
Deobfuscating Android Native Binary Code

Zeliang Kan1, Haoyu Wang1, Lei Wu2, Yao Guo3, Guoai Xu1
1 Beijing University of Posts and Telecommunications 2 PeckShield, Inc. 3 Peking University

Abstract—In this paper, we propose an automated approach to
facilitate the deobfuscation of Android native binary code. Specif-
ically, given a native binary obfuscated by Obfuscator-LLVM (the
most popular native code obfuscator), our deobfuscation system
is capable of recovering the original Control Flow Graph. To the
best of our knowledge, it is the first work that aims to tackle
the problem. We have applied our system in different scenarios,
and the experimental results demonstrate the effectiveness of our
system based on generic similarity comparison metrics.

I. INTRODUCTION

Android apps have received widespread adoption in recent

year. Besides the standard Android programming model in

Java, Android Native Development Kit (NDK) is introduced

to allow developers to include native code binaries (write in

C/C++) in their apps.

Problem: Recent work suggested that native code had been

widely used in Android apps, which severely complicated the

process of static analysis. As Java bytecode can be more easily

decompiled, malware developers usually hide the malicious

payload and core functionalities in the native code to evade

detection. Even worse, the native code can be obfuscated,

which further increases the difficulty of security analysis.

For example, the towelroot exploit (CVE-2014-3153), one of

the the biggest Root Exploits family in Android, was found

obfuscated at the native code level by O-LLVM. It took a lot

of efforts for security researchers to dive into the technical

details of the code due to the obfuscation.

Although several attempts have discussed the deobfusca-

tion of Android apps, all of the them focus on Java-level

deobfuscation. For example, DeGuard [3] was proposed to

reverse layout obfuscation (naming obfuscation) generated by

ProGuard. Their key idea is to learn a probabilistic model

over a large number of non-obfuscated apps and to use this

model to deobfuscate new APKs. Layout obfuscation is the

easiest one in Android app obfuscation, which does not alter

the program logic (e.g., control flow) of the apps. To the best

of our knowledge, none of previous studies have attempted to

tackle native code deobfuscation yet.

Our approach: In this paper, we propose a novel ap-

proach for automated deobfuscation of Android native binary

code. Technically, our system works by combining static taint

analysis and symbolic execution to remove the obfuscation

introduced by different obfuscating techniques in O-LLVM. O-

LLVM [4] is one of the most widely used code obfuscator for

both x86 and ARM platforms. It is implemented as middle-end

passes in the Low Level Virtual Machine (LLVM) compilation

process, which offers guaranteed compatibility with LLVM,

including Instruction Substitution (InsSub), Bogus Control

Flow (BCF) and Control Flow Flattening (CFF). One key

feature of our system is that we introduce taint analysis to

make semantic level deobfuscation in both general and in-

struction optimization situation. We also exploit flow-sensitive

symbolic execution to rebuild the seriously obfuscated control

flow. To overcome the challenge of basic block splitting, we

chopped the original control flow, selected analysis targets

through static features, and dynamically adjust the analysis

target sequence to maximize context inheritance.

Experiments on multiple benchmarks and real-world cases

suggest that our approach is capable of accurately deobfuscat-

ing samples obfuscated by O-LLVM. We believe our tool can

be used by security analysts to make it easier to inspect native

code, even it is heavily obfuscated.

II. APPROACH OVERVIEW

Goal. We use the term deobfuscation to refer to the process

of removing the effects of code obfuscation from the native

binary, and ideally recover the original code and control flow

before obfuscation. For a given APK as input, our system

first extracts the native binary and determines whether it is

obfuscated, then analyzes and transforms the code to obtain

a functionally equivalent form that is simpler and easier to

understand. For the non-trivial code, the deobfuscation result

is rarely the same as the original code, however, it is close to

the original and much easier to understand compared to the

obfuscated version.

Key Techniques. To address the aforementioned challenges,

we rely on taint analysis and enhanced symbolic execution

to recover O-LLVM obfuscated code. Taint analysis is used

to address the challenge introduced by instruction optimiza-

tion, which performs a globally feature matching to com-

prehensively detect all obfuscations introduced by O-LLVM

and identify instructions needed to be rewrite by tracking

tainted registers. Symbolic execution is used to reconstruct

the control flow ruined by Control Flow Flattening (CFF).

We first identify basic blocks that maintain original operations

based on an ARM-specific basic block classification approach.

Then we perform chopped symbolic execution to address the

path explosion challenge. To perform flow-sensitive symbolic

execution, we use a dynamic exchanging model to maximize

the context inheritance and rebuild the original control flow.

A. Instruction Substitution Deobfuscation

We apply taint analysis to determine the combination of

obfuscating instructions and locate instructions needed to be

rewritten. During our analysis, we found that sometimes ob-

fuscated instructions may be mixed with normal instructions.

322

2019 IEEE/ACM 41st International Conference on Software Engineering: Companion Proceedings (ICSE-
Companion)

2574-1934/19/$31.00 ©2019 IEEE
DOI 10.1109/ICSE-Companion.2019.00135

For example, normal instructions use the registers which

obfuscated instructions modified. The taint analysis we use

here guarantees the integrity of the deobfuscation analysis. The

content and address of the deobfuscated instructions that need

to be modified will be saved temporarily and wait until other

deobfuscating work finished, before rewritten to the binary.

B. Bogus Control Flow Deobfuscation

We rely on assembly features to detect whether a binary is

obfuscated by BCF. When the opaque predicate operation is

detected in a Basic Block (BB), taint analysis first sets the

BB as a predicate block and sets operated register as a tainted

register. Then it will force the conditional jump in the parent

block reaching the predicate block. After that, because only

one condition jump of the predicate block can actually be

accessed, taint analysis will head to the “alive” branch and

label jump instruction at the end of predicate block as to be

modified. Due to the optimization on ARM instructions during

compilation, sometimes BCF obfuscation can occur in a BB

that relay on a constraint, which is a tainted register compared

to zero (there are some cases that compare with 1), our system

will also automatically set it as a predicate block. After taint

analysis, all deobfuscated information about instructions that

needs to be modified will be used to rebuild the binary.

C. Control Flow Flattening Deobfuscation

The CFF obfuscation rebuild the control flow to a SWITCH

construct. To deobfuscate the control flow, we need to identify

basic blocks that maintain original operations and rebuild the

control flow. Since the analysis of CFF obfuscated code is

flow sensitive, and also symbolic execution has been proved

as an effective program analysis technique that can systemat-

ically explore multiple program paths. It is a means of using

symbolic input to analyze a program to determine what inputs

cause each part of a program to execute.

In our approach, our system first determines whether the

code is obfuscated by CFF. Then static analysis is applied

to identify basic blocks that contain original operations. After

that, we proposed a dynamic exchanging algorithm to promise

our system to perform flow sensitive symbolic execution on

these basic blocks, and to reconstruct the original control flow.

The purpose of dynamically exchanging basic blocks in the

analysis sequence is to ensure that most of the basic blocks

inherit the state from the previous analysis before execution,

while not starting the analysis of a basic block from a blank

state. Also, during the symbolic execution, it is possible to

enter other function’s space through the function call. Our

system hooks all possible call instructions. When the symbol

execution encounters hooked addresses, it will automatically

skip the call instruction and continue the analysis in the

space of the current function. After being optimized, the final

deobfuscation result will be written to the output.

III. EVALUATION

We have applied our system to three different datasets. We

first evaluate our system on a widely used C/C++ obfuscation

benchmark [2]. To evaluate our system on real-world Android

apps, we have also identified 5 Android projects that contain

open source C/C++ code, which contain 56 functions in total.

We further apply our system to towelroot exploit [1], a binary

tool used to obtain the root privilege by exploiting privilege

escalation vulnerabilities. In this case, we could evaluate the

effectiveness of our approach on deobfuscating real threats in

the wild.
InsSub: All the obfuscated operations could be successfully

recovered in our experiment. The Euclidean distances between

obfuscated function and original one are in the range from 14

to 44 during experiment. After deobfuscation, the distances of

the recovered functions are all below 10.
BCF: We evaluate our system of BCF deobfuscation on the

C/C++ obfuscation benchmark and real-world Android apps.

At default, the average CFG similarity between the original

program and the obfuscated program is below 0.4, while it

could reach up to 0.870 after deobfuscation.
CFF: We evaluate our system of CFF deobfuscation on

three different datasets. At the default obfuscation level, the

average CFG similarity score is roughly 0.2 after obfuscation,

while our deobfuscation results could achieve a similarity

score of 0.807 on average. After activating basic block split-

ting, similarity scores between the obfuscated and unob-

fuscated function are almost all negative correlation, which

indicates that the obfuscated CFG is completely different from

the original one. The deobfuscating result of the enhanced CFF

is ranging from 0.72 to 1, and on average is 0.84.
Full Obfuscation (All 3 Techniques): We further evaluate

the effectiveness of our approach on recovering the samples

obfuscated by all three obfuscation techniques at the same

time. The CFG similarity score after obfuscation is -0.144 on

average. However, our system could achieve very good results

compared with single pass evaluation, with a CFG similarity

score above 0.834 after deobfuscation.

IV. CONCLUSION

We have presented a novel approach for deobfuscation of

Android native code based on taint analysis and flow-sensitive

symbolic execution. Experiments suggested that we could

successfully reverse obfuscations performed by O-LLVM with

high accuracy. We believe that our system could become a

useful tool for security analysts and researchers to conduct

studies including malware detection and program analysis.

ACKNOWLEDGEMENT

This work is supported by the National Key Research and

Development Program of China (grant No.2017YFB0801903)

and the National NSF of China (grants No.61702045).

REFERENCES

[1] CVE-2014-3153. https://github.com/orenl/CVE-2014-3153, 2014.
[2] Benchmarks. https://github.com/tum-i22/obfuscation-benchmarks, 2016.
[3] Benjamin Bichsel, Veselin Raychev, Petar Tsankov, and Martin Vechev.

Statistical deobfuscation of android applications. In ACM Sigsac Confer-
ence on Computer and Communications Security, pages 343–355, 2016.

[4] Pascal Junod, Julien Rinaldini, Johan Wehrli, and Julie Michielin.
Obfuscator-llvm–software protection for the masses. In International
Workshop on Software Protection (SPRO), pages 3–9. IEEE, 2015.

323

