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ABSTRACT
In this paper, we propose a general network adaptation framework,
namely WealthAdapt, to effectively adapt a large network for
small data tasks, with the assistance of a wealth of related data.
While many existing algorithms have proposed network adapta-
tion techniques for resource-constrained systems, they typically
implement network adaptation based on a large dataset and do not
perform well when facing small data tasks. Because small data have
poor feature expression ability, it may result in incorrect filter selec-
tion and overfitting during fine-tuning in the network adaptation
process. In WealthAdapt, we first expand the target small data task
with the wealth of big data, before we perform network adapta-
tion, in order to enrich the features and improve the fine-tuning
performance during adaptation. We formally establish network
adaptation for small data tasks as an optimization problem and
solve it through two main techniques: model-based fast selection
and wealth-incorporated iteration adaptation. Experimental results
demonstrate that our framework is applicable to both the vanilla
convolutional network VGG-16 and more complex modern archi-
tecture ResNet-50, outperforming several state-of-the-art network
adaptation pipelines on multiple visual classification tasks includ-
ing general object recognition, fine-grained object recognition and
scene recognition.
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• Computing methodologies → Computer vision; • Com-
puter systems organization → Embedded systems.
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Figure 1: Illustration of two existing network adaptation
(i.e., network pruning)methods for small data tasks. The top
method implements network adaptation based on a small
data task. The bottom method implements network adapta-
tion based on a big data task. Both methods cannot generate
a good pruned network for small datasets.

1 INTRODUCTION
Convolutional neural networks (CNNs) have been proved effective
in various computer vision tasks such as image classification and
object detection [16, 22]. Meanwhile, in order to achieve excellent
performance, they typically require sufficient training data, which
is hard to satisfy for many small data tasks. In these cases, per-
formance can be improved by fine-tuning a well-designed deep
network that was pre-trained on a much larger labeled vision
dataset, such as ImageNet. However, the fine-tuned network is
still a heavyweight architecture with massive computing power
and memory demand, which cannot be executed efficiently on
resource-constrained devices and systems.

To address this problem, network compression has been pro-
posed and studied extensively in recent years, resulting in tech-
niques such as low-rank approximation [17, 20, 21, 34], parameter
quantization [14, 15] and network pruning [1, 9, 10, 12, 23–25, 35].
Among them network pruning has become a promising and widely
applicable technique for accelerating and compressing CNNs. Dur-
ing network pruning, one can easily remove the weights, the filters
and even the layers of a CNN, without incurring significant perfor-
mance drop.

In the context of small data tasks, pruning can be roughly divided
into two categories: pruning before fine-tuning and pruning after
fine-tuning. For pruning before fine-tuning, Liu et al. [23] pruned
the pre-trained network first before fine-tuning the network with
the small data. As examples of pruning after fine-tuning, Molchanov
et al. [25] and Zhong et al. [38] directly fine-tuned the pre-trained
networks using the small data and then applied pruning.
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However, both categories exhibit some problems when pruning
for small data tasks. For pruning before fine-tuning, it implements
pruning with a large-scale data task, which may not be suitable for
the small data task due to the mismatch of feature space in the two
tasks. As shown in Figure 1, if we prune the large network with the
big data task, the filters a,b,c in the pruned network may represent
the features of the red, green and gray data respectively. However,
the features of red data are useless, or even harmful, to our small
data task, while the useful features of blue data cannot be reflected.
So fine-tuning this pruned network may result in bad performance.

In the case of pruning after fine-tuning, it implements pruning
with the small data task. Note that the pruning process also needs
fine-tuning for recovering accuracy in every iteration, so severe
overfitting may be incurred due to limited labeled data. In addi-
tion, limited labels are more likely to have poor feature expression
ability, resulting in incorrect filter selection. As a result, unnec-
essary overlapping features and incorrect features can be largely
introduced, which inhibits the effectiveness of pruning. Figure 1
illustrates the network adaptation process with small data tasks.
The features of gray and green data can be reflected by the filters.
However, the filter a and c are overlapped and the features of blue
data are discarded because the pruning implementation is based on
an overfitted network and a small data task.

To the best of our knowledge, there have been no suitable net-
work adaptation approaches specifically designed for small data
tasks. Our insight to solve the problem is that it is possible to deal
with small data tasks well if the big data such as ImageNet can be
utilized effectively. On one hand, incorporating the rich features
of big data appropriately contributes to improving the feature ex-
pression ability because the data representing useful features can
be expanded by our big data. On the other hand, the overfitting
problem caused by fine-tuning in each pruning iteration can be
largely alleviated by a joint fine-tuning step with the assistance of
big data.

In this paper, we attempt to incorporate the wealth of big data
into the network adaptation pipeline, in order to generate a better
pruned network for small data tasks, targeting resource-constrained
systems. To accomplish our goal, we face two important challenges:

-challenge 1: The features in the big data are huge and diverse.
Which features may be beneficial to our target task and how should
we select them efficiently?

-challenge 2: The standard network adaptation (pruning) pipeline
mainly includes two steps: the pruning metric for defining the
importance of weights/filters/layers and the fine-tuning process for
recovering the accuracy. How could we incorporate the big data
into these steps and make them more effective?

In this paper, we propose a general network adaptation frame-
work, namely WealthAdapt, to effectively adapt a large CNN for
small data tasks. Specifically, we introduce two key techniques in
the framework to address the above challenges:

• Model-based fast selection. This technique utilizes the net-
work pre-trained by the big data and puts the target data
into it to enforce class-level distribution. According to the
distribution, we can get a coarse observation to the relation
between two tasks. Furthermore, we implement similarity-
level filtering and boosting based on the class distribution to

create a better selection. Note that we do not compare each
data with the whole big data, so the processing speed is fast.
• Wealth-incorporated iteration adaptation. The wealth of big
data is incorporated both in the pruning metric and the
fine-tuning process. For the pruning metric, we propose
a wealth&task balanced pruning according to the Taylor-
based ranking. For the fine-tuning process, we break down
the single fine-tuning process into two processes: long task
tuning and short wealth tuning. Using these techniques, we
prune and fine-tune the network iteratively, such that the
big data can be utilized more suitably.

This paper makes the following main contributions:

• We propose WealthAdapt, a general network adaptation
framework for small data tasks with the assistance of big
data. To the best of our knowledge, this is the first work
that incorporates the wealth of big data into the network
adaptation pipeline.
• We design the pipeline of WealthAdapt, which includes
two key techniques, model-based fast selection and wealth-
incorporated iteration adaptation, to solve the selection and
incorporation problems towards the big data, which make
better utilization of the wealth of big data, without incurring
significant time overhead.
• Experiments on VGG-16 and ResNet-50 demonstrate that
our framework outperforms several state-of-the-art network
adaptation pipelines on different visual classification tasks,
including general object recognition, fine-grained object recog-
nition and scene recognition.

2 RELATEDWORK
2.1 Transfer Learning
Transfer learning aims to apply knowledge learned by the source
domain (big data) to similar target domains [26]. It can be roughly
divided into two categories.

Fine-tuning. Recently, researchers have found that the represen-
tation learned from a large-scale dataset, such as the ImageNet
ILSVRC dataset [28], can be effectively transferred to a small but
similar dataset [2, 29, 36]. With these observations, fine-tuning the
pre-trained networks has become a common method to implement
transfer learning [7]. Meanwhile, fine-tuning may introduce the
problems of overfitting and negative transfer, due to insufficient
training data and the mismatch between two domains. To solve
these issues, Ge et al. [6] and Cui et al. [4] utilized the wealth of
big data to implement joint fine-tuning, which improves the per-
formance greatly.

Domain adaptation. Domain adaptation have been proposed to
mitigate the burden of manual labeling and cope with different
distributions between two domains to avoid the negative transfer
problem. The main idea is to add adaptation layers or a subnetwork
as domain discriminator leveraging the idea of generative adversar-
ial network (GAN) [3, 8, 31, 32, 37]. Note that domain adaptation
assumes that the source and target domains share the same label
space, or the target label space is a subspace of the source label
space.
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Figure 2: Overview of WealthAdapt. After the processing ofmodel-based fast selection, it generates a selected subset of the big
data, which is more similar to the target small data. We then use this selected subset of big data and the original vision data
to implement wealth-incorporated iteration adaptation, which generates a pruned network with more suitable features.

However, these transfer methods typically focus on the training
process, which cannot be applied to network adaptation directly.

2.2 Network Pruning
Recently, a large number of efforts have been made in network
pruning. By defining various metrics, one can prune the redundant
elements without incurring significant performance drop. It mainly
includes three categories.

Weight pruning.Weight pruning aims at removing the redundant
weights to shrink the network. Han et al. [10] proposed an iterative
weight pruning method for a compact network. Their insight is
that a small weight connectivity below a threshold is redundant
and should be discarded. Lebedev and Lempitsky [18] introduced
the group-sparsity regularization to the loss function for forcing
some weights to zeros. Thus these zero weights can be removed.
However, weight pruning may result in unstructured sparsity of
networks and needs the support of a special accelerator.

Filter pruning. Filter pruning is a kind of group-wise sparsity
method to prune filters for accelerating the CNN networks. Li et
al. [19] measured the importance of each filter by calculating its
absolute weight sum. He et al. [13] and Luo et al. [24] leveraged
LASSO regression and greedy algorithms respectively to prune
redundant filters layer by layer. Their methods enabled structured
sparsity and off-the-shelf libraries can be used directly.

Transfer pruning. Similar to our work, transfer pruning also fo-
cuses on network adaptation for small data tasks. It can be roughly
divided into two categories: pruning before fine-tuning and prun-
ing after fine-tuning. For pruning before fine-tuning, Liu et al. [23]
pruned the pre-trained network first before fine-tuning the net-
work with the small data. As examples of pruning after fine-tuning,

Molchanov et al. [25] and Zhong et al. [38] fine-tuned the pre-
trained network with small data tasks before pruning, and then
pruned unimportant filters and fine-tuned weights iteratively.

However, these pruning methods do not utilize the big data and
may result in poor performance when facing small data tasks. Our
goal is to overcome this limitation by incorporating the wealth of
big data into the pruning pipeline.

3 OUR FRAMEWORK: WEALTHADAPT
We will first give an overview of the WealthAdapt framework,
then present a formal definition of the problem and the proposed
techniques. The detailed algorithm of the WealthAdapt pipeline is
shown in Algorithm 1.

3.1 WealthAdapt Overview
Figure 2 illustrates the pipeline of the proposedWealthAdapt frame-
work, which targets network adaptation for resource-constrained
systems, especially when the target task includes a very small
dataset, which is typical for resource-constrained systems.

Our main goal is to facilitate these small data tasks with the
wealth of big data, first select a subset of the big data that are similar
to the target task but with much larger scale (i.e., model-based fast
selection), and then use the selected big data and the original vision
data together to implementwealth-incorporated iteration adaptation,
generating a pruned network with more suitable features.

More specifically, for the example in Figure 2, which shows the
proposed pipeline inWealthAdapt, we can generate a pruned net-
work containing blue, gray and green features while eliminating
the influence of red features in the big data, which will obviously
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improve the performance for small data tasks. Note that our frame-
work is generalizable to any elements of CNNs, although here we
only focus on filter pruning.

3.2 Problem Formulation
We now introduce the symbols and annotations to define the opti-
mization objective. The pruned CNN network can be represented by
(W∗ |D∗), whereW∗ ∈ RL×D×C×K×K is the whole weights of the
pruned network, which contains L layers, D filters,C channels with
K×K kernel size.D∗ is the data used to prune the network. Towards
network adaptation problem for small data tasks, the objective can
be formulated as:

max
W∗

s ,D∗s
Acc[ (W∗p |D∗w ) ←− Dr ]

s .t . (W∗p |D∗w ) =WealthAdapt(Wo |Dw ∪ Dr )
W∗p ⊆ Wo

D∗w ⊆ (Dw ∪ Dr ) (1)

where (W∗p |D∗w ) represents the network pruned by D∗w , D∗w is a
compounded subset of the big dataDw and the target task dataDr ,
Wo represents the large network, Acc represents the performance
towards the pruned network fine-tuned by the target task Dr . Our
goal is to use the proposed WealthAdapt framework to generate
the pruned networkW∗p and the subset D∗w , in order to maximize
the Acc .

In the following sections, we will describe the details of the
two proposed techniques: model-based fast selection to get D∗w and
wealth-incorporated iteration adaptation to getW∗p .

3.3 Model-Based Fast Selection
The goal of the first technique, model-based fast selection, is to find
a more suitable subset of the big data to assist the network adap-
tation process. The concept model-based indicates that we utilize
the model pre-trained by the big data. Based on the pre-trained
model, we only need to implement a forward propagation rather
than comparing the similarity for each data, which can significantly
accelerate the selection process.

The selection process involves mainly two steps: class-level dis-
tribution and similarity-level filtering and boosting.

3.3.1 Class-Level Distribution. At the class level, we implement
class-level distribution mainly by network forward propagation.
First, for each class of the small data task, we sample n data and
feed each data x j (0 ≤ j ≤ n − 1) into the pre-trained model Gp
for forward propagation, to get the corresponding yj = Gp (x j ). We
observe that yj represents the class-level probability distribution
over the big data label space given a x j , which indicates the rela-
tion between two domains. Motivated by this observation, we can
describe the class-level distribution problem using the following
formulas:

Ck =
1
n

n−1∑
j=0

mask(Gp (xkj )) (2)

mask(value) =
{

1 value ∈ top5%
0 value ∈ others (3)

Algorithm 1 The WealthAdapt Framework
Input: big data Dw , a large networkWo , target task data Dr
Output: a suitable networkW∗p pruned by D∗w
1: Calculate the class-level distribution for each target class by Eq.

2 and Eq. 3
2: for i = 1; i ≤ num(tarдet_class); i + + do
3: Select the first N classes of the big data for the ith target

class by Eq. 4
4: end for
5: for i = 1; i ≤ num(initial_selected_classes); i + + do
6: Calculate the Class_Score of the ith selected class by Eq. 5
7: end for
8: Implement different operations according to Eq. 6 and get the

final D∗w
9: for i = 1, i ≤ num(f ilters); i + + do
10: Calculate the ΘWA of ith filter by Eq. 9
11: end for
12: Remove the filters with low ΘWA
13: Get the compact and suitable networkW∗p

where Ck represents the big data distribution of the kth class of
the small data task. xkj represents the jth sample of the kth class.
Functionmask() means that if the value belongs to the top5% data
ofGp (xkj ), the result is 1; otherwise the result is 0. By accumulating
the results ofmask(), we can see which classes in the big data are
more similar to the target class k given n samples.

3.3.2 Similarity-Level Filtering and Boosting. The results of the
previous step can help us get a coarse conclusion about which
classes of the big data are more similar to our target task. However,
there still exist two problems that may prevent a more accurate
selection. Firstly, for some target classes, there are no corresponding
features in the big data. So we should not take these classes into
consideration when implementing class-level distribution. Secondly,
for a certain class of the big data, it may benefit several target
classes. This class can be regarded as a more important class to our
small data task. Therefore, because the class-level distribution step
regards all these classes equally, it cannot make perfect selection.

We thus propose similarity-level filtering and boosting to solve
the above mentioned two problems. At first, for each target class,
we select the first N max-value classes of the big data according to
the class-level distribution as initial selected classes. This process
can be achieved by a function SelectTopN (), which is formulated
as:

SelectTopN () = Select1,2...N (Sorted(Ck )) (4)

where Sorted() sorts the distribution Ck and Select() picks out the
first N corresponding classes of the big data. Note that the initial
selected classes may have many overlaps because a certain class of
the big data may correspond to several target task classes.

Next, we illustrate Class_Score , which is used to measure the
similarity-level of the initial selected classes. The Class_Score is
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Figure 3: The workflow of wealth-incorporated iteration
adaptation.

defined as:

Class_Score(C j ) =
f r e(C j )∑
i=0

value(C j )i (5)

where Class_Score(C j ) represents the score of the jth initial se-
lected class. f re(C j ) represents the frequency of theC j in the whole
selected classes. value(C j ) represents the actual value of the jth
class computed by SelectTopN (). We accumulate thesevalue to get
the final Class_Score(C j

s ).
According to the score, we break down the initial selected classes

into three categories for different operations:

C
j
s =


f ilterinд Class_Score(C j

s ) < τ

boostinд Class_Score(C j
s ) ∈ top30%

remaininд Class_Score(C j
s ) ∈ others

(6)

where boostinд means we will sample more data in the class for
better assistance. remaininд means we keep the class unchanged
and f ilterinд means we will filter out the class due to its poor
similarity. τ is the threshold used for filtering.

Through a series of processing in similarity-level filtering and
boosting, we can get final selected classes of the big data. After
combining the selected results with the small data task, we now get
the D∗w .

3.4 Wealth-Incorporated Iteration Adaptation
The next technique in WealthAdapt is called wealth-incorporated
iteration adaptation, which incorporates the wealth of big data into
the network adaptation process. Note that the network adaptation
process includes two steps: pruning metric and fine-tuning, which
will be modified respectively in our WealthAdapt framework in
order to achieve better performance.

3.4.1 Pruning Metric. The aim of the pruning metric is to define
the importance of the filters for the network and prune the filters
with less importance. There are two main policies to implement
pruning: local ranking pruning and global ranking pruning. For
local ranking pruning, we need to decide how many filters to prune
for each layer, which is typically a manual task requiring extensive
experiences. So here we only focus on global ranking pruning for its
simplicity and efficiency. Next, we will first introduce Taylor-based
ranking, and then present wealth-task balanced pruning based on
the ranking method.

Taylor-Based Ranking. For a pruning problem, we can always
formulate it as an optimization problem as follow:

min ∆L = |L(W∗p ) − L(Wo )| (7)

where L represents the loss function. Our goal is to find theW∗p
to minimize the ∆L.

Molchanov et al. [25] proposed a global ranking method based on
Taylor expansion that approximated the change in the cost function
induced by pruning network parameters. By a series of derivation
and simplification, they define the ΘT E to measure the importance
of each filter. The ΘT E is formulated as:

ΘT E (F) =
���� ∂L∂F(X ) F(X )���� (8)

where F represents the filter andX represents the corresponding
feature map. The filters with low ΘT E should be pruned.

Motivated by this method, we propose a wealth-task balanced
pruning method. It can not only prune the filters in a global way,
but also utilize the wealth of big data for better performance.

Wealth-Task Balanced Pruning. If we just prune with the task
data, the pruned network may not be good enough due to the poor
feature expression ability of the very small data. So we incorporate
the big data into the pruning metric with the following formula:

ΘWA(F) = λ1

���� ∂L∂F(Xw )
F(Xw )

���� + λ2 ���� ∂L∂F(Xr ) F(Xr )
���� (9)

where ΘWA represents the metric used to measure the impor-
tance of filters. Xw and Xr represent the feature map generated by
the big data input and small data task input. λ1 and λ2 are trade-off
weights balancing the proportion of the wealth incorporation.

We regard the selected D∗w as the input and prune the filters
according to the ΘWA, which contributes to more accurate pruning
because the data representing useful features are expanded by our
selected big data.

3.4.2 Fine-Tuning. After the pruning process, fine-tuning should
be conducted to recover the accuracy lost due to pruning. We incor-
porate the big data by breaking down the single fine-tuning process
into two steps: long task tuning and short wealth tuning.

Long Task Tuning. Considering our final goal is to enhance the
performance for the small data task, the task tuning should dom-
inate the whole fine-tuning process. So we implement long task
tuning in order to fit the task data as much as possible. The word
long here indicates that we fine-tune the network with the task
data for a long time.

Short Wealth Tuning. Fine-tuning with only the task data will
cause overfitting, which introduces negative influence in the next
pruning iteration. We incorporate the wealth of big data by short
wealth tuning, which means we fine-tune the network with the
big data for a short time, in order to alleviate too quick overfitting
as well as incorporating more useful features. Note that a new FC
layer will replace the original FC layer for adapting our big data
and we only change the weights of CONV layers because the final
output of the original FC layer is not suitable to the labels of the
big data.
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Table 1: The results of model-based fast selection.

Model-Based Fast Selection Caltech101 CUB200 MIT67
# of training classes 102 200 67
# of training data 2,040 1,000 1,340
# of initial selected classes 317 57 103
# of final selected classes 194 44 57
# of final selected data 69,800 15,800 20,500

3.4.3 Workflow. The workflow of wealth-incorporated iteration
adaptation is shown in Figure 3. It consists of four steps: 1) Compute
the ΘWA for measuring the importance of each filter; 2) Implement
our balanced pruning according to the computedΘWA; 3) Long task
tuning for recovering the target accuracy; 4) Short wealth tuning
for restraining overfitting and incorporating more useful features.
We run the four steps iteratively until the result meets the user’s
requirements and get the finalW∗p .

4 EXPERIMENTS
4.1 Experimental Settings
4.1.1 Networks and Datasets. The proposed framework is imple-
mented on two widely used networks: VGG-16 [30] and ResNet-50
[11]. We consider the ImageNet2012 dataset as the big data for its
rich features. The performance is evaluated on three datasets: Cal-
tech101 [5], CUB200 [33] and MIT67 [27]. Caltech101 is a general
object recognition dataset with 102 object categories. We randomly
sample 20 data for each category to simulate the label constraint.
CUB200 is a fine-grained object recognition with 200 different bird
species. Because its labels are harder to get, we only sample 5 data
for each category. MIT67 is a scene dataset with 67 scene categories
and 20 data are sampled for each scene as the training set.

4.1.2 Comparison with State-of-the-Art Methods. We compare our
framework with two main pruning pipelines for small data tasks:
pruning before fine-tuning (PreAdapt) [23] and pruning after fine-
tuning (TuneAdapt) [25]. PreAdapt prunes the pre-trained network
first before fine-tuning for the target task, while TuneAdapt fine-
tunes the pre-trained network with the target task before applying
pruning. We faithfully implement them according to what they are
disclosed in the corresponding papers. Both methods use Taylor-
based ranking for pruning.

4.1.3 Implementation Details. All our experiments are conducted
within PyTorch and every mini-batch includes 32 224 × 224 images
in the training stage. Formodel-based fast selection, the parameter n
is set to 20 and N is set to 5. The threshold τ is set to 10 for filtering.
For wealth-incorporated iteration adaptation, λ1 and λ2 are set to
0.2 and 0.8 to balance the importance of filters.

After generating the pruned network, we fine-tune it with 100
epochs on the above mentioned three datasets. For the learning rate,
gradually annealing the learning rate over the course of training is
adopted. Specifically, the learning rate is set to 0.001 in the first 30
epochs, 0.0008 from the 31st epoch to the 70th epoch and 0.0006
for the rest. Because the training configuration can have a large
impact on the accuracy, we apply the same training configuration
to all the methods we compared.

Table 2: Comparison of different methods with three visual
tasks on VGG-16. Note that “G” represents the process of
global average pooling.

VGG-16 Methods Caltech101 CUB200 MIT67
G_Pruned_0% Original 83.39 41.34 55.23

PreAdapt[23] 80.38 25.42 48.33
G_Pruned_10% TuneAdapt[25] 83.90 43.21 55.56

WealthAdapt 84.47 46.47 56.59
PreAdapt[23] 78.49 19.62 42.65

G_Pruned_30% TuneAdapt[25] 80.13 38.87 53.49
WealthAdapt 82.50 46.15 54.74
PreAdapt[23] 73.06 19.51 38.25

G_Pruned_50% TuneAdapt[25] 76.28 28.04 46.07
WealthAdapt 81.57 42.00 51.17

Table 3: Comparison of different methods with three visual
tasks on ResNet-50.

ResNet-50 Methods Caltech101 CUB200 MIT67
Pruned_0% Original 91.06 52.93 64.13

PreAdapt[23] 87.95 36.82 55.99
Pruned_10% TuneAdapt[25] 87.36 43.68 57.33

WealthAdapt 88.36 45.18 58.67
PreAdapt[23] 85.85 32.71 52.98

Pruned_30% TuneAdapt[25] 84.64 37.85 54.00
WealthAdapt 86.82 40.90 55.06
PreAdapt[23] 83.07 28.80 49.22

Pruned_50% TuneAdapt[25] 81.50 32.51 48.50
WealthAdapt 84.22 38.52 50.28

4.2 Experimental Results
4.2.1 Model-Based Fast Selection. Table 1 presents the results of
our selection technique. We selected 300 data for each remaininд
class and 500 data for each boostinд class. The partition between
the remaininд class and the boostinд class is defined by Eq. 6. For
all three datasets, we are able to select over 15,000 data to assist the
network adaptation process, which will obviously help improve the
performance of the final pruned model.

More specifically, we selected more data for Caltech101 ( 34X
compared to the original data) because it is more similar to our
big data. For the other two datasets, the size of the selected data
is relatively small ( 15X for both cases) due to their low similarity.
Furthermore, we observe that the number of final selected classes
is significantly fewer than the initial selected classes, especially for
the Caltech101 dataset, which indicates that the filtering process
successfully eliminated the influence of low-related classes.

4.2.2 Wealth-Incorporated Iteration Adaptation. Table 2 and Table
3 present a series of pruned models with different pruning rates
and their corresponding performance after fine-tuning on three
small data tasks.

For VGG-16, a global average pooling layer is created first to
replace their original FC layers as an initialization step for reducing
the huge number of parameters.We use “G” to represent the process.
In addition, the first and the last CONV layers are preserved without

Session 4D: Embedding & Network Learning MM ’19, October 21–25, 2019, Nice, France

2184



Table 4: The performance comparison between original net-
works and their corresponding pruned networks. Note that
the “G” in VGG-16 is used to represent the process of global
average pooling.

Network #Flops(G) #Params(M) Inference
Time(ms)

VGG-16 15.62 138.36 99.8
VGG-16_G_Pruned10% 14.03 12.78 95.0
VGG-16_G_Pruned30% 10.03 7.76 77.6
VGG-16_G_Pruned50% 6.18 4.13 58.7
ResNet-50 4.14 25.56 61.4
ResNet-50_Pruned10% 3.78 21.59 60.3
ResNet-50_Pruned30% 2.91 15.42 55.8
ResNet-50_Pruned50% 2.10 10.68 47.8
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Figure 4: Accuracy comparison between the original net-
works and their corresponding pruned networks.

implementing pruning. For ResNet-50, we only prune the first and
the second CONV layers in each residual block in order to maintain
the structure of the original network.

From the two tables, we can observe that: (1) Our framework out-
performs the other two state-of-the-art methods in all three datasets
no matter what the pruning ratio is. (2) For the fine-grained task
CUB200 that contains fewer labels, the assistance of the big data
is more effective. The reason may lie in that fewer data are more
likely to exhibit poor feature expression ability and cause overfit-
ting in each pruning iteration. So the help from big data becomes
very important. (3) For VGG-16, the performance ofG_Pruned_10%
network exceeds the original network in all three datasets. How-
ever, for ResNet-50, the accuracy is dropping as the pruning ratio
increases. We will analyze the phenomenon detailedly in Section
4.3.1.

4.3 Detailed Analysis
In this subsection, we conducted four detailed analyses, including
pruned network vs. original network, sensitivity of pruning ratio,
sampling number analysis and distribution of pruned filters. Note
that the last three analyses are based only on VGG-16 due to limited
space.
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Figure 5: Sensitivity analysis of pruning ratios to different
methods.
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Figure 6: The influence of sampling numbers to different
methods.

4.3.1 Pruned Networks vs. Original Networks. We now compare
our pruned networks with their corresponding original networks,
including performance comparison and accuracy comparison.

For performance comparison, Table 4 demonstrates the f lops ,
params and in f erence time to measure the performance between
the original network and the pruned network. For VGG-16, our
framework can shrink the network dramatically, from 138.36M
to 4.13M when the pruning ratio is set to 50%. But the f lops and
in f erence time are relatively large and long because the main com-
putations are in the CONV layers while VGG-16 does not process
the CONV layers efficiently. For ResNet-50, we observe that the
f lops and in f erence time have been improved for its skip trick.
However, the network size is relatively large. So if we have the
requirement for the size of the network, VGG-16 is recommended.
Otherwise ResNet-50 is more suitable.

For accuracy comparison, Figure 4 shows the accuracy in pruned
networks and their original baselines on the Caltech101 dataset. We
can see that: (1) When implementing different pruning ratios, some
pruned VGG-16 networks can exceed their baselines, while all the
pruned ResNet-50 networks are below their baselines. That may be
because the overfitting in VGG-16 is more severe due to its direct
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Figure 7: Distribution of pruned filters to different methods. Note that for VGG-16 we do not implement pruning to the first
and the last CONV layer.

connection to each CONV layer. So when some filters are pruned,
the overfitting becomes slow, which enhances the accuracy. How-
ever, the overfitting problem rarely occurs in ResNet-50 because of
its massive skip connection. (2) Although pruning cannot enhance
the accuracy for ResNet-50, the pruned ResNet-50 network is still
superior to the VGG-16 pruned network with the same pruning
ratio, which indicates that the architecture of ResNet-50 is better
towards this dataset.

4.3.2 Sensitivity of Pruning Ratios. Figure 5 illustrates the pruning
sensitivity of VGG-16 on the Caltech101 dataset. When the pruning
ratio is small (such as 10%), PreAdapt and TuneAdapt can reach a
relatively comparable accuracy. That may be because at the moment
the capacity of the network dominates the performance, which
means the potential of the big data cannot be utilized completely. As
the pruning ratio increases, the network pruned by our framework
can still preserve a good accuracy while the performance of other
methods drops quickly. In a word, the more we prune, the more we
will see the benefits of our framework.

4.3.3 Sampling Number Analysis. We sample 5, 10, 20 data of each
class in Caltech101 and use them as the training data to perform
fine-tuning. The networks we picked are VGG-16 with the 30%
pruning ratio pruned by three methods, respectively. As shown
in Figure 6, fewer number largely destroys the performance to
all three methods. However, our framework can still reach higher
accuracy no matter how many data are sampled and drops slowly
when the sampling number decreases. The reason may be that we
incorporate more useful features when implementing short wealth
tuning, which contributes to the accuracy improvement.

4.3.4 Distribution of Pruned Filters. The number of pruned filters
is recorded according to the different CONV layers of VGG-16. Note
that we do not implement pruning to the first and the last CONV
layers. The pruning input is the Caltech101 dataset. We show the
statistics in Figure 7.

We can observe that: (1) From the CONV1_2 to CONV3_3, the
number of pruned filters is relatively small with all three methods.
More pruned filters lie in the several last CONV layers. That may
be because some low-level filters hold some general image features,

which should be reserved due to their generalization to any image
recognition tasks. So low-level filters are pruned fewer while high-
level filters holding some features towards specific tasks are pruned
more. (2) Our framework prunes more high-level filters compared
with the other methods. The reasons may be two-fold. Firstly, our
task is an extremely small task, which only needs a few high-level
features. Secondly, too many high-level features will cause feature
overlapping, resulting in bad performance for our target task.

5 CONCLUDING REMARKS
We have presented WealthAdapt, a framework that incorporates
the wealth of big data into the network adaptation pipeline to im-
prove the performance for small data tasks. Given a small data task
and the wealth of big data, WealthAdapt can automatically utilize
the suitable features in the big data to assist the network adaptation
process, generating a better pruned network compared with current
pipelines. Experimental results demonstrate that WealthAdapt can
be applied to both the vanilla convolutional network VGG-16 and
more complex modern architecture ResNet-50, achieving consis-
tently the best performance on multiple visual classification tasks.
Moreover, we conduct detailed analyses for an in-depth evaluation
of our framework, which further demonstrates the effectiveness
and applicability of WealthAdapt.

There are also a number of issues worth exploring further with
respect to network adaptation for resource-constrained systems. For
example, quantizing the weights and activations to low precision is
of vital importance to a specific system. Not only can it shrink the
size of the network and save energy consumption, but also it can
make the network easier to deploy for a custom low-bits hardware.
In the future, we will introduce the quantization technique into our
framework for better network adaptation.
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