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Abstract—The explosive amount of malware continues threat-
ing the security of operating systems and networks. Traditional
malware detection approaches fail to meet the requirements of
detecting polymorphic and new samples. Existing neural network
based detection approaches performs better, but consuming
much more time in both feature extraction and training. In
this paper, we propose a light-weight PC malware detection
system which is based on deep convolutional neural network
(CNN). The raw inputs of our system are sequences of grouped
instructions, which were generated by our Instruction Analyzer
in according to different functionalities of the instructions. The
network will automatically learn features of malware from the
grouped instruction sequences. The experiment results suggest
that in a large dataset which contains roughly 70,000 samples,
our detection system can achieve an overall accuracy of 95%.
The training time of our system with single convolutional layer
was only about 10 hours, which is one order of magnitude less
than traditional methods.

Index Terms—malware detection, deep learning, machine
learning, neural network, Windows platform

I. INTRODUCTION

The proliferation of malware has presented a long-lasting

and serious threat to the security of computer systems and

internet. For example, the well-known WannaCry ransomware

attack [15] has affected millions of devices and caused billions

of dollars damage. The number of malware has increased

greatly every year, and it is reported that every 4.6 seconds

a new malware specimen emerged in 2017 [9]. Windows is

the predominant platform for malware, and covers more than

99% of the malware variants [41].

A wide range of malware detection approaches have been

proposed by many researchers and anti-virus companies. Sig-

nature based approach [34], [38] is widely used in malware

detection, in which the rules are extracted from the binary

program that can be obtained without running it to represent

the malware samples uniquely. However, the malwares usually

disguise themselves using various evasion techniques [26],

thus the zero-day malware cannot be detected by traditional

static feature based approaches due to their polymorphic

and/or metamorphic nature. Besides, the manual heuristic

inspection of malware analysis to generate the rules is no

longer considered effective and efficient compared against

* co-corresponding authors

the high spreading rate of malware. As a result, dynamic

approaches [42], [43] are proposed to cope with malware eva-

sion techniques, in which the runtime behaviors (e.g., system

calls, API sequences) are monitored dynamically. However,

dynamic analysis faces the inherent challenges such as high

performance overhead [42], low execution path coverage and

high false positives [43], which is not easily scale to large

numbers of samples.

Deep learning has been proven to have a good effect on

images classification and natural language processing [12],

[23], [37]. It automatically learns high-level representation of

data by constructing a deep architecture. Hence, deep learning

based technique is considered a profound solution in malware

detection, and some recent studies [20], [31] have applied

neural networks to malware detection.

For example, the most recent work [31] proposed to learn a

malware detection system from raw bytes of entire executable

files, which shows promising detection results. However, it

introduces greatly performance overhead to learn malware

detection model from raw bytes, which is a sequence clas-

sification problem on the order of two million time steps that

contains too much redundant information. All the raw bytes

of the executable file, including resource data such as pictures

and font, are used as training data, which could be potentially

eliminated. Therefore, they chose a big convolution filter and

long stride. For the work which depends on raw byte data,

there are usually two main ways to improve the time efficiency.

One is to select the raw byte data of a specific segment as the

training data, thereby reducing the dimension of input vectors.

The other is to increase the size of convolution filter and the

length of stride, which may increase the training loss.

Consequently, we face the research question: How to reduce
the redundant information in the training data as much as
possible while ensuring the accuracy of the deep learning
malware detection system?
To maximize and complete the extraction of malware

features from low-level data, and inspired by the byte n-

gram method [27], [32], [34], in this paper, we propose a

light-weight deep learning based malware detection approach,

which relies on the disassembled instructions as the raw data

to be learned. The features could be automatically learned

from low-level data, and hence eliminate the limitations in-
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troduced by manually labeling features [38]. Furthermore,

to achieve computationally efficient malware detection, we

perform instruction analysis on the decompiled code to clas-

sify assembled instructions into different groups, and our

malware detection system is learnt based on the abstraction

of the grouped instructions. Hence, it could greatly reduce

the complexity of the classification problem, so as to realize

the dimension reduction of embedding layer. Moreover, the

training and testing time of our approach linearly proportional

to the number of malware examples.

We have applied our malware detection system to a dataset

of around 70,000 samples, and the experiment results suggest

that, our detection system could achieve an accuracy of 95%,

and the training time of our system with single convolutional

layer is only about 10 hours. We have released all the dataset

and experiment results to the research community at:

https://github.com/deep-learning-malware/Dataset

II. RELATED WORK

A. Traditional Malware Detection

Traditional malware detection methods mainly include static

analysis [36], [38], [39], dynamic analysis [8], [16], [28], [42],

[43] and feature-based machine learning methods [17], [22],

[33], [40]. In general, static or dynamic methods are used to

extract high-level features (e.g., API calls, strings, commands

and behavior logs in sandbox, etc.) from original samples, and

then various machine learning techniques (e.g., SVM, Naive

Bayes, KNN, etc.) are used to explore representative features

that can distinguish benign and malicious programs.

Schultz et al. [36] statically extracted features such as

DLL list and API calls to represent information contained

within each binary. Then Naive Bayes method was applied to

detect previously unknown malicious code. Similarly, Kolter

et al. [22] used features like DLLs and API calls as the basis

and examined the performance of different classifiers such as

Naive Bayes, SVM and Decision Tree on the same dataset.

Firdausi et al. [17] automatically generated samples’ behavior

reports from an emulated (sandbox) environment. And they

used different kind of classifiers in this research.

Most of the aforementioned approaches used high-level

hand-designed or artificial selected features, which require

a significant amount of domain knowledge for feature ex-

traction. Malware developers can easily evade these feature-

based methods through techniques such as string encryption,

polymorphism, code obfuscation [38] and virtual machine

environment monitoring [11], etc.

B. Byte N-gram Approaches

To overcome the limitation of manually selected features,

various approaches [30], [32], [35] proposed to build the

malware detection system based on low-level data (e.g., raw

byte sequences, PE-heads, etc). Byte n-gram is one of the

more popular approaches, which extracts features from the

context of inputs. Although byte n-gram approach shows

promising malware detection results in previous work [25],

[30], the process of n-gram feature selection for a large dataset

consumes huge time and space resources due to the large

amount of different n-grams [19], which limits the application

of the n-gram method to large datasets.

Pektas et al. [30] proposed to classify malware instances

by using n-gram features of its disassembled code. They used

only one vector for classification to reduce the dimension of

the n-gram space. However, due to the scalability limitation

of n-gram, they were only able to experiment on a dataset of

1,056 samples. Lin et al. proposed to [25] combine dynamic

analysis and n-gram method. They extracted n-gram features

from behavior logs and built a SVM classifier for malware

classification on a dataset contained 4,288 samples. In order

to address the challenge of n-gram’s huge time consumption,

they proposed a two-stage feature reduction method, which

they believed could be used to reduce the time cost of re-

training. However, it is also time-consuming to monitor the

runtime behavior of malware, and previous work suggested

that the malware developers tried to evade the detection [21].

C. Neural Network Based Malware Detection

Due to the success of deep learning in research fields

such as images classification and natural language processing

[12], [23], [37], some recent work [20], [29] proposed to

apply neural networks to code analysis and malware detection.

Deep neural network is able to automatically learn high-level

representation of data by constructing a deep architecture.

Huang et al. [20] extracted data of malicious and benign

samples from dynamic analysis, and used up to four hidden

layers of feedforward neural network1 to detect. Regardless

of the time cost of dynamic analysis, they were mainly

focusing on evaluating multi-task learning ideas. Pascanu et

al. [29] used recurrent networks for learning from system

call sequences, in order to construct a “language model”

for malware. The high-level events like API calls formed

the input sequences of their model. They tested Long Short-

Term Memory and Gated Recurrent Units and achieved good

classification performance. However, they did not experiment

with deep learning approaches.

All of the aforementioned approaches used high-level fea-

tures like API calls and behavior logs as input of the neural

network. As we mentioned before, high-level data of the

malware may have been modified by authors, and the low-

level data keeps the sample’s original appearance. So our key

idea is to use the low-level features as learning materials for

neural networks. Thus, some recent work [31], [35] tried to

build neural network based on the raw byte data. Saxe and

Berlin et al. [35] used a histogram of byte entropy values as

features, which combined ASCII string lengths, PE imports,

and other meta-data together. But in data processing, they

discarded most information about the actual content of the

binary, because they wanted to create a fixed length feature

vector as input to the network. Similarly, Raff et al. [31] used

raw byte sequences as inputs of deep learning. In their work,

they noted that detection from raw bytes presents a sequence

1https://en.wikipedia.org/wiki/Feedforward neural network
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problem with over two million time steps. But actually, their

work is more focused on how to get the deep learning system

to receive more raw data and longer sequences, which may

contain lots of redundant information (e.g. resource files).

Combined with deep learning, we try to build a lightweight

malware detection system based on CNN, which learns to

detect the characteristics of malware automatically from in-

struction sequences. Compared with previous approaches, our

approach has several advantages. First, in the selection of

training data, we try to keep the context of samples as much as

possible rather than discarding the partial information of sam-

ples. This allows for a greater degree of storage of the integrity

of the execution process. Also, compared with deep learning

approaches based on high-level hand-designed features, our

detection system is more efficient in the time of training

data extraction. Furthermore, take advantage of instruction

grouping analysis, the dimension of the embedding layer in our

neural network is greatly reduced, which allows the training

process to be more effective. Moreover, the features extracted

by our system may be different from those features extracted

manually, which may be understood by the machine only,

and makes it difficult for malware authors to create evasion

techniques that could bypass our detection system.

III. SYSTEM ARCHITECTURE

In this section, we introduce the overall architecture of our

system. Our deep learning based malware detection system

is performed on low-level features extracted from original

executable files. As shown in Figure 1, our system consists

of two major components: Instruction Analyzer and Convolu-
tional Neural Network (CNN) Based Classifier.
• Instruction Analyzer: This component is used for data
preprocessing, including IDA disassembler [2] and In-

struction Processor. It is worth mentioning that, while

dealing with instructions, we grouped all the instruction

sets of the X86 platform by their functionalities and

attributions. Then we generated a dictionary with 205

key-value pairs. After the step of instruction analysis,

each instruction in the original file is then mapped to

an instruction group. (See Section 3.1 for details.)

• CNN-based classifier: We used convolutional neural
network (CNN) [24] in this component. And in this

work, the inputs of neural network are instruction’s group

number sequences. A deep learning architecture using

CNN with optional multi-convolutional layers is designed

to perform unsupervised feature learning, fine-tuning, and

thus malware detection. (See Section 3.2 for details.)

A. Instruction Analyzer

In our system, we disassemble Windows executable files

firstly, transform it into .asm files, and then extract instruction

sequences from .asm files. A Windows software is often an

.exe file, which is a common filename extension denoting

an executable file. Apart from the executable program, many

.exe files contain other components called resources, such as

bitmap graphics and icons which the executable program may

use for its graphical user interface [13]. We use Interactive

Disassembler (IDA) to disassemble each executable file and

save as an .asm file. The .asm file contains instructions and

each instruction consists of operation codes and operands [14].

Considering that there are many instruction sets on the x86

platform, and many of them have similar functionalities, such

as basic move operation, there are operation codes such as

MOV, MOVQ, MOVD and so on. But they only exist to

distinguish the length and type of operands. If each instruction

with similar functionality is treated as a separate class, the

training space will be very large in the training process.

Thus, for the reduction of dimensionality, we choose to divide

instructions into groups according to their operation code’s

functionality and property.

Here a dictionary file is used to record the group number of

instructions. Then we extracted all the instruction sequences

from the .asm file. These sequences were then mapped into

sequences of instruction group number, which consists of

many double-hexadecimal-digit (0x00-0xff). In this work, the

dictionary we used contains actually 206 groups of instruction

sets2. After the pre-processing phase, every executable sample

is represented as a double-hexadecimal-digit vector.

It is important to note that we build the dictionary based on

all the operation codes in Intel� 64 and IA-32 Architectures

Software Developers Manual [18]. It consists of most the as-

sembly instructions on Windows platform. We have collected

all of the 663 operation codes listed in this manual. Then we

divided instructions into 205 groups based on their operation

codes functionality and property. Other instructions based on

unrecorded operation codes are considered to be the same

group, which is group 206. In the subsequent training process,

instructions of the same group are treated as same.

In order to better illustrate the benefits of instruction group-

ing analysis, we compared the results of instruction grouped

situation with ungrouped one in the follow-up experiments.

It turned out that when the same number of convolutional

layers were used in our system, the grouped situation got the

better result. We think this may because many instructions

have similar functionality on x86 platform. Neural network

may amplify this subtle difference in the training process,

treating them totally different in the ungrouped case.

Figure 2 shows an example of instruction analysis in

our work. Firstly, sample.exe is compiled by IDA to

the sample.asm file, which consists of numerous assem-

bly instructions. Taking instruction “.text:0040131A mov
[esp+8+Format], offset Format ; “hello world”” as an
example, this is a basic move operation that writes the string

“hello world” to the specified word unit. We recorded the

group number in the dictionary. Then all instructions for the

MOV and similar operations are attributed to the same group.

Then operation code ‘mov’ is preserved in sample.tmp but the

rest part of this instruction is discarded. Also, ‘shr eax,4’ and

‘shl eax,4’ are all shift operation instructions, we divided them

2The dictionary is released at: https://github.com/deep-learning-
malware/Dataset.
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Fig. 1. The overall architecture of our system.

into the same group too. We saved all the operation codes from

sample.asm. The previous dictionary were used to generate a

double-hexadecimal-digit vector.

B. CNN-Based Classifier

Previous work [44] has suggested that the convolution neu-

ral network has a good effect in recognizing the displacement,

scaling and other distortions of the image. Similarly, the mali-

cious features of malware, for example, might be placed in any

position of the software. Our goal is to find out the existence

of malicious feature but not to detect the exact address of it. To

better capture such high level location invariance, we choose

to use a convolution network architecture.

Fig. 1 illustrates the high-level architecture of our neural

network. We chose group number sequences as the raw

input of the neural network. The original input firstly passed

through an embedding layer, where each byte converted to a

feature vector. Then these vectors went into the convolutional

part. The convolutional part consists of convolutional layer

and max-pooling layer. The activation function we chose in

our system is Rectified Linear activation function (ReLU).

In convolutional layer, features were extracted from these

feature vectors. In fact, the features extracted from the first

convolutional layer can be seen as n-grams of instructions.

(Here the value of n depends on the width of the convolution

kernel.) After each convolutional layer we use max-pooling

to reduce the dimensionality of features. Also, in our detec-

tion system, the layer of convolutional part can be multiple.

Furthermore, we use a hidden fully connected layer after the

last convolutional layer, which allows high-order relationships

between the features to be detected [10]. Finally a softmax

layer is used to output the label probabilities. It is worth noting

that most of parameters in the neural network are updated

automatically by back propagation during training.

a) Embedding Layer: The purpose of the embedding

layer is to project those instructions with similar functionality

and semantic information to close points in the embedding

space, and making a distinction between instructions of very

different functionalities.

In the embedding layer, we firstly encode each instruc-

tions group number as a one hot vector xn. Then we use
X = {x1, x2, . . . , xn} on behalf of all one hot vectors in
a sequence. The index of instruction groups is in the range 1

to 206, which determines each one hot vector to be a 206-

element-vector. Here we use K to represent the length of

one hot vector, 206. The original one hot coded vector then

multiply by a weight matrix, WE of size D*K, which aimed
to reduce the length of new feature vector.

We use Formula 1 to represent this operation

Y = X ∗WE (1)
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Fig. 2. An example of Instruction Analyzer

We then get a matrix, Y, which represented the whole
program. The size of Y is n*D, where D is the dimensionality

of the embedding space. After the embedding layer, instruc-

tions with similar functionality and semantic information will

be projected to close points in the embedding space, and

instructions of very different functionalities will be projected

to distant points. It is worth noting that the D is an important

parameter associated with the classification results. The selec-

tion of dimensions is related to specific datasets. In general,

the more training data, the higher the dimension required [10].

b) Convolutional Layers: The purpose of convolution is
to extract different features of input. More convolutional layers

of network can iterate extracting more complex features from

low-level features. In our proposed architecture, there can be

multiple convolutional layers being used. These convolutional

layers are numbered from 1 to L. The first convolutional
layer’s input is the embedding matrix Y, of size n*D. We use
ml to represent the number of convolution filters in the l’ th
convolutional layer. In the first convolutional layer, the size of

filter is s1∗D, where s1 is the length of instruction sequence
that can be detected. The deeper convolutional layers receive

the output of the previous convolutional layer as input. And the

size of filter in deeper convolutional layer is sl ∗ml−1. After

convoluting Y with convolution filters, we use the activation

function to preserve features and remove redundancies in data.

Here we choose the rectified linear activation function (ReLU),

ReLU = max(0, x) (2)

As the Formula 3 shows, each of the ml convolutional

filters produces an activation map al,m of size n * 1, where

Wl,m and bl,m are the weight and bias parameters of the m’
th convolutional filter of convolution layer l. Conv represents
the mathematical operation of convolution of the filter with

the input matrix Y (Take the first Convolutional layer as an

example).

al,m = ReLU(Conv(Y )Wl,m,bl,m) (3)

All activation maps that generated byml convolution filters

can be combined to get an output matrix, Al of size n ∗ml.

For the last convolutional layer, we use AL to represent its

output matrix. Following the last convolutional layer is a max-

pooling layer. The max-pooling operation is to generate a

vector which consists of maximum value in each activation

map in AL. The max-pooling layer is introduced for two

purposes. One is keeping the invariance of samples. The other

is to get fixed length output and reduce the input size of the

next layer. After the max-pooling layer we got a vector β of
length mL as follows,

β = (max(aL,1)|max(aL,2)| . . . |max(aL,m)) (4)

c) Hidden Layer and Output Layer: Fig.3 illustrates the
last part of the neural network, which consists of a fully-

connected hidden layer and a softmax output layer. After the

max-pooling operation, we got a vector β of length mL.

We then pass the vector to a fully-connected hidden layer,

where relationships between the features extracted by the

convolutional layer are able to be detected [10]. ReLU is still

used as the activation function in the hidden layer. We useWh

and bh to stand for the weight and bias of the fully-connected
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hidden layer respectively. This hidden layer can be expressed

as Formula 5,

HL = ReLU(Whβ + bh) (5)

Fig. 3. The hidden layer and softmax output layer.

The output vector HL of the hidden layer is then passed to

a softmax layer, where the vector is normalized. The output

vectors dimension of the softmax layer is based on the number

of classes. In this work, we focus on determine whether the

software is malicious or benign. As a result, output of the

softmax layer is a two-dimensional vector. We cite it as h.

hΘ(z) =
1

eΘ
T
1 z+b1 + eΘ

T
2 z+b2

[
eΘ

T
1 z+b1

eΘ
T
2 z+b2

]
(6)

Each element of h shows the probability of the current

sample belonging to each class. The probability is computed

as follows,

P (o = 1) =
eΘ

T
1 z+b1

eΘ
T
1 z+b1 + eΘ

T
2 z+b2

=
1

1 + e(θ2−θ1)Tz+(b2−b1)

(7)

Where θi and bi represent the parameters of the classifier
for class o∈{1,2}. The probability that the origin program is

malware denoted as Formula 7 (assume class 1 is malware).

d) Cost Function: The cost function of softmax regres-
sion is shown as Formula 8,

C = −1

b

n∑∑∑
i=1

O∑∑∑
o=1

1{labeli = o} logp(labeli = o|Hi))

(8)

Here 1 {·} is the indicator function, so that 1 {true} = 1, and
1 {false} = 0. Hi is the i

′th sample’s output of the hidden
layer, and labeli is the correct label of the i′th sample.

We use δ to stand for parameters of the neural network(i.e.
weights and bias). To minimize the cost, during the training

process, with the standard implementation of gradient descent,

we would perform the update on each iteration as formula 9,

δ := δ−α
∂C

∂δ
(9)

The α in formula 9 is the learning rate. During training,

the network is repeatedly presented with batches of training

samples in randomized order until parameters converge [10].

IV. EVALUATION

A. Implementation

We implemented the of CNN based malware detection

system on Torch [4], a scientific computing framework for

machine learning. The system is implemented in Lua language,

with more than 3000 lines of code. The whole neural network

computing supports GPU acceleration. The batch size of our

model is 16 samples per batch. And the learning rate is 1e-2

for 10 epochs, with RMSProp optimized. All network weights

and biases were randomly initialized using the default Torch

initialization. We built our network and trained the model

on an NVIDIA Titan X GPU. After completing the training

process, the trained model will be saved to test the testing set

and get the classification label.

We used 10-fold cross validation on the training process,

in order to set parameters empirically, such as the number

of convolutional filters and the dimension of the embedding

space. In this work, we used an 8-dimensional embedding

space, 64 convolutional filters of length 8, and 16 neurons

in the hidden fully connected layer.

B. Dataset

We evaluate our system on three different datasets. The

malware samples in the first two datasets were downloaded

from VirusShare [5], and all of the trusted samples were col-

lected from Tencent application store [3] and Baidu application

store [1]. All the samples have been verified by VirusTotal [6]

to make sure that malware samples were really harmful and

trusted samples were highly probable to be malware free.

• Dataset A. This dataset is made up of 4,994 samples.
There are 2,859 malware samples and 2,135 trusted

samples in this dataset.

• Dataset B. It contains 11,130 samples, in which 6,066
samples are malware and 5,064 samples are trusted.

• Dataset C, which is the largest dataset in our experiment.
It has a total number of 71,584 applications, in which

all malware samples were provided by National Internet

Emergency Center [7]. After discarding empty processed

files, the dataset contains 41,346 malware samples and

28,653 trusted samples. It is worth noting that this dataset

may have overlapping with the Dataset A and Dataset B,

which we did not verify.

For comparison, we evaluate our system on different dataset

respectively. In order to get a relatively good result in malware

detection, we used single convolutional layer on the first
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TABLE I
THE EFFECT OF INSTRUCTION GROUPING ANALYSIS ON TRAINING DATA.

variety
of word

word length
entropy of
sequence

size

File with
grouped data

41.2 2 3.47 35.8KB

File with
ungrouped data

76.7 3 6.59 47.4KB

dataset and five convolutional layers on other two datasets.

The reason why we chose such a structure is that too many

layers may lead to overfitting on Dataset A, which has fewer

samples. On the contrary, we have a relatively large number

of samples in other two datasets. The malicious features of

samples are more diverse, and multi-layer convolution can

more thoroughly fit these features.

C. The effect of instruction grouping

To measure the effect of instruction grouping, we randomly

selected 50 samples and preprocessed them. As shown in Table

I, in the grouped case, the average word type in each sample

is 41, compared with the ungrouped case of 76. Similarly,

because of the use of hexadecimal numbers to represent

samples, ungrouped data needs to be represented by three

digits, but the grouped requires only two digits. In addition,

we calculate the average entropy of each sample. There are

more entropy in the ungrouped file. The average file size of

grouped case is also smaller than that of ungrouped case.

D. Malware Detection Results

For each dataset, we split malware and trusted samples into

90% as the training and validation set, and the remaining 10%

as the testing set. To evaluate the effectiveness of our detection

system (which we refer as EzNet), we used standard measures
of the classification accuracy, precision, recall and F1-score.

The training set, validation set and the test set are completely

uncrossed. To better reflect the effect and detection capability

of our system, we evaluate our malware detection system on

different dataset respectively.

Furthermore, in order to illustrate the benefits of instruction

grouping analysis on the testing results, we also conducted

experiments on ungrouped conditions. It should be noted that

the following experimental results, if not specified, are the

results of the instruction grouped situation.

a) Dataset A: We compared our system with the tradi-

tional bytes n-gram methods (n=2 and n=3) on Dataset A. We

chose 6 classical algorithms from the scikit-learn of python

2.7, they are Logistic Regression (LR), Random Forest (RF),

Decision Tree Regression (DT), Extra Trees (ET), Gradient

Boosting(GB), and SVM (kernel = poly).

As shown in Table II, compared to 3-gram based methods,

our model with one convolutional layer is seen the second

best result of accuracy in the first experiment. Our system

achieve an accuracy of 0.992 and F1-score of 0.991. The 3-

gram based RF method got the best result of accuracy, which

is 0.993. There is a very small gap between the accuracy of

TABLE II
EXPERIMENT RESULTS ON DIFFERENT DATASETS (THE BEST RESULTS ARE

IN BOLD.)

Dataset Methods Feature Accuracy Precision Recall F1-score

Dataset A

(2859 malware and

2135 trusted samples)

EzNet
grouped 0.992 1.0 0.981 0.991

ungrouped 0.988 0.986 0.986 0.986

LR
2-gram 0.981 0.977 0.992 0.984

3-gram 0.968 0.961 0.987 0.974

RF
2-gram 0.992 0.989 0.998 0.994

3-gram 0.993 0.989 0.998 0.993

DT
2-gram 0.989 0.991 0.991 0.991

3-gram 0.982 0.987 0.984 0.985

ET
2-gram 0.992 0.988 0.998 0.993

3-gram 0.991 0.987 0.998 0.993

GB
2-gram 0.991 0.990 0.996 0.993

3-gram 0.986 0.981 0.996 0.989

SVM
2-gram 0.971 0.954 1.0 0.977

3-gram 0.965 0.946 1.0 0.972

Dataset B

(6066 malware and

5064 trusted samples)

EzNet
grouped 0.990 0.994 0.984 0.989

ungrouped 0.981 0.990 0.968 0.979

LR 3-gram 0.902 0.874 0.966 0.918

RF 3-gram 0.983 0.979 0.991 0.985

DT 3-gram 0.975 0.978 0.978 0.978

ET 3-gram 0.982 0.977 0.990 0.983

GB 3-gram 0.963 0.955 0.980 0.967

SVM 3-gram 0.971 0.954 0.996 0.975

Dataset C (41346 malware and

28653 trusted samples)
EzNet

grouped 0.96 0.95 0.95 0.95

ungrouped 0.93 0.92 0.91 0.93

our system and the best result. In term of precision rate, our

system got the best result of 1.0.

It is worth noting that, most of the 2-gram based methods

achieved better results than 3-gram on the Dataset A, although

the gap is very small. This may be because Dataset A has

less samples and the differences between samples are not

obvious enough. The 2-gram methods are good enough to

fit the features. When it comes to comparing the accuracy

between 2-gram based methods and our approach, we can see

that our approach achieved the best result of accuracy, so did

some other 2-gram based traditional methods. The best F1-

score is achieved by the 2-gram based RF method.

In general, on Dataset A, our method is better than most of

the traditional byte n-gram methods on testing results. When

n=2, RF and ET methods got the same results as our model on

testing set. Although the same results have been achieved, our

approach is better in terms of training time and computational

consumption. When the number of samples in dataset gets

larger, the time and computational resource consumption of

byte n-gram based methods will be magnified exponentially,

which will be illustrated in section 4.4.

b) Dataset B: In the second experiment, we only con-
ducted 3-gram malware classifications on the Dataset B. As

shown in Table II, our system has achieved the best results

in terms of accuracy, precision rate and F1-score. The figure

of them were 0.990, 0.994 and 0.989 respectively. The SVM

approach had the best result on the recall rate, with the figure

of 0.996, but it has low accuracy and F1-score.

Combined with the results of the first experiment, we can

find that our system achieved high accuracy and F1-score

in both Dataset A and Dataset B. Also, among these six
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traditional methods, the RF method obtained the best results.

c) Dataset C: Then we did the third experiment on

our Dataset C, which contains 41,346 malware samples and

28,653 trusted samples. Due to the computational cost and

time consumption of traditional method, it is hard to make

comparison between traditional n-gram based approaches and

our model on the Dataset C. As shown in Table II, the accuracy

on Dataset C is 0.96 and F1-score is 0.95, with 4135 malware

samples and 2866 trusted samples being assigned to the testing

set. In this part of the experiment, time and computational

consumption are relatively few and acceptable, which will be

explained in section 4.4.

Experiments on these three datasets suggest that our mal-

ware detection system could achieve high accuracy. Although

2-gram based RF method has achieved better F1-score on

Dataset A, the limitations of traditional methods become more

obvious as the dataset increased. For the traditional n-gram

methods, it is difficult to carry out on the Dataset C, because

the n-gram feature selection for a large dataset consumes huge

time and space resources due to the large amount of different

n-grams [19].

E. Performance Evaluation

For the six aforementioned traditional methods, the RF

algorithm achieved the best results on the first two datasets.

Thus, in this part, we compared the performance between

traditional 3-gram based RF method and our system in time

consumption. Since preprocessing phases (e.g., extracting

ASM and instructions, etc) are same in malware detection, we

only compared training time and testing time of RF method

and our model.

As shown in Table III, it took 2153.46 seconds for training

and only 0.85 seconds for testing on Dataset A, compared

to 4782.54 seconds and 21.63 seconds for 3-gram Random

Forest. The n-gram based method experiences exponential

slow-down with the number of the n-gram features increasing.

When it came to the Dataset B, We can see that there is a

clear gap between traditional methods and our methods in

training time. Our system takes 9810.17 seconds for training

and only 5.04 seconds for testing. The traditional RF method

used 17513.85 seconds for training, which more than three

times longer than the time of our system. The testing time of

3-gram RF method was also much longer than our system.

On Dataset C, our model with one convolutional layer

used only 10.39 hours for training and 6.61 seconds for

testing, compared to our five-layer system with 19.10 hours

for training and 25.89 seconds for testing. We did not compute

time consumption of n-gram RF and other n-gram based

method on Dataset C due to its predictable huge result. Thus,

our model is more reasonable in training time. The training

and testing time of our approach linearly proportional to the

number of malware examples. The time consumption is only

related to the number of samples and convolutional layers.

But when it comes to traditional n-gram based approaches,

the time of extracting eigenvectors increases exponentially

with the number of sample sizes increased, which limited the

efficiency of these kind of methods.

F. Benifits of Instruction Grouping Analysis

Comparing the grouped situation with the ungrouped one,

we can find that the grouped situation got better results on all

of datasets. As shown in Table II, the ungrouped situation

achieved the accuracy of 0.988 and the F1-score of 0.986

on Dataset A. Although the gap between these two groups

is small, the time consumption of training process is much

different. As Table IV shows, our system with single layer and

grouped data used 2153.46 seconds for training on Dataset A,

compared to the system with ungrouped data used around 4

times longer time for training. The extra time is not worth it.

The same results appear on dataset B. It can be seen that the

gap widened, the ungrouped situation achieved the accuracy

of 0.981 and the F1-score of 0.979, compared with results of

0.990 and 0.989 of experiments with the grouped instructions.

Also, on the Dataset B, the time consumption of ungrouped

situation was more than 2 times larger than the grouped one.

In the same way, we also conducted experiments on Dataset

C. When using the five-layer convolution, the experiment

with grouped instructions still achieved better results. The

gap in training time became even greater when figure were

analyzed for Dataset C. The ungrouped one used 32.17 hours

for training, but the grouped situation took only half the time.

By analyzing the testing time, we can see that in the same

dataset, the time consumption of the two methods is close.

Because when the structure of neural network is determined,

the testing time is mostly dependent on the number of samples.

Combined with the previous experimental results, we can

see that the grouped situation has obtained better experimental

results on every dataset. We think this may because many

instructions have similar functionality on x86 platform. Neural

network may amplify this subtle difference in the training

process, thinking these instruction are totally different.

In general, the group with instruction grouping analysis has

achieved better accuracy and F1-score. Therefore, we believe

that the instruction grouping analysis can save the training

time, and will not reduce the accuracy of the detection.

V. THE PERFORMANCE OF REAL-TIME DETECTION

In this section, we compared the detection time and re-

sources consumption of our system.

a) Time Consumption: First, we compared the detection
time of different sizes of file in our system with traditional RF

methods. We chose five sets of .op files with different size.

For each group of samples, we conducted 10 experiments and

took the average value as final results. As shown in Fig 4,

in our system, it is obvious that time consumption of each

file increased linearly with the increasing of the number of

convolutional layers. And the increasing rate is very small

(The line of vertices of each column has a small slope.). For

the traditional RF method, the detection time is an order of

magnitude more than our system.
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TABLE III
THE TIME CONSUMPTION OF DIFFERENT METHODS ON DIFFERENT DATASETS

Method
Training Time(second) Testing Time(second)

EzNet(1-layer) EzNet(5-layers) RF(3-gram) EzNet(1-layer) EzNet(5-layers) RF(3-gram)

Dataset A 2,153.46 3,794.79 4,782.54 0.85 2.16 16.69

Dataset B 5,855.28 9,810.17 17,513.85 1.78 5.04 44.51

Dataset C 37,425.86(10.39 hours) 68,756.91(19.10 hours) - 6.61 25.90 -

TABLE IV
THE TIME CONSUMPTION OF DIFFERENT METHODS ON DIFFERENT DATASETS

Method
Training Time(second) Testing Time(second)

EzNet(grouped) EzNet(ungrouped) EzNet(grouped) EzNet(ungrouped)

Dataset A with single layer 2,153.46 8,135.99 0.85 0.84

Dataset B with 5 layers 9,810.17 21,815.32 5.04 5.72

Dataset C with 5 layers 68,756.91(19.10 hours) 115,812.73(32.17 hours) 25.90 29.86

Fig. 4. Comparison of testing time between different size files.

b) Resource Comparison: As shown in Fig 5, the re-
source consumption of our system is not high in training

process on all of the datasets. With 5 convolutional layers,

our system occupied around 600MB of memory during the

training process of Dataset B. In the training phase of Dataset

C, the occupation is about 3GB of memory. The resource

consumption of our system is linearly dependent on the size

of dataset. But for traditional methods, the consumption of

hardware resources is 8 times more than our system during

the training phase of Dataset B, which means our system also

more efficient in terms of the usage of hardware resources.

DISCUSSION

Due to differences of datasets and platform configuration,

we do not compare our approach with other deep learning

systems. Also, shelled softwares may affect our testing system.

We did not specifically check the number of shelled samples

in datasets. There are more than 70,000 samples in Dataset

C, and it is likely that there would be some shelled samples.

Fig. 5. Resource Consumption (GB of memory)

Some unpacking approaches could be used to build a packing-

resilient malware detection approach. In addition, the structure

of the neural network in our system is simpler than other

work on images and semantics. If the neural network becomes

deeper and more complex, for example, more hidden layers

used in architecture, we believe the accuracy should be higher.

CONCLUSION

In this work, we design a light-wighted CNN based malware

detection system. It is based on disassembled instructions

extracted from sample files, which has been proven to perform

well on different datasets. Also, benefited from instruction

grouping analysis, the accuracy and efficiency of our system

are all improved. Compared to other work, our detection

system is more lightweight both in aspects of the training data

extraction and training time.
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