
Supporting Localized Interactions among Heterogeneous Smart Things with
ThingWare

Junjun Kong, Yao Guo, Xiangqun Chen and Weizhong Shao

Key Laboratory of High-Confidence Software Technologies (Ministry of Education)
School of Electronics Engineering and Computer Science, Peking University, Beijing, China

{kongjj07, yaoguo, cherry, wzshao}@sei.pku.edu.cn

Abstract—The development of ubiquitous computing has
witnessed the invention of various smart things (or smart
objects), which normally refer to conventional devices equipped
with sensing, computing, and communication capabilities.
Programming with smart things faces many challenges because
they are mobile, dynamic, and heterogeneous. This paper
proposes ThingAPI as a uniform programming abstraction
to support efficient programming with heterogeneous smart
things. ThingAPI tries to accomplish two objectives: making
local smart things interactive, and making heterogeneous s-
mart things easily programmable. ThingAPI allows applications
on smart things to interact with a wide range of things
and flexibly extend their functionalities. We have built a
lightweight middleware prototype, ThingWare, to implement
ThingAPI over several platforms. With ThingWare, we can
easily program household and office appliances such as TV
sets, air-conditioners, projectors, etc. To demonstrate the
feasibility and efficiency of our approach, we construct a
representative application and present detailed analysis of
various performance results.

Keywords-Internet of Things, smart things, programming
abstraction, localized interaction

I. INTRODUCTION

Since the introduction of ubiquitous computing by Mark

Weiser more than twenty years ago, many pervasive systems

and smart devices with “invisible” computing abilities have

been built. Typical examples of these objects/products range

from large electronic appliances such as smart TV and smart

refrigerator, to tiny electronic equipments such as smart

light bulbs [1], [2], and even traditional attires including

smart shoes and smart clothes. In recent years, many people

have been referring these objects as smart objects or smart
things [3], [4], [5].

These existing or emerging smart things are typically

enhanced by computation and communication technologies.

Therefore, they are able to offer many new extensible

features compared with their conventional built-in func-

tionalities. With the development of Internet of Things

(IoT) technologies [6], many promising applications can

be realized with smart things, such as home appliance

control [7], smart transportation and logistics [4], etc.
Developing complex pervasive applications with smart

things requires a variety of expertise, ranging from de-

vice interfaces and networking protocols to programming

languages and operating systems. These issues have been

studied extensively in various pervasive computing environ-

ments. As a result, a number of middleware systems have

been proposed to solve the problems [8], [9]. Some recent

examples of these systems include TeenyLime [10], Prottoy

and FedNet [11], HomeOS [7], etc. These middleware

systems typically deal with either a fixed set of smart

devices, or applications in a specific domain. They are

largely centralized computing information/control systems

with the ability to manage a set of digital electronic devices

(such as HomeOS and FedNet), sensors and actuators

(mostly WSN middleware), etc.

However, most of these pervasive systems have been

focused on dealing with traditional devices instead of smart

things. Smart things invented in recent years exhibit a very

different outlook compared to traditional pervasive systems.

As more and more daily things being transformed into smart

things [12], [3], we face new challenges to develop pervasive

applications with smart things of powerful communication

and computation capabilities.

Because most smart things are equipped with some sort

of communication modules, it becomes necessary to provide

localized interactions among them, such that spatially nearby

smart things have more opportunities to directly interact

with each other. Realizing these functionalities requires the

devices possess the ability to interact with each other. For

example, a mobile smartphone could be equipped the ability

to control nearby smart appliances such as smart light, smart

TV, smart air conditioner, etc.
On the other hand, the heterogeneity of various smart

things makes it difficult to manage and program them.

Different types of smart things are highly heterogeneous in

terms of their built-in functionalities, computational capabil-

ities, underlying networks and protocols, operating systems,

supported programming languages, etc. Unlike traditional

PCs, smart things are diverse. A typical example could

involve that an Android smartphone interacts with a nearby

smart lamp equipped with totally different hardware and

software [1], [2].

We propose ThingAPI as a uniform solution to program

heterogeneous smart things. ThingAPI aims to achieve

two objectives: making local smart things interactive, and

2013 IEEE 10th International Conference on Ubiquitous Intelligence & Computing and 2013 IEEE 10th International Conference

on Autonomic & Trusted Computing

978-1-4799-2481-3/13 $31.00 © 2013 IEEE

DOI 10.1109/UIC-ATC.2013.102

650

making heterogeneous smart things easily programmable.

Our approach consists of three major components:

• Localized interaction: We extend smart things to sup-

port a localized interaction mechanism, which enables

mart things to identify each other and access func-

tionalities of each other, without necessarily being

coordinated by a central unit.

• ThingAPI: We propose ThingAPI as a unified program-
ming abstraction to address the heterogeneity issue

of smart things. With this abstraction, developers can

easily program multiple smart things without knowing

the low-level details of smart things.

• ThingWare: ThingWare provides runtime support for

ThingAPI. It is deployed on each smart thing as

the underlying software infrastructure. Applications on

these smart things are running above the ThingWare.

In order to demonstrate the feasibility and capability of

ThingAPI, we have built a lightweight middleware prototype

(i.e., ThingWare1) to implement ThingAPI programming

abstraction over a variety of smart things, including IRIS-

mote-powered devices, SunSpot-powered appliances, An-

droid smartphones, and laptop computers. The current imple-

mentation of ThingWare is able to support the programming

of household and office appliances. We also validate our

approach with a proof-of-concept case study and quantitative

evaluation of the implemented prototype.

II. A LOCALIZED INTERACTION MODEL

We introduce a localized interaction model to enable

spatially neighboring smart things to interact with each

other. One smart thing can dynamically discover a set of

smart things within its proximity. It can then query services

provided by any of them on the fly. If necessary, one smart

thing can directly utilize a list of functions of another nearby

smart thing by simply invoking certain services exported by

that smart thing. In this way, applications can be built over

a dynamic set of underlying smart things.

LIN: We assume that smart things possess the abili-

ty to directly interact with each other and even human

beings under some circumstances. Through decentralized

and localized interaction, each smart thing can dynamically

build a local interaction network (LIN), which normally

covers one-hop neighboring nodes (i.e., surrounding smart

things). The local interaction network integrates several

different wireless networks including Bluetooth, ZigBee,

and Wi-Fi. Any surrounding smart things within one-hop

communication range of Bluetooth, ZigBee, or Wi-Fi will

fall into the coverage of one LIN. Taking a smartphone

with Wi-Fi and Bluetooth enabled as an instance, it can

dynamically build its (logical) LIN by detecting Bluetooth

1Coincidentally, there is an open-source firmware collection with the
same name as “ThingWare”. Our middleware prototype and the firmware
are totally irrelevant.

Table I
THINGAPI INTERFACES

Interface Semantic meaning
QueryThings Query all active smart things in the vicinity;

ThingAttr Retrieve all attributes of the smart thing specified
by a smart thing ID;

ThingSvc Retrieve all services of the smart thing specified
by a smart thing ID;

ThingCall
Call a smart thing service by specifying smart
thing’s ID and service ID, along with proper
operation arguments;

RegThingSvc Register a local smart thing service to the
underlying service manager;

UnregThingSvc Unregister a specified local smart thing service
from the ThingWare system;

neighbors and one-hop reachable nodes via Wi-Fi. The LIN

provides a communication base for nearby smart things to

recognize and connect with each other.

However, LIN does not guarantee that all smart things

understand and utilize each other’s functions. Therefore, we

introduce STCP and Smart Thing Service over the LIN.

The smart thing service enables them to utilize functions

provided by other smart things, even though they are

inherently heterogeneous in terms of functionalities, network

interfaces, and computing hardware.

STCP: We introduce the Smart Thing Communication

Pipe (STCP) as a communication model for heterogeneous

smart things, which acts like a TCP stream and connects

two smart things. One STCP connects two smart things

over the LIN between them. It can automatically select

available networks (such as Wi-Fi, Bluetooth, ZigBee, etc.)
and establish communication connections between two smart

things by reusing existing network protocols. The STCP

model provides an omni-connection solution for smart things

to handle the heterogeneity of underlying communication

networks.

Smart Thing Service: One major issue of developing

applications with multiple smart things is their heterogeneity

in terms of computational capabilities, built-in functions,

networking protocols, and so on. In particular, different types

of smart things differ in their built-in functions. For example,

a smart lamp may have these built-in functions: (a) changing

light color, (b) adjusting light brightness, etc., while a smart

air conditioner may have some totally different functions:

(a) cooling/heating, (b) adjusting wind speed, and so on. To

address this issue, we adopt a service-oriented approach. The

built-in functions are encapsulated into smart thing services,

and the functions of a smart thing can be used by other smart

things via calling smart thing services over STCP.

III. THINGAPI PROGRAMMING ABSTRACTION

We propose ThingAPI as a feasible programming abstrac-

tion for supporting localized interactions among heteroge-

neous smart things.

The ThingAPI programming abstraction includes three

major components: smart thing, smart thing services, and

651

Hardware
CPU Mem NIC

IO Modules

...

ThingWare

OS Core (Kernel, Libraries, Services, ...)

Local API

Applications

Sensor/Actuator

Adapter

ThingWare Interface

Smart Things
Management

Smart Things
Interaction

Physical Thing

Featured
Services

Smart
Things

Figure 1. Five layers of a smart thing structure with ThingWare

ThingAPI programming interfaces. From the perspective

of smart things programming, a smart thing is a first-

order programming construct. The developer can directly

use it as using objects in an object-oriented programming

language. The ThingAPI programming interfaces define a set

of methods manipulating smart things in the surroundings.

Table I lists the ThingAPI programming interfaces in de-

tail. ThingAPI interfaces can be used to accomplish the fol-

lowing key tasks: (1) discovering smart things (QueryThings,

ThingAttr); (2) accessing smart thing services (ThingSvc,

ThingCall); (3) publishing / abolishing a smart thing ser-

vice (RegThingSvc, UnregThingSvc). Using these interfaces,

applications hosted by one smart thing can easily access the

services exported by its surrounding smart things without

knowing their details. Conventionally, a smartphone cannot

directly interact with a table lamp, but when the lamp

becomes a “smart lamp”, it becomes possible for them to

interact with each other. The smart lamp can export its

functions as smart thing services such as Turn On, and

the smartphone can easily control the smart lamp by simply

accessing the Turn On service with ThingAPI interfaces.

IV. DESIGN AND IMPLEMENTATION

We design a lightweight middleware system called Thing-
Ware, which provides support for both the smart things inter-

action mechanism and ThingAPI programming abstraction.

A. Design of ThingWare
Design Issues. Application developers may have difficulty

in programming multiple heterogeneous smart things be-

cause of three aspects: (1) currently no ease-to-use program-

ming interfaces available for developers, (2) the complexity

of managing multiple dynamically changing smart things

that have varied computing hardware and built-in functional-

ities, and (3) that the variety of underlying networks makes it

difficult to connect two smart things efficiently and reliably.

ThingWare handles the management and hides the details

of underlying hardware platforms and networks, so that

application developers can focus on high-level applica-

tion logic by leaving the low-level complexity to Thing-

Ware. ThingWare handles three basic issues: (1) application-

friendly programming interfaces for operating local device

and nearby smart things, (2) management of both native

built-in components and discoverable smart things in the

vicinity, and (3) handling smart things interactions over

multiple networks (covering LAN and PAN networks).

In practice, ThingWare is implemented as a lightweight

middleware system residing in each smart thing.

ThingWare Structure. As shown in Fig. 1, a smart thing

with ThingWare inside is composed of five layers from bot-

tom to top: physical thing (such as physical components of

a thing and its built-in functionalities), computing hardware

(e.g., motherboard, networking cards, sensors, actuators,

etc.), OS core (such as OS kernel, OS services, libraries,

etc.), ThingWare, and applications. ThingWare includes

these modules: local API, ThingWare interface, smart things

interaction, featured services, and smart things management.

Local API provides platform-dependent programming

interfaces associated with device-specific functionalities,

and therefore, different smart things have different local

APIs available. ThingWare interface provides platform-

independent programming interfaces, which means different

smart things have the same interfaces to interact with each

other. Here the ThingWare interface module implements the

ThingAPI programming abstraction by providing a fixed

set of application programming interfaces (APIs).

The smart things interaction module realizes the STCP

abstraction. This module enables applications to connect to

surrounding things through multiple heterogeneous networks

without knowing the details of the networks. The benefit of

this abstraction is that applications can establish connections

to other things easily and reliably, which can save application

developers from wasting much time in handling error-prone

network connections.

The featured services module manages the services pro-

vided by this local thing, and some of them are encapsulation

of some built-in functionalities. Taking a smart TV as an ex-

ample, some built-in operations such as “turn on”, “‘volume
up”, “show next program”, etc., can be encapsulated into

featured services of the smart TV.

The smart things management module manages discov-

ered smart things, and maintains a list of presently discov-

erable smart things and attributes of each discovered smart

thing. Thereby, when an application inquires the surrounding

smart things via the QueryThings method in ThingAPI, this

module can response immediately.

B. System Implementation
We have implemented a working prototype to demonstrate

the feasibility of ThingAPI. The implemented lightweight

middleware, ThingWare, realizes ThingAPI programming

interfaces on mote-powered devices, Android-powered s-

martphones, and laptop computers. We used resource-limited

IRIS motes and SunSpot nodes to transform daily things into

smart things.

652

Localized interaction mechanism. Our smart things

prototypes primarily use PAN (personal area network) and

WLAN networks to achieve localized interaction. PAN

networks do not rely on any networking infrastructure,

thus they enable smart things to interact in an ad hoc

manner. WLAN depends on AP (wireless access point) and

some other infrastructure, however, it features high network

bandwidth and low latency compared with PAN. Thus,

WLAN provides a feasible way under some circumstances,

such as sharing pictures and videos between an Android

smart phone and a smart TV.

TinyOS-powered smart things (e.g., IRIS smart sensors)

use the Active Message (AM) to establish LIN networks

in their vicinity. Meanwhile, SunSpot-powered smart things

(e.g., smart TV, smart air conditioner, and smart projector)

use the RadioGram packets to create LIN networks around

them. Both of them implement smart things discovery

mechanism through broadcasting ZigBee packets. Android-

supported smart things discover spatially-nearby things via

UDP broadcast over Wi-Fi or SDP over Bluetooth. However,

currently TinyOS-powered smart things cannot directly con-

nect to SunSpot-powered ones, and therefore, we introduce

a smart things gateway to interconnect them.

STCP implementation. STCP communication pipe is

implemented by reusing several existing data transfer proto-

cols. In the ThingWare middleware, the STCP management

module handles all data exchange among smart things. It

consists of three units: low-level data transfer, STCP buffer,

and STCP stream. The data transfer unit is responsible for

transferring STCP messages sequentially and reliably. This

unit resides on top of several existing protocols such as TCP

over Wi-Fi or LAN, RFCOMM over Bluetooth, RadioGram

over ZigBee, etc. It detects the available network interfaces

and delivers STCP messages with TCP, RFCOMM, and/or

RadioGram. The STCP buffer unit temporarily stores all

data payload to be sent or received from other smart things.

The STCP stream provides a communication abstraction for

applications, which has the same usage to TCP socket. It

brings several benefits. First, this abstraction is familiar to

many developers, and thus minimizes their effort of learning

to use it. Second, it moves the complexity of handling

several different protocols and networking interfaces to the

underlying STCP message transfer unit, and thus hides the

heterogeneity of networks from smart thing applications.

ThingAPI implementation. ThingAPI is implemented

by providing methods or functions binding with different

programming languages. TinyOS-powered smart things use

nesC, while SunSpot-powered ones and Android smart-

phones use Java. ThingAPI provides a generic way to access

smart thing services. Through dynamic service discovery and

service invocation, smart things can flexibly manipulate each

other. Compared with web services [13], smart thing service

is a simple interaction mechanism optimized for resource-

limited smart things. It supports both IP-based network and

Lis t <Thing> t h i n g s L i s t = n u l l;
ThingsManager thingsManager = ThingsManager.getDefaultManager();
/ / g e t a l i s t o f s u r r o u n d i n g t h i n g s
t h i n g s L i s t = thingsManager.queryThings();
/ / f i l t e r o u t a smar t t h i n g o f i n t e r e s t
i n t ac = ThingType.HOUSEWARE AC; / / t h i s v a l u e i s sh ar ed g l o b a l l y
Thing acThing = f indThing(t h i n g s L i s t , ac);
i f (acThing == n u l l) { re turn; }
/ / g e t s e r v i c e s p r o v i d e d by a smar t t h i n g
S t r i n g thingID = acThing.getUuid();
Lis t <ThingService > s e r v i c e s L i s t = thingsManager. th ingSvc(thingID);
i f (! f i n d S e r v i c e(s e r v i c e s L i s t , "turnOnOff")) { re turn; }
/ / pe r fo rm a s e r v i c e c a l l on t h a t t h i n g
T h i n g S e r v i c e C a l l s e r v i c e C a l l = new T h i n g S e r v i c e C a l l("turnOnOff", n u l l);
T h i n g S e r v i c e R e s u l t r e s u l t = n u l l;
t r y {

r e s u l t = thingsManager. t h i n g C a l l(thingID , s e r v i c e C a l l);
} catch (ThingServ iceExcept ion e) {

e.pr in tStackTrace();
}

Figure 2. Program code from an Android application using ThingAPI to
remotely operate a nearby air conditioner (AC)

infrastructure-less ad-hoc network (such as personal area

network), which makes it more feasible for things with

heterogeneous network interfaces.

V. EVALUATION

We first describe a proof-of-concept case study to demon-

strate the feasibility of ThingAPI, and then present some

numerical results to quantify the performance of ThingWare.

A. Case Study
We describe how ThingAPI makes things easily pro-

grammable and interactive in this case study: manipulating

household appliances with an application on a smartphone.

Development of the application. The application has

two features: (1) dynamically detecting the surrounding

smart things, and (2) automatically generating a control

panel through discovering the services provided by the

detected smart thing. Feature#1 can be implemented using

QueryThings and ThingAttr interfaces, and Feature#2 can

be simply done with ThingSvc and ThingCall. A user can

select a service and invoke that service by clicking a button

in the GUI window. This functionality can be achieved

by writing about 10 lines of Java code basing on the

ThingAPI programming interfaces. In Fig. 2, we list the

core code snippet implementing the discovery of both smart

things and smart thing services, and as well the invocation

of the “turnOnOff” service provided by a smart AC (air-

conditioner).

Dynamically finding newly added smart things. When

new smart things (such as a smart TV) are added, our system

can still work correctly. The newly added smart things will

be automatically detected by the ThingWare infrastructure,

and the end user does not need to manually configure them,

which would ease the user greatly. Supposing a new smart

TV is added, the application will list the newly added smart

TV immediately, and generate a clickable itme to user for

manipulating the TV.

B. Performance Results
We conducted a set of experiments using IRIS sensor

motes and SunSpot-powered smart devices on which our

653

(a) Total number of the discovered smart things (b) Total discovery latency for different cases

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9
Number of the surrounding smart things

N
um

be
r o

f t
he

 d
isc

ov
er

ed
 sm

ar
t t

hi
ng

s

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9
Number of the surrounding smart things

D
is

co
ve

ry
 la

te
nc

y
in

 to
ta

l (
m

s)
Figure 3. Distribution of the total discovered number and latency of
multiple IRIS-mote-powered smart things.

0

200

400

600

800

1000

1200

Turn
ON/OFF

Mute Increase
Vol

Decrease
Vol

Previous
Channel

Next
Channel

In
vo

ca
tio

n
la

te
nc

y
(m

s)

0

200

400

600

800

1000

1200

1400

Turn
ON/OFF

Increase
Temperature

Decrease
Temperature

Sleep Mode Wind Speed

In
vo

ca
tio

n
la

te
nc

y (
m

s)

(a) Smart TV (b) Smart AC

0

200

400

600

800

1000

1200

Turn
ON/OFF

Search Menu Zoom In Zoom
Out

In
vo

ca
tio

n
la

te
nc

y
(m

s)

(c) Smart Projector

Figure 4. Average invocation latency of the smart TV, AC, and projector.

prototyped system ThingWare was deployed. We evaluate

the performance of our prototype system from two aspects:

(1) the coverage and latency of smart things discovery, and

(2) the overhead of ThingAPI invocations.

Experimental setup. To collect performance data about

the ThingWare prototype, we deployed the ThingWare pro-

totype into IRIS (XM2110) sensor nodes and other smart

things prototypes, and used a laptop computer to record

performance logs. We built two benchmark applications to

evaluate the performance of the prototype. One application

(denoted as AppBench1) periodically issued query of things

and service invocation to IRIS-powered smart things (smart

sensors). The other application (denoted as AppBench2) peri-

odically performed query of things and ThingAPI invocation

to SunSpot-powered smart things (i.e., smart TV, AC, and

projector). Both of them ran on the laptop computer. When

running AppBench1, each time we activated a certain number

of smart sensors (from one to nine) which were placed

within a lab room. While running AppBench2, we opened

the smart TV, AC, and projector separately, and the three

smart appliances were deployed in a meeting room.

Coverage and latency of discovery. Fig. 3(a) shows the

distribution of total number of the discovered IRIS smart

sensors, and Fig. 3(b) shows the distribution of the total

discovery latency for different cases. Fig. 3 shows that (1)

in some cases, all of the neighboring smart things placed in

the room can be detected, and (2) from median values, in

Table II
AVERAGE DISCOVERY AND INVOCATION LATENCY

Smart things Discovery (ms) Invocation (ms)

IRIS-powered (sense) 8 29.76

SunSpot-powered (actuate) 38.5 893.51

most cases the number of the discovered things is less than

the real number of the surrounding things.

In Table II, we show the average latency of discovering

one smart thing. The average discovery latency for the

SunSpot-powered ones is around 38 ms (milliseconds), while

it is approximately 8 ms for discovering one IRIS-powered

smart thing. This difference is caused by adopting different

mote operating systems and connection APIs.

Overhead of ThingAPI invocations. Table II also

presents the average latency of ThingAPI invocation. This

latency value means the time interval from calling one

smart thing service to finally obtaining the execution result

of that service execution. The average latency of one service

invocation of the IRIS smart sensors is about 30 ms. This

performance makes sense for sensing applications, since it

can support more than 30 times of query per second.

In contrast, the average invocation latency on SunSpot-

powered smart things is more than 890 ms. The value

seems surprisingly large compared with the latency of mote-

powered ones. It’s because the IR Adapter module spends

much time emitting infrared signal to control the correspond-

ing appliance. Actually, we have tested the round-trip time

of SunSpot RadioGram packets between AppBench2 on a

laptop and SunSpot node, and it’s about 20 ms on average.

Fig. 4 presents the average ThingAPI invocation latency

for smart TV, AC, and projector. Service invocation latency

varies with respect to the types of smart thing services.

Invoking the “Turn ON/OFF” service on smart TV takes

more than 1000 ms on average, while ThingAPI invocation

of some other services such as “Increase Volume” and

“Decrease Volume” consumes less time, around 800

ms, as shown in Fig. 4(a). Meanwhile, Fig. 4(b) and Fig. 4(c)

show similar observations.

In summary, the distinct variability of service invocation

latency is a highlighted characteristic of ThingAPI. The

inherent difference in the built-in functionalities of smart

things leads to this variability.

VI. RELATED WORK

In this paper, ThingAPI provides a flexible way to support

direct localized interactions among smart things through

appropriate programming abstraction. ThingAPI borrows

many ideas and techniques from the prior work in spite of

the difference in research focus.

Smart Objects/Things. Many kinds of smart devices

have been proposed or invented both in the academia [14],

[15] and industry [1], [2]. Many researchers use smart

objects [16], [11], [17], [4] or smart things [3], [18] to

654

abstract and conceptualize different smart devices. Recently,

Kortuem et al. define smart objects as “autonomous physi-

cal/digital objects augmented with sensing, processing, and

network capabilities” [17].

Programmability of Things. Recently, several

researchers have noticed the trend of daily objects’

becoming smart objects and related programming issues [7],

[19], [11]. Generally, they tried to answer the question

how to build systems/applications over special-purpose

computing devices. Kawsar et al. proposed a document-

based declarative programming approach to building

distributed smart objects systems [11]. Another closely

related work is HomeOS by Microsoft Research [7], which

proposed PC abstraction as their programming model for

networked devices (akin to our smart things). However,

they have some deficiencies, (1) that applications rely on

centralized node which may become system bottleneck, and

(2) that smart things could not fully interact with each other

locally to complete some tasks within a small vicinity.

VII. CONCLUSION

The emergence and ubiquity of smart things encourage

pervasive interactions among things. Those pervasive inter-

actions can be achieved by appropriately programming smart

things. However, programming smart things faces challenges

because they are dynamic and inherently heterogeneous.

In this paper, we proposed ThingAPI, a programming

abstraction for supporting localized interactions among het-

erogeneous smart things. We built a lightweight middleware

prototype (ThingWare), to implement ThingAPI over a

variety of smart things. We have shown that application

developers can easily program household and office appli-

ances with ThingWare. The evaluation results demonstrate

the efficiency and usability of our approach.

ACKNOWLEDGMENT

This work is supported by the National Natural Sci-

ence Foundation of China under Grant No.61103026; the

National Basic Research Program of China (973) under

Grant No.2011CB302604; the High-Tech R&D Program of

China (863) under Grant No.2011AA01A202; the Science

Fund for Creative Research Groups of China under Grant

No.61121063.

REFERENCES

[1] P. Bosua, “LIFX: The Light Bulb Reinvented,”
http://www.kickstarter.com/projects/limemouse/
lifx-the-light-bulb-reinvented, 2012.

[2] Indiegogo, “Lumen Bluetooth LED Lightbulb,” http://www.
indiegogo.com/lumen, 2012.

[3] M. Kuniavsky, Smart Things: Ubiquitous Computing User
Experience Design. Morgan Kaufmann, 2010.

[4] T. S. López, D. C. Ranasinghe, B. Patkai, and D. McFarlane,
“Taxonomy, technology and applications of smart objects,”
Information Systems Frontiers, vol. 13, no. 2, pp. 281–300,
2009.

[5] T. Sánchez López, D. C. Ranasinghe, M. Harrison, and
D. McFarlane, “Adding sense to the Internet of Things - An
architecture framework for Smart Object systems,” Personal
and Ubiquitous Computing, vol. 16, no. 3, pp. 291–308, 2012.

[6] L. Atzori, A. Iera, and G. Morabito, “The Internet of Things:
A survey,” Computer Networks, vol. 54, no. 15, pp. 2787–
2805, 2010.

[7] C. Dixon, R. Mahajan, S. Agarwal, A. J. Brush, B. Lee,
S. Saroiu, and P. Bahl, “An operating system for the home,”
in Proc. NSDI’12. USENIX Association, 2012, p. 25.

[8] N. Mohamed and J. Al-Jaroodi, “A survey on service-oriented
middleware for wireless sensor networks,” Service Oriented
Computing and Applications, vol. 5, no. 2, pp. 71–85, 2011.

[9] L. Mottola and G. P. Picco, “Programming Wireless Sensor
Networks: Fundamental Concepts and State of the Art,” ACM
Computing Surveys, vol. 43, no. 3, p. 19, 2011.

[10] P. Costa, L. Mottola, A. L. Murphy, and G. P. Picco, “Pro-
gramming Wireless Sensor Networks with the TeenyLime
Middleware,” in Proc. Middleware 2007, 2007, pp. 429–449.

[11] F. Kawsar, T. Nakajima, J. H. Park, and S.-S. Yeo, “Design
and implementation of a framework for building distributed
smart object systems,” The Journal of Supercomputing,
vol. 54, no. 1, pp. 4–28, 2010.

[12] S. Hodges, N. Villar, J. Scott, and A. Schmidt, “A New Era for
Ubicomp Development,” IEEE Pervasive Computing, vol. 11,
no. 1, pp. 5–9, 2012.

[13] M. Bichler and K.-J. Lin, “Service-oriented computing,”
Computer, vol. 39, no. 3, pp. 99–101, 2006.

[14] M. Beigl, H.-W. Gellersen, and A. Schmidt, “Mediacups:
experience with design and use of computer-augmented
everyday artefacts,” Computer Networks, vol. 35, no. 4, pp.
401–409, 2001.

[15] H. Gellersen, “Smart-Its: computers for artifacts in the
physical world,” Communications of the ACM, vol. 48, no. 3,
p. 66, 2005.

[16] M. Beigl and H. Gellersen, “Smart-Its: An embedded platform
for smart objects,” in Proc. Smart Objects Conference (SOC
2003), 2003, pp. 15–17.

[17] G. Kortuem, F. Kawsar, D. Fitton, and V. Sundramoorthy,
“Smart objects as building blocks for the Internet of things,”
IEEE Internet Computing, vol. 14, no. 1, pp. 44–51, 2010.

[18] J. Ma, L. T. Yang, B. O. Apduhan, R. Huang, L. Barolli,
and M. Takizawa, “Towards a smart world and ubiquitous
intelligence: A walkthrough from smart things to smart hy-
perspaces and UbicKids,” International Journal of Pervasive
Computing and Communications, no. 1, pp. 53–68, 2005.

[19] F. Kawsar, K. Fujinami, and T. Nakajima, “Prottoy mid-
dleware platform for smart object systems,” International
Journal of Smart Home, vol. 2, no. 3, pp. 1–18, 2008.

655

