝑟𝑔𝑒𝑡 is the label of the

target class and 𝑥𝑖 is the 𝑖𝑡ℎ sample of the specific class. I is an indicator function. If the attack includes multiple

classes, we average their ASR as the final result.

Table 5 shows the defense results to the label flipping attack on VGG-11. Here label 0-3 and label 4-7 are

mutually flipped to conduct the misleading training. We respectively implement the attack on 5, 10, 15, 20 and 40

clients of the simulated 50 clients, to test the defense performance on different attack scales. Note that under the

label flipping attack, DistFL will generate two aggregated models for the normal and abnormal cluster respectively,

and we use the model in the normal cluster as the aggregated model because this model is the decent model to be

deployed for mobile users (another one is just an attack model). From the table, we can observe that although

other methods such as IRLS and GRA can resist the attack, they fail to accomplish the defense goal as the number

of attacked clients grows, especially when the attack scale is large enough (e.g., 40 malicious clients in our

simulation). Different from them, our approach has the capability to achieve good defense performance even

though the attack scale is large (e.g., 40/50 users are attackers and they flip their data labels). This is because

in DistFL, the malicious clients are solely and accurately clustered, getting rid of their negative influence on

the final aggregated model of normal clients. Besides, our accurate clustering also benefits more to the testing

accuracy compared with other methods since no malicious behavior can be introduced to disturb the FL process

in the cluster of the normal clients.

For the model replacement attack, we also use the same label setting as the flipping attack and conduct the

misleading training. After training, we replace the model weights using techniques stated in [3] to achieve a

stronger attack with only one malicious client. As shown in Table 6, the attack can significantly harm traditional

FL (FedAvg). However, all of the defense methods are able to defend it due to its over weird weights, which can

be easily detected and removed. Compared to other methods, our approach performs slightly better in an efficient

and automated way.

5.6 Results on the Real-world Scenario
Aforementioned scenarios are based on the simulation setting with public datasets. However, the data distribu-

tion in the real-world scenario is more complex and even has no specific pattern. To further test the generality of

the proposed approach, we conduct an experiment on a human activity recognition (HAR) dataset collected from

a mobile app to represent the real-world scenario [26], where the data distribution is not clear as our simulated

scenarios. Specifically, an Android app is first developed for activity signal logging and 6 types of activities,

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 5, No. 4, Article 168. Publication date: December 2021.

168:20 • Liu and Cai, et al.

Table 7. The accuracy (%) achieved by different methods on the real-world dataset collected from a mobile app.

Client FedAvg Local LG-Net K-Cluster K-Cluster K-Cluster OursIndex (K=2) (K=3) (K=4)

1 75.63 50.00 86.25 85.63 86.25 83.13 87.50

2 80.94 77.05 92.62 90.33 90.12 90.53 92.83

3 97.06 42.65 95.59 96.32 95.59 94.85 97.06

4 73.96 70.83 89.58 83.33 89.58 88.54 89.58

5 78.41 80.11 86.43 81.82 85.23 81.82 86.43

6 83.82 93.38 94.12 94.12 91.91 91.18 95.59

7 83.33 83.33 89.46 90.69 90.69 90.69 91.38

8 41.67 35.42 79.17 75.35 75.00 75.69 80.21

9 68.45 53.81 81.55 70.83 77.38 77.98 85.12

10 75.40 81.85 88.71 93.15 91.53 89.92 93.15

11 96.02 89.77 100.00 98.30 98.86 98.30 100.00

12 85.00 82.50 91.75 90.00 90.00 85.00 91.75

13 83.93 50.00 91.07 83.93 87.50 82.14 92.64

14 62.50 71.20 77.72 75.54 75.54 76.63 78.26

15 80.56 45.83 87.50 87.50 81.02 87.50 87.50

16 87.69 53.85 90.79 87.69 87.69 89.90 92.71

17 88.54 67.81 91.04 82.31 91.04 91.04 92.38

18 93.75 68.75 91.88 96.88 93.75 93.75 93.75

19 83.17 57.07 90.22 86.61 86.61 89.50 92.93

20 79.51 68.40 92.93 90.63 92.93 94.64 94.64

Avg 79.97 66.18 89.42 87.05 87.91 87.64 90.77

includingWalking, Biking, (walking) Upstairs, (walking) Downstairs, Running and Taking Bus/Taxi, are collected
to form the dataset. Similar to the setting used in HAR-ADL, we select 20 users as 20 clients (17,382 training

samples and 4,381 testing samples) and employ a simple 2-layer CNN to conduct the experiment.

Table 7 summaries the results. From the table, we can obtain the following observations: (1) It is obvious that

the proposed approach achieves the best performance on average, which suggests the effectiveness of DistFL

under the real-world scenario; (2) Unlike the results of the HAR-ADL dataset where LG-Net performs worse

than K-Cluster, in this context, LG-Net can exceed K-Cluster by up to 2.37% average accuracy. We believe this is

because in this scenario we own more training samples than HAR-ADL, which will significantly mitigate the

overfitting problem to the local fine-tuning process existed in LG-Net. However, LG-Net needs more computation

cost than others since it includes a FedAvg process plus a fine-tuning process, which increases the burden on

the resource-constrained mobile devices; (3) The hyper-parameter 𝐾 in K-Cluster is not very sensitive in this

scenario since the final accuracy of different 𝐾 values is similar. However, all of the hyper-parameter settings for

K-Cluster perform worse than DistFL, which indicates that our clustering result is more precise and thus benefits

the final performance.

5.7 Convergence Performance
To better observe the training process of different methods, we record their corresponding testing accuracy in

each FL round and plot the convergence lines. Here we conduct the experiment on the environment-difference

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 5, No. 4, Article 168. Publication date: December 2021.

DistFL: Distribution-aware Federated Learning for Mobile Scenarios • 168:21

0 10 20 30 40 50
Round

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

To
p-

1
Ac

c

Artistic

FedAvg
LG-Net
K-Cluster
Ours

0 10 20 30 40 50
Round

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

To
p-

1
Ac

c

Clipart

FedAvg
LG-Net
K-Cluster
Ours

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

To
p-

1
Ac

c

Product

FedAvg
LG-Net
K-Cluster
Ours

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

To
p-

1
Ac

c

Real

FedAvg
LG-Net
K-Cluster
Ours

Fig. 5. Convergence performance of the environment-difference scenario with Office-Home.

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425

Client Index
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Cl
ie

nt
 In

de
x

Distribution Knowledge

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425

Client Index
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Cl
ie

nt
 In

de
x

1oise

0

5

10

15

20

25

Fig. 6. Visualization of the similarity matrix generated by noises (left) and our distribution knowledge (right). Lighter color
indicates higher similarity. We can clearly see that using the distribution-based matrix can provide better guidance to the
clustering process.

scenario with Office-Home and for each domain, we randomly pick out one device as an example. As shown in

Figure 5, all the methods can reach convergence within 50 FL rounds and DistFL achieves better performance

compared to others. In addition, it is worth noting that: (1) For the Product and the Real-World domain, the

convergence speed is significantly faster than the other two domains. Specifically, we can obtain desirable

performance at roughly 30 FL rounds, which suggests that the two domain tasks are easier to train; (2) Other

methods behave unstably on different domains. For example, FedAvg can achieve comparable convergence speed

as ours on the Artistic domain while failing to perform well on the Clipart domain. Different from them, DistFL

can keep consistent superiority under any domain situation.

5.8 Effectiveness and Efficiency Analysis
This subsection analyzes different modules and parameters used in DistFL to provide readers a better understand-

ing of the effectiveness and efficiency of our framework. All of the analyses, unless otherwise specified, are based

on the setting of the category-imbalance scenario.

5.8.1 Effectiveness of Extracted Knowledge. We conduct two control experiments to verify the effectiveness of

the distribution knowledge, which are summarized as follows.

• Noise vs. Distribution knowledge. In this experiment, we respectively feed some noises and the generated

distribution knowledge into models to obtain the similarity matrix. Here we randomly picked out 25 clients

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 5, No. 4, Article 168. Publication date: December 2021.

168:22 • Liu and Cai, et al.

4,7,8,13,19

1,2,3,5,6,9,10,11
,12,14,15,16,17,

18,20

4,12,18,20

6,7,8,9,10,11,
13,15,16,17,19

1,2,3,5,14

12,18,20

6,7,8,9,10,11,
13,15,16,17

1,3,5,14

2,4,19

4,5,7,12,19

2,3,8,9,10,11,
14,16,17,18,20

1,6,13,15

K-Cluster	
Set	K=2	manually	 	
Acc:	86.01%	

K-Cluster	
Set	K=3	manually	 	
Acc:	92.96%	

K-Cluster	
Set	K=4	manually	 	
Acc:	89.68%	

Ours	
Clustering	automatically	

Acc:	95.82%	

Fig. 7. Illustration of the concrete cluster information on HAR-ADL, which owns data collected from 20 different users. In
the figure we use the client index to represent each user and allocate them into different clusters based on the K-Cluster
method and our method. Compared to K-Cluster, our distribution-aware clustering can achieve a better accuracy without
manual efforts.

and every 5 with continuous indexes come from the same distribution. Figure 6 depicts the results, where

the lighter color denotes higher similarity. Obviously, it is hard to achieve clustering from the noise-based

matrix since we cannot distinguish suitable clients from others given a target client. Different from the

noises, our distribution knowledge is able to obtain a desirable similarity matrix, where every 5 clients of

the same distribution are clearly grouped, confirming the usefulness of the generated knowledge.

• Loss-based clustering vs. Distribution-based clustering. In this experiment, we compare the concrete cluster

results with the loss-based clustering (K-Cluster [12]) and our distribution-based clustering. Here we use

the HAR-ADL dataset as an example. As shown in Figure 7, the 20 client models are distributed to different

clusters denoted in different colors. We can conclude that the loss-based scheme obtains an inappropriate

clustering result despite using various parameter settings since all of their final accuracy are significantly

lower than ours. Besides, among these manual settings, partitioning models into 3 clusters can achieve

the best performance, which is consistent to our approach. However, we would like to point out that our

approach is automated and the concrete model index in each cluster is different from the loss-based scheme.

That is why our approach can outperform others.

5.8.2 Parameter Selection for Better Efficiency. In our framework, the computation costs come from two aspects:

(1) the amount of knowledge we extract; (2) the number of extraction target in a model. Here we implement some

experiments with different parameters to explore the best choice for efficiency.

For the first aspect, as stated in Section 4.3, the distribution knowledge can be denoted as𝐾𝑡𝑎𝑟𝑔𝑒𝑡 = {𝑘1𝑡𝑎𝑟𝑔𝑒𝑡 , 𝑘2𝑡𝑎𝑟𝑔𝑒𝑡 ,
..., 𝑘𝑧𝑡𝑎𝑟𝑔𝑒𝑡 }, where the amount of knowledge is reflected by the parameter 𝑧. Thus we explore the influence of 𝑧 on

the clustering performance. Specifically, the value of 𝑧 is set to 1, 10, 20, 50, 100, 200 and 500 and we respectively

use these values to generate the corresponding knowledge and the similarity matrix of 10 randomly sampled

clients, where every two continuous clients come from the same distribution. We plot the similarity matrix of

each parameter pair (i.e., (𝑧, 𝐸%), we will analyze the influence of 𝐸% in the following part) and for each matrix,

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 5, No. 4, Article 168. Publication date: December 2021.

DistFL: Distribution-aware Federated Learning for Mobile Scenarios • 168:23

100%

80%

50%

20%

1 10 20 50 100 200 500
Amount	of	Knowledge

Ex
tr
ac
tio

n	
Ra
tio

Fig. 8. Influence of the extraction ratio and the amount of knowledge on the similarity matrix. Here we randomly sample
10 clients and every 2 continuous clients come from a similar distribution. Thus, for each matrix, every four blocks on the
diagonal indicate the models with similar distributions. Lighter color means higher similarity.

every four blocks on the diagonal indicate the models with similar distributions. Here lighter color means higher

similarity. As shown in Figure 8, the clustering performance becomes more significant when we increase the

amount of generated knowledge (i.e., the value of 𝑧). Generally, 100 “distribution knowledge” (i.e., 𝑧 = 100) is

enough to achieve good clustering regardless of the extraction ratio 𝐸%.

Besides, deciding the number of extraction target is also necessary for efficiency since there are many BN

layers in a modern DNN. In DistFL, we propose to only optimize the important BN channels during the extraction.

To study the impact of different extraction ratios (i.e., 𝐸%) of BN layers, we respectively select 20%, 50%, 80% and

100% BN channels of each BN layer to conduct our pipeline. The performance is also measured by the similarity

matrix as illustrated in Figure 8. From the figure, we can clearly see that it is not necessary to optimize the whole

BN channels, especially when the amount of the extracted knowledge is enough (e.g., 100). This demonstrates

that we can accomplish the extraction process efficiently by employing fewer BN channels such as 50% or even

20% when we have enough quantity of the distribution knowledge.

6 DISCUSSIONS
One limitation of the paper is the lack of experiments on real-world applications. Although we have simulated

different mobile scenarios to validate the effectiveness of our approach, the real-world study is also an important

aspect worth exploring further. In our future work, we will look for ways to evaluate DistFL in real-world

applications. Besides, this paper mainly focuses on computer vision tasks and human activity recognition tasks. It

is interesting to apply our framework for other deep learning tasks by analyzing and extracting the distribution

knowledge from their models. Finally, although we have simulated the privacy-protection scenario by enforcing

differential privacy (DP) to the local models, researchers may want to use some secure aggregation schemes [5]

to further protect the model information. However, secure aggregation requires massive computation power,

which may be unacceptable to the resource-constrained clients under our mobile scenarios.

Besides, we provide some findings and lessons learned from this work. First, before generating bogus data,

researchers should check if the BN layer has been used in the model although it is prevalent in the current

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 5, No. 4, Article 168. Publication date: December 2021.

168:24 • Liu and Cai, et al.

architectures. If not, the statistical information needs to be collected manually and then uploaded to the server

for data generation. Second, the performance of our clustering process depends on the responses of each model,

which are obtained by feeding the distribution knowledge (i.e., bogus data) into each local model. Therefore, it

is necessary to generate enough bogus data to make the distribution knowledge more precise, which will then

benefit the final clustering process.

7 CONCLUSION
This paper proposes distribution-aware federated learning to address the non-iid problem, which widely exists

in mobile scenarios. We design and implement a framework named DistFL to accomplish our goal efficiently,

automatically and accurately, where the distribution knowledge of federated models is extracted to distinguish

and cluster different client models. Experimental results demonstrate that DistFL achieves significantly better

performance on all simulated scenarios with different models compared to state-of-the-art approaches.

ACKNOWLEDGMENTS
We would like to thank the anonymous reviewers for their valuable feedback. This work was partly supported

by the National Key Research and Development Program (2017YFB1001904) and the National Natural Science

Foundation of China (61772042).

REFERENCES
[1] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar, and Li Zhang. 2016. Deep learning with

differential privacy. In Proceedings of the 2016 ACM SIGSAC conference on computer and communications security. 308–318.
[2] Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra, and Jorge Luis Reyes-Ortiz. 2013. A public domain dataset for human

activity recognition using smartphones.. In Esann, Vol. 3. 3.
[3] Eugene Bagdasaryan, Andreas Veit, Yiqing Hua, Deborah Estrin, and Vitaly Shmatikov. 2020. How to backdoor federated learning. In

International Conference on Artificial Intelligence and Statistics. PMLR, 2938–2948.

[4] Battista Biggio, Blaine Nelson, and Pavel Laskov. 2012. Poisoning attacks against support vector machines. arXiv preprint arXiv:1206.6389
(2012).

[5] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H Brendan McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal,

and Karn Seth. 2017. Practical secure aggregation for privacy-preserving machine learning. In proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security. 1175–1191.

[6] Sebastian Caldas, Sai Meher Karthik Duddu, Peter Wu, Tian Li, Jakub Konečnỳ, H Brendan McMahan, Virginia Smith, and Ameet

Talwalkar. 2018. Leaf: A benchmark for federated settings. arXiv preprint arXiv:1812.01097 (2018).

[7] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Imagenet: A large-scale hierarchical image database. In 2009
IEEE conference on computer vision and pattern recognition. Ieee, 248–255.

[8] Jie Feng, Can Rong, Funing Sun, Diansheng Guo, and Yong Li. 2020. PMF: A privacy-preserving human mobility prediction framework

via federated learning. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 4, 1 (2020), 1–21.
[9] Shuhao Fu, Chulin Xie, Bo Li, and Qifeng Chen. 2019. Attack-resistant federated learning with residual-based reweighting. arXiv

preprint arXiv:1912.11464 (2019).
[10] Clement Fung, Chris JM Yoon, and Ivan Beschastnikh. 2018. Mitigating sybils in federated learning poisoning. arXiv preprint

arXiv:1808.04866 (2018).
[11] Robin C Geyer, Tassilo Klein, and Moin Nabi. 2017. Differentially private federated learning: A client level perspective. arXiv preprint

arXiv:1712.07557 (2017).

[12] Avishek Ghosh, Jichan Chung, Dong Yin, and Kannan Ramchandran. 2020. An efficient framework for clustered federated learning.

Neural Information Processing Systems(NeurIPS) (2020).
[13] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio.

2014. Generative adversarial nets. Advances in neural information processing systems 27 (2014).
[14] Tianyu Gu, Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. 2019. Badnets: Evaluating backdooring attacks on deep neural

networks. IEEE Access 7 (2019), 47230–47244.
[15] Yeting Guo, Fang Liu, Zhiping Cai, Hui Zeng, Li Chen, Tongqing Zhou, and Nong Xiao. 2021. PREFER: Point-of-interest REcommendation

with efficiency and privacy-preservation via Federated Edge leaRning. Proceedings of the ACM on Interactive, Mobile, Wearable and
Ubiquitous Technologies 5, 1 (2021), 1–25.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 5, No. 4, Article 168. Publication date: December 2021.

DistFL: Distribution-aware Federated Learning for Mobile Scenarios • 168:25

[16] Andrew Hard, Kanishka Rao, Rajiv Mathews, Swaroop Ramaswamy, Françoise Beaufays, Sean Augenstein, Hubert Eichner, Chloé

Kiddon, and Daniel Ramage. 2018. Federated learning for mobile keyboard prediction. arXiv preprint arXiv:1811.03604 (2018).
[17] Chaoyang He, Songze Li, Jinhyun So, Xiao Zeng, Mi Zhang, Hongyi Wang, Xiaoyang Wang, Praneeth Vepakomma, Abhishek Singh,

Hang Qiu, et al. 2020. Fedml: A research library and benchmark for federated machine learning. arXiv preprint arXiv:2007.13518 (2020).
[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual learning for image recognition. In Proceedings of the IEEE

conference on computer vision and pattern recognition. 770–778.
[19] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015. Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531

(2015).

[20] Briland Hitaj, Giuseppe Ateniese, and Fernando Perez-Cruz. 2017. Deep models under the GAN: information leakage from collaborative

deep learning. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. 603–618.
[21] Peter Kairouz, H BrendanMcMahan, BrendanAvent, Aurélien Bellet, Mehdi Bennis, ArjunNitin Bhagoji, Keith Bonawitz, Zachary Charles,

Graham Cormode, Rachel Cummings, et al. 2019. Advances and open problems in federated learning. arXiv preprint arXiv:1912.04977
(2019).

[22] Alex Kendall and Yarin Gal. 2017. What uncertainties do we need in bayesian deep learning for computer vision? NIPS (2017).
[23] Nikola Konstantinov and Christoph Lampert. 2019. Robust learning from untrusted sources. In International Conference on Machine

Learning. PMLR, 3488–3498.

[24] Alex Krizhevsky, Geoffrey Hinton, et al. 2009. Learning multiple layers of features from tiny images. (2009).

[25] Solomon Kullback and Richard A Leibler. 1951. On information and sufficiency. The annals of mathematical statistics 22, 1 (1951), 79–86.
[26] Chenglin Li, Di Niu, Bei Jiang, Xiao Zuo, and Jianming Yang. 2021. Meta-HAR: Federated Representation Learning for Human Activity

Recognition. In Proceedings of the Web Conference 2021. 912–922.
[27] Qinbin Li, Zeyi Wen, Zhaomin Wu, Sixu Hu, Naibo Wang, Yuan Li, Xu Liu, and Bingsheng He. 2019. A survey on federated learning

systems: vision, hype and reality for data privacy and protection. arXiv preprint arXiv:1907.09693 (2019).
[28] Suyi Li, Yong Cheng, Yang Liu, Wei Wang, and Tianjian Chen. 2019. Abnormal client behavior detection in federated learning. arXiv

preprint arXiv:1910.09933 (2019).
[29] Paul Pu Liang, Terrance Liu, Liu Ziyin, Nicholas B Allen, Randy P Auerbach, David Brent, Ruslan Salakhutdinov, and Louis-Philippe

Morency. 2020. Think locally, act globally: Federated learning with local and global representations. arXiv preprint arXiv:2001.01523
(2020).

[30] Bingyan Liu, Yifeng Cai, Yao Guo, and Xiangqun Chen. 2021. TransTailor: Pruning the Pre-trained Model for Improved Transfer

Learning. arXiv preprint arXiv:2103.01542 (2021).
[31] Bingyan Liu, Yao Guo, and Xiangqun Chen. 2019. WealthAdapt: A general network adaptation framework for small data tasks. In

Proceedings of the 27th ACM International Conference on Multimedia. 2179–2187.
[32] Bingyan Liu, Yao Guo, and Xiangqun Chen. 2021. PFA: Privacy-preserving Federated Adaptation for Effective Model Personalization.

The Web Conference (WWW) (2021).
[33] Bingyan Liu, Yuanchun Li, Yunxin Liu, Yao Guo, and Xiangqun Chen. 2020. PMC: A Privacy-preserving Deep Learning Model

Customization Framework for Edge Computing. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 4, 4
(2020), 1–25.

[34] Yifan Liu, Ke Chen, Chris Liu, Zengchang Qin, Zhenbo Luo, and Jingdong Wang. 2019. Structured knowledge distillation for semantic

segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2604–2613.
[35] Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan Lee, Juan Zhai, Weihang Wang, and Xiangyu Zhang. 2017. Trojaning attack on neural

networks. (2017).

[36] King’s College London. 2019. King’s and NVIDIA join forces to build UK’s rst Al platform for hospitals. https://www.kcl.ac.uk/news/kings-

and-nvidia-to-build-uks-first-al-platform.

[37] Sidi Lu, Yongtao Yao, and Weisong Shi. 2019. Collaborative learning on the edges: A case study on connected vehicles. In 2nd {USENIX}
Workshop on Hot Topics in Edge Computing (HotEdge 19).

[38] Lingjuan Lyu, Han Yu, and Qiang Yang. 2020. Threats to federated learning: A survey. arXiv preprint arXiv:2003.02133 (2020).
[39] Aravindh Mahendran and Andrea Vedaldi. 2015. Understanding deep image representations by inverting them. In Proceedings of the

IEEE conference on computer vision and pattern recognition. 5188–5196.
[40] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas. 2017. Communication-efficient learning of

deep networks from decentralized data. In Artificial Intelligence and Statistics. PMLR, 1273–1282.

[41] Luca Melis, Congzheng Song, Emiliano De Cristofaro, and Vitaly Shmatikov. 2019. Exploiting unintended feature leakage in collaborative

learning. In 2019 IEEE Symposium on Security and Privacy (SP). IEEE, 691–706.
[42] Asit Mishra and Debbie Marr. 2017. Apprentice: Using knowledge distillation techniques to improve low-precision network accuracy.

arXiv preprint arXiv:1711.05852 (2017).
[43] Alexander Mordvintsev, Christopher Olah, and Mike Tyka. 2015. Inceptionism: Going deeper into neural networks. (2015).

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 5, No. 4, Article 168. Publication date: December 2021.

https://www.kcl.ac.uk/news/kings-and-nvidia-to-build-uks-first-al-platform
https://www.kcl.ac.uk/news/kings-and-nvidia-to-build-uks-first-al-platform

168:26 • Liu and Cai, et al.

[44] Milad Nasr, Reza Shokri, and Amir Houmansadr. 2019. Comprehensive privacy analysis of deep learning: Passive and active white-box

inference attacks against centralized and federated learning. In 2019 IEEE symposium on security and privacy (SP). IEEE, 739–753.
[45] Siyuan Qiao, Zhe Lin, Jianming Zhang, and Alan L Yuille. 2019. Neural rejuvenation: Improving deep network training by enhancing

computational resource utilization. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 61–71.
[46] Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang, Carlo Gatta, and Yoshua Bengio. 2014. Fitnets: Hints for

thin deep nets. arXiv preprint arXiv:1412.6550 (2014).
[47] Theo Ryffel, Andrew Trask, Morten Dahl, Bobby Wagner, Jason Mancuso, Daniel Rueckert, and Jonathan Passerat-Palmbach. 2018. A

generic framework for privacy preserving deep learning. arXiv preprint arXiv:1811.04017 (2018).

[48] Aniruddha Saha, Akshayvarun Subramanya, and Hamed Pirsiavash. 2020. Hidden trigger backdoor attacks. In Proceedings of the AAAI
Conference on Artificial Intelligence, Vol. 34. 11957–11965.

[49] Sumudu Samarakoon, Mehdi Bennis, Walid Saad, and Mérouane Debbah. 2019. Distributed federated learning for ultra-reliable

low-latency vehicular communications. IEEE Transactions on Communications 68, 2 (2019), 1146–1159.
[50] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks for large-scale image recognition. arXiv preprint

arXiv:1409.1556 (2014).
[51] Vale Tolpegin, Stacey Truex, Mehmet Emre Gursoy, and Ling Liu. 2020. Data poisoning attacks against federated learning systems. In

European Symposium on Research in Computer Security. Springer, 480–501.
[52] Tim Van Erven and Peter Harremos. 2014. Rényi divergence and Kullback-Leibler divergence. IEEE Transactions on Information Theory

60, 7 (2014), 3797–3820.

[53] Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty, and Sethuraman Panchanathan. 2017. Deep hashing network for unsuper-

vised domain adaptation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 5018–5027.
[54] Paul Voigt and Axel Von dem Bussche. 2017. The eu general data protection regulation (gdpr). A Practical Guide, 1st Ed., Cham: Springer

International Publishing (2017).

[55] WeBank. 2019. An Industrial Level Federated Learning Framework. https://github.com/FederatedAI/FATE.

[56] Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. 2019. Federated machine learning: Concept and applications. ACM Transactions
on Intelligent Systems and Technology (TIST) 10, 2 (2019), 1–19.

[57] Timothy Yang, Galen Andrew, Hubert Eichner, Haicheng Sun, Wei Li, Nicholas Kong, Daniel Ramage, and Françoise Beaufays. 2018.

Applied federated learning: Improving google keyboard query suggestions. arXiv preprint arXiv:1812.02903 (2018).
[58] Hongxu Yin, Pavlo Molchanov, Jose M Alvarez, Zhizhong Li, Arun Mallya, Derek Hoiem, Niraj K Jha, and Jan Kautz. 2020. Dreaming

to distill: Data-free knowledge transfer via deepinversion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 8715–8724.

[59] Lei Yu and Lingfei Wu. 2020. Towards Byzantine-Resilient Federated Learning via Group-Wise Robust Aggregation. In Federated
Learning. Springer, 81–92.

[60] Tao Yu, Eugene Bagdasaryan, and Vitaly Shmatikov. 2020. Salvaging federated learning by local adaptation. arXiv preprint arXiv:2002.04758
(2020).

[61] Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, and Vikas Chandra. 2018. Federated learning with non-iid data. arXiv
preprint arXiv:1806.00582 (2018).

[62] Ligeng Zhu and Song Han. 2020. Deep leakage from gradients. In Federated Learning. Springer, 17–31.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 5, No. 4, Article 168. Publication date: December 2021.

https://github.com/FederatedAI/FATE

	Abstract
	1 Introduction
	2 Related Work
	2.1 Mobile Federated Learning
	2.2 Knowledge Extraction from DNNs

	3 Preliminaries
	3.1 Problem Analysis
	3.2 Statistical Information and Distribution Knowledge
	3.3 Problem Formulation

	4 The DistFL Framework
	4.1 Overview
	4.2 Distribution Extraction
	4.3 Distribution-based Clustering
	4.4 Aggregation
	4.5 Theoretical Analysis

	5 Evaluation
	5.1 Experimental Settings
	5.2 Results on the Category-imbalance Scenario
	5.3 Results on the Environment-difference Scenario
	5.4 Results on the Privacy-protection Scenario
	5.5 Results on the Attack-injection Scenario
	5.6 Results on the Real-world Scenario
	5.7 Convergence Performance
	5.8 Effectiveness and Efficiency Analysis

	6 Discussions
	7 Conclusion
	Acknowledgments
	References

