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ABSTRACT 
In an interactive embedded system, special task execution patterns 
and scheduling constraints exist due to frequent human-computer 
interactions. This paper proposes a transaction-based dynamic 
voltage scaling (T-DVS) approach that takes into account the 
characteristics of interactive transactions. T-DVS scales CPU 
performance levels to reduce energy consumption, while 
satisfying the constraints of both human-perceptual threshold and 
CPU requirement of an interactive transaction. T-DVS considers 
CPU requirements of both interactive and background tasks 
during a user interaction. It exploits CPU idle time waiting for 
user responses to run background task with lower CPU frequency. 
Experiments demonstrate that T-DVS can reduce energy 
consumption significantly compared to state-of-the-art approaches, 
with little sacrifice in user-perceived performance. 

Categories and Subject Descriptors 
C.3 [Special-purpose and application-based systems]: Real-time 
and embedded systems; C.4 [Performance of Systems]: Design 
studies; D.4 [Operating system] Process management  

 General Terms 

Algorithms, Performance, Design, Human Factors  

Keywords 
Dynamic voltage and frequency scaling, scheduling, interaction 

1. INTRODUCTION 
Due to the fast development of mobile computing technology, 
reducing the power dissipation of the system becomes a primary 
design target for portable embedded systems. Dynamic Voltage 
Scaling (DVS) has been demonstrated very effective in reducing 
power dissipation of running systems.  

However, in battery-powered interactive embedded systems, such 
as PDA, portal game consoles etc., system responsiveness is also 
very important, thus using CPU utilization as the sole metric for 
DVS scheduling is not sufficient for an interactive embedded 
system. DVS in these systems needs to satisfy the constraints of 
user-perceived latency (UPL) as well as reducing system energy 
consumption[1, 2] . 

Many existing DVS techniques are not suitable for dealing with 
interactive embedded applications. For example, the traditional 
DVS techniques, such as Fixed-Interval CPU utilization-based 
DVS approach[3]  (FI-DVS) scales CPU performance level based 
on CPU utilization of fixed periods, without considering human 
interaction, thus it could not satisfy the interactive performance 
constraints of the system. Recent approaches take into account 
interactive characteristics, such as the user-perceived latency-
driven voltage scaling approach [4]  (UPL-DVS). This approach 
scales CPU performance level at the beginning of every 
interactive transaction, controlling the user-perceived latency 
below the human-perceptual threshold, and achieving more 
energy savings than FI-DVS. However, because it keeps the 
performance level unchanged until the next interactive transaction, 
it could not exploit the idle time during the period of user 
response before the next user input, which could provide the 
potential of scaling CPU performance level more aggressively. 

This paper proposes a transaction-based adaptive dynamic voltage 
scaling approach (T-DVS), which introduces transaction as the 
basic element to perform a complete interactive action. A 
transaction is defined as a complete human-computer interaction 
process, which starts from a user input, through system response, 
and ends just before the next user input comes. We split a 
transaction into two consecutive stages. The first stage spans from 
user input to system response, which is referred as the system 
response stage. In this stage, the execution time of the interactive 
task, which is user-perceived latency (UPL), should not exceed 
the human-perceptual threshold[1] . The second stage is from 
system response to the next user input, which is referred as the 
user response stage. Its length is typically determined by the time 
spent by the user to response to system display, which is called 
user-response latency (URL). 

T-DVS considers the CPU requirement of workloads in both 
stages of an interactive transaction when making DVS decisions. 
By monitoring execution of tasks and calculating the CPU 
requirement of workloads during these two stages, we can predict 
the CPU requirement of the upcoming interactive task and 
transaction. We scale CPU frequency to satisfy the constraints of 
user-perceived latency at the beginning of each interactive 
transaction, and scale CPU frequency again after the system 
response based on the CPU requirement of the second stage. 
Exploiting the idle period during the second stage enables our 
approach to reduce energy consumption more aggressively.  

Experiments on interactive applications on a Linux platform show 
that, in a multi-task interactive environment, T-DVS can achieve 
20% energy consumption reduction compared to FI-DVS and 12% 
compared to the UPL-DVS approach, with little sacrifice in user 
productivity or satisfaction. 
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The remainder of the paper is organized as follows. Section 2 
describes the motivation of our approach. Section 3 presents the 
transaction-based adaptive CPU dynamic voltage scaling (T-DVS) 
approach. Section 4 describes experimental results. Section 5 
reviews related work and we conclude with Section 6. 

2. MOTIVATION 
First, we use an example to illustrate the motivation of our 
proposed approach.  

According to psychology studies, during human-computer 
interactions, an interactive transaction is the process beginning 
from a user input, through system response, to the next user 
input[5, 6] , as shown in Figure 1.  

 
Figure 1. An interactive transaction.  

As described above, an interactive transaction is composed of two 
stages. In the first stage, operating system wakes up some 
processes to deal with the requests of interactive events. The 
execution time of these processes represents the user-perceived 
latency. Ideally, we expect that this period should not exceed the 
human-perceptual threshold, which represents the acceptable 
user-perceived latency, and is typically between 50 and 100ms [7]. 
In the second stage, the interactive processes are commonly 
waiting for the next user input, and the URL is commonly 500-
1000ms.  It is also possible that some background processes are 
still running in this stage.  

To guarantee user satisfaction, the user-perceived latency should 
be kept below the human-perceptual threshold. On the other hand, 
from the perspective of power efficiency, idle time during system 
response and user response both can be exploited to scale down 
the CPU performance level (the ratio between the effective 
frequency and the maximum frequency). 

 
Figure 2. Tasks during system response process. 

In a multi-task system, both the interactive processes and the 
background processes could exist during an interactive transaction. 
Consider a racing game, TuxRacer, running on a Dell Latitude 
laptop with Fedora Core 3.0 (Linux kernel 2.6.9). There are 
multiple processes running concurrently during the interactive 
transaction, including eventd, XServer, TuxRacer, gui, hald, 
kjounrnald etc., as shown in Figure 2.  

All of these processes contributing to the workloads during the 
interactive transaction can be classified into two categories. The 
first category, named as interactive task, includes the processes 
that are directly related with interactive application and system 
response, such as TuxRacer; XServer and gui etc. The execution 
time of these processes directly affects user-perceived latency. 
The second category includes OS services or background 

processes that have no direct relations with interaction, such as 
kjounrnald, hald, bash etc., named as background task. They are 
invoked periodically or non-periodically by the system events, 
such as timer interrupt, memory paging event, etc. They should be  
completed before the next interactive transaction, so that, they 
would not affect the next interactive task execution and user-
perceived latency.  

Figure 3(a) shows an example with a 500ms interactive 
transaction. In the figure, we identify three milestones as follows. 
The start and end of the interactive transaction is denoted as T1 
and T3, respectively. T2, which is 50ms after the interaction starts, 
represents the separation point of the two stages in a transaction. 
(Note that we use 50ms as the human-perceptual threshold 
throughout this paper).  

Using the FI-DVS approach, we sketch the CPU utilization every 
50ms shown as the solid line in Figure 3(a). This approach scales 
CPU performance level every 50ms, while keeping the utilization 
within an acceptable range [3] . The solid line in Figure 3(b) shows 
the CPU performance level scaling based on this approach.  

Using the UPL-DVS approach proposed by Yan et. al[4] , we can 
get the ratio between UPL and human-perceptual threshold shown 
as the thick dashed line in Figure 3(a).  (Note that only the first 
stage is considered in this approach). This approach scales the 
CPU performance level at beginning of the interactive transaction, 
while controlling the UPL under the human-perceptual threshold. 
It will not scale the CPU performance level during the second 
stage, which actually takes much longer than the first stage. The 
CPU performance level line is shown as the thick dashed line in 
Figure 3(b). 

Figure 3 illustrates that, FI-DVS scales CPU performance level 
more frequently, without considering the constraints of computer 
responsiveness. UPL-DVS scales the CPU performance level at 
the beginning of each interactive transaction based on UPL 
instead of the CPU utilization, resulting better user satisfaction 
and could reduce more energy consumption. However, it does not 
exploit the potential opportunities of scaling down CPU 
performance level further during the longer period of user 
response in the second stage. 

We propose a transaction-based DVS approach (T-DVS), which 
not only satisfies the constraints of computer responsiveness, but 
also exploits the longer period of user response in the second stage 
to execute background task at a lower frequency. T-DVS splits a 
transaction into two consecutive stages, and calculate the actual 
CPU requirements of the interactive task during the first stage, 
shown as the dash-dotted line between T1 and T2 in Figure 3a. We 
also calculate the CPU performance required by the background 
tasks during the second stage, shown as the dash-dotted line 
between T2 and T3 in Figure 3(a).  

In order to reduce energy consumption while satisfying the 
human-perceptual threshold constraints, we scale the CPU 
performance level at the beginning of the first stage, which is 
shown by the dash-dotted line between T1 and T2 in Figure 3(b). 
After the system response, we scale the CPU performance level 
based on the CPU utilization of the interactive transaction, shown 
as the dash-dotted line between T2 and T3 in Figure 3(b). We can 
clearly see that the T-DVS approach could exploit the idle period 
during user response and reduce system energy consumption more 
efficiently, while running the background tasks with lower 
frequency. 
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Figure 3. Examples of three DVS approaches 

3. TRANSACTION-BASED DVS  
Before we describe the T-DVS algorithms used for CPU 
performance level scaling, we first need to show how to identify 
an interactive transaction and its interactive task through kernel 
monitoring, and how to calculate the required execution time of 
the interactive task. 

3.1 Transaction Identification 
As illustrated by Figure 2, during an interactive transaction, the 
interactive task and background task are executing concurrently. 
However, the interactive task plays more important roles during 
the system response process, because its execution time directly 
determines the user perceived latency. Therefore, we need to 
monitor and identify the interactive task from the background task, 
and calculate the execution time of the interactive task under the 
effective CPU performance level.  

Table 1 System Events Related to Interactive Transaction 

Event Description 

InterruptEntry(InterruptID) Enter an interruption  

SchedSwitch(iID, oID, state) Task scheduling  

ProcWakeup(ID,wkdID, state) Task is wakeup 

WaitIOStart (taskID) Task waiting IO begin 

WaitIOEnd(taskID) Task waiting IO end  
A system response process begins from an occurrence of an 
interactive event, and ends at the system giving response and 
waiting for the next input. As we know, the OS changes system 
states by invoking certain OS kernel routines. Therefore, we can 
monitor the system routines invocation, and mark them as system 
event occurrences. The system events related to interactive 

transaction are listed in Table 1. For example, an InterruptEntry() 
event invoked by user input indicates a start of an interactive 
transaction and the end of the previous interactive transaction as 
well. A SchedSwitch() event with the Idle task switched in 
indicates that the CPU is idle.  

The identification process of an interactive transaction consists of 
two steps. First, we collect the information about system runtime 
states and test applications using kernel-tracing tools. We then 
analyze the traces offline, extracting the sequence of interaction 
related system events to gather execution patterns of the 
interactive task. Then, we monitor interactive transactions 
according to the execution patterns online, marking the processes 
belong to the interactive task and collecting them into a task set. 
At last, we calculate the execution time of all the processes in the 
task set. By monitoring the interruption events, we can also 
identify the start and the end of an interactive transaction.  

The interactive task execution pattern is comprised of a sequence 
of system events. In the TuxRacer example, the system event 
sequence of the interactive task is shown as follow:  

KeyboardIA@Tuxtracer: InterruptEntry(KeyIRQ), 

                                  SchedSwitch(XServerID, *, *), 

             ProcWakeup(XServerID, P:(P in TaskSet)),

                         SchedSwitch(P:(P in TaskSet), *,* ),  

  SchedSwitch(IdleID, P:(P in TaskSet) , waitforIA)

 

In the above sequence, the execution of the interactive task is 
triggered by a keyboard interruption event, followed by a series 
SchedSwitch events and ProcWakeup events, and ends with a 
SchedSwitch event with Idle task switched in.  

We define the initial task-set TSet0 has the process XServer. The 
other process belonging to the interactive task will be identified 
by the following rule: when the process in the task set wakes up 
another process, the waked process is identified and added to the 
task set.  

Generally, we choose to focus on the current active interactive 
application, which is TuxRacer in this case. Therefore, we use two 
conditions to identify the start and the end of the interactive task. 
We identify the start of the interactive task when the events of 
InterruptEntry(), SchedSwitch(Xserver) and SchedSwitch(Tux- 
Racer) occur sequentially. Similarly, we identify the end of the 
interactive task when the CPU is idle or all processes in the 
interactive task set are blocked. Then, we can obtain the actual 
execution time of the interactive task by computing the difference 
of the end time and the start time of the interactive task.  

3.2 Scaling Algorithms  
T-DVS scales CPU performance level twice during an interactive 
transaction, based on the prediction of the CPU requirement of the 
transaction. The first scaling occurs when the system identifies the 
start of a transaction, based on the predicted CPU requirements of 
the interactive task. The second scaling occurs after the system 
response period, based on the CPU requirement of the background 
task over the rest of the transaction duration. 

We first calculate the actual CPU requirement of the interactive 
task within a transaction. Suppose in the ith transaction, the actual 
execution time of the interactive task under a certain CPU 
performance level pl is T. The actual CPU requirement of the 
interactive task is the execution time under the maximum 
performance level, noted as ui ,  which can be calculated as follow:  
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In order to predict the CPU requirement of the interactive task in 
the next transaction, we performed detailed analysis on a series of 
actual CPU requirement samplings of various applications, such 
as 3D games, Mozilla, Kbounce etc. We find out that the 
Exponential Weighted Moving Average (EWMA) prediction 
model [8] could approximate the distribution of the CPU 
requirement of these interactive tasks well. According to this 
prediction model, the next CPU requirement is the linear 
combination of the last actual CPU requirement value and the 
past-predicted value, as follow:  

ui+1’=k ui+(1-k) ui’. 

Where, ui is the actual CPU requirement of the interactive task in 
the ith transaction,  ui’ is the predicted CPU requirement of the ith 

interactive task, and ui+1’ is the  predicted (i+1)th CPU 
requirement.  The parameter k indicates the fraction of the ith 
actual CPU requirement contributing to the next prediction, which 
can be adapted dynamically according to the application. With 
larger k, recent actual values are weighted more heavily than older 
values, and that reduces the impact of history CPU requirement on 
the prediction; while the smaller k means that the prediction is 
more likely the weighted average of the history value, and is 
relatively not sensitive to new changes. According to the research 
on EWMA model [9] and our experiences on various k values (0.3, 
0.5, 0.7), k=0.3 is an appropriate value for most interactive 
applications.  

In order to satisfy the constraints of the interactive task and save 
energy, we should scale the CPU performance level to make the 
execution time of the next interactive task just less than the 
human-perceptual threshold.  Therefore, we use the ratio between  
the predicted next CPU requirement and the human-perceptual 
threshold to calculate the next performance level required to meet 
the threshold.  The next CPU performance level is set by the least 
performance level of the actual CPU greater than or equal to the 
ratio.  

When the predicted CPU requirement is larger than the threshold, 
it indicates that the maximum CPU performance level is required, 
although it was still possible that the task might not finish within 
the threshold. 

To scale CPU performance level in the second stage, we use CPU 
utilization of the second stage as its CPU requirement, which is 
the ratio between the CPU busy time and the total time of the 
second stage of the interactive transaction. Similar to the 
prediction of CPU requirement of the interactive task, the 
predicted transaction CPU requirement utans,i+1’ can be calculated 
using the following equation:  

utans,i+1’=k utans,i+(1-k) utans,i’ 

Based on the predicted CPU requirement of the transaction, we 
scale the CPU performance level to the lowest frequency that 
could satisfy the predicted CPU requirement of the background 
task during the user response period.  

4. Experimental Results 
In this section, we present experiment results to evaluate the 
effectiveness of our approach, including energy consumption and 
computer responsiveness in interactive applications.  

We will compare the proposed T-DVS approach with the FI-DVS 
approach, which is published in Linux 2.6 kernel in 2006[9] , and 
the recently proposed UPL-DVS approach[4] . We take the same 
parameters as the published FI-DVS approach, and take the 
human perceptual threshold as 50ms, instead of the 100ms in the 
published UPL-DVS approach, in order to be comparable with the 
50ms interval in FI-DVS.  

The traces of system running states and the test applications are 
collected using the kernel tracing tools on a Dell D140 (1.7GHZ) 
laptop and Fedora Core 3.0 (Linux kernel 2.6.9). The test 
applications consist of 3D game TuxRacer, tar, and Mozilla.  

Based on the power specifications of Intel XScale 
microprocessor[10] , we use normalized power to present energy 
consumption of the CPU under different frequencies. The XScale 
provides seven performance levels, which are normalized as 0.1, 
0.2, 0.3, 0.5,  0.7, 0.8, and 1. 

4.1 Energy Consumption 
Figure 4 presents the energy consumption comparison of the three 
approaches under three different cases. TuxRacer represents a case 
with frequent user interaction, while Mozilla represent a case with 
infrequent user interaction. A third case represents an interactive 
situation with heavy background tasks. In which, the Tar utility 
archives the Linux kernel source code simultaneously. 

In all three cases, T-DVS performs better compared to the other 
two approaches, with an average of 20% additional energy 
savings compared to FI-DVS, and 12% better compared to UPL-
DVS. 

As expected, T-DVS perform particularly well in the 
TuxRacer+Tar case, in which case FI-DVS and UPL-DVS could 
not take advantage of the time slack during user interaction to run 
background tasks. 
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Figure 4. Energy consumption of different approaches. 

4.2 Scaling Frequency Distribution 
In order to understand why T-DVS could save more energy, we 
present the breakdown of CPU frequency scaling distribution 
under the three approaches. Here, we only show the case for 
TuxRacer and a combination of TuxRacer and Tar utility due to 
space restriction.  



 
Figure 5. Distribution of CPU performance levels of TuxRacer 

For TuxRacer, the distribution of the CPU time in different 
frequencies is shown in Figure 5. We can see that, UPL-DVS 
spends more time on the higher performance levels (0.3, 0.5, 0.7 
and 0.8), while T-DVS spend more CPU time on the lower levels 
of 0.1 and 0.2. The shift of the frequency distribution to lower 
values explains the reason why T-DVS achieves more energy 
reduction. Based on the frequency distribution, we can estimate 
that T-DVS achieves by an average of 12% reduction more than 
FI-DVS and 8% energy consumption reduction more than UPL-
DVS. 

Figure 6 shows the distribution of CPU frequencies for the 
combination of TuxRacer and tar. Compared with FI-DVS and 
UPL-DVS, T-DVS spends more CPU time on the lower CPU 
performance levels. On lower performance level 0.1 and 0.2, 
UPL-DVS spends 41% CPU time; while T-DVS spends 45%. On 
higher performance level 0.5, 0.6 and 0.7, UPL-DVS spends 28%, 
6%, and 4% respectively, while T-DVS spends 20%, 1% and 2% 
respectively. Similarly, based on the frequency distribution, we 
can estimate that T-DVS archives by average of 29% energy 
consumption reduction with respect to FI-DVS and 11% with 
respect to UPL-DVS. 

 
Figure 6. Distribution of CPU performance levels of TuxRacer 

andTar 

From the experiment results, we can see that, with the same test 
applications and workloads, FI-DVS is relatively conservative and 
spends more times on higher CPU performance levels. UPL-DVS 
is relatively responsive, scaling CPU performance level based on 
the CPU requirement of the interactive task. But because it does 
not scale it down when workloads reduced during user response 
period, some opportunities of energy savings are not exploited. T-
DVS is more aggressive; scaling down the CPU performance 
levels further according to the lower CPU requirement of 
transaction workloads, and achieves more energy consumption 
reduction. 

We also notice that, under the single TuxRacer case, the average 
CPU utilization is 21%; while under the combination of TuxRacer 

and tar case, the average CPU utilization is 38%, which means 
heavier workload. The T-DVS approach achieves more energy 
efficiency than the other two approaches under the latter case, 
which demonstrates that T-DVS can exploit more potential 
opportunity of energy reduction under a heavier background 
workload.  

4.3 Performance Impacts 
In order to analyze the impacts of the approaches on computer 
responsiveness in interactive applications, we profile the number 
of tasks missing deadlines, and the amount of extra execution time 
of each deadline-missing task. Then, we calculate the percentage 
of tasks missing deadlines and the average extra execution time of 
the three approaches. With these values, we can analyze the extent 
of the user-perceived latency exceeding the human-perceptual 
threshold after applying the respective DVS algorithm.  The 
results are shown in the Table 2. Note that lower value in three 
columns on the right indicates less negative effects on system 
responsiveness. 

 Table 2.  Execution statistics 

Approach
Total # of 

Interval/ 
Transaction

# of tasks 
Missing 

Deadline 

% of 
Tasks over 
Deadline 

Ratio between 
Extra Time  

and Deadline 

FI-DVS
3641 50  1% 1.74 

1740 64   4% 1.42 
401 18   4% 1.40 

Average     2% 1.62 

UPL-
DVS 

521 26  5% 1.23 
152 7  5% 1.23 
23 1   4% 1.11 

Average    5% 1.23 

T-DVS
521 14  3% 1.23 
152 6   4% 1.23 
23 2    9% 1.07 

Average     3% 1.22 

We can see from the results that all the above DVS approaches 
causes a small percent of tasks missing their deadlines, which also 
indicates that they are only applicable for soft real-time embedded 
systems.  

The results show that FI-DVS, without considering the interactive 
nature of applications, could cause the most severe impact on user 
experiences, while T-DVS and UPL-DVS can achieve better user 
satisfaction than FI-DVS. Since the performance impact of T-
DVS and UPL-DVS are comparable. It shows that T-DVS could 
achieve better energy reduction than UPL-DVS for interactive 
applications, without incurring additional performance penalties. 

5. RELATED WORK 
Weiser[3]  first proposed the fixed-interval CPU utilization-based 
DVS approach, scaling processor frequency according to fixed-
interval CPU utilization. Many later approaches improved the 
prediction algorithm of the CPU utilization [11, 12] . It is efficient 
under the cases of stable workloads for general-purpose system, 
but cannot ensure the performance constraints of embedded 
interactive applications. 

In order to satisfy the real-time constraints of real-time systems, 
researchers proposed task-based DVS approaches [13-16] . These 
approaches focus on typical periodic or aperiodic real-time tasks. 
The characteristics of each task must be explicitly specified to the 
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task scheduler. The approaches scale CPU frequency based on 
well-defined task characteristics and performance constraints, 
such as the execution time of real-time tasks not exceeding its 
deadline, and the schedulability of real-time task set should be 
kept. However, these approaches did not take into account the 
special characteristics of the interactive applications. 

Zhong[1]  proposed to utilize user interface information to predict 
user delays based on interaction history and combined it with 
DPM/DVS for power optimization. Yan[4, 17]  proposed a DVS 
approach which uses User Perceived Latency in portable 
interactive system as the clue of DVS policy making. It focuses on 
the system response process during an interactive transaction and 
performance constraints of the interactive applications, and 
achieves better responsiveness. However, the idle period during 
user response and the variety of the CPU requirement of other 
non-interactive tasks are exploited inadequately, as mentioned 
previously in this paper. 

Other research works have been focused on scaling the demand of 
applications according to power supply for energy saving. Fei[18]  
proposed an application adaptation policy directed by user-defined 
goals in an energy-aware framework. Although our work also 
considers the user-related interactive requirements within mobile 
systems, we scale the system performance level according to 
characteristics of human-computer interaction for energy saving, 
and could identify CPU requirement of user-related tasks 
automatically based on system monitoring, instead of relying user-
specified requirements.  

6. CONCULSION 
A key issue in power-aware embedded systems is the trade-off 
between performance and energy consumption. This paper 
proposes a transaction-based DVS approach targeting mobile 
interactive systems. The approach distinguishes the interactive 
task with performance constraints from the background task, 
scaling CPU performance level based on the constraints of the 
human-perceptual threshold. At the same time, it executes the 
background task during the period of user response with slower 
CPU, thus it could reduce energy consumption more aggressively. 
The experimental results demonstrate that the approach can 
achieve an average of 20% more energy saving compared to the 
traditional FI-DVS and 12% more than a recent UPL-DVS 
approach. 
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