
 Transaction-Based Adaptive Dynamic Voltage Scaling for
Interactive Applications
Xia Zhao Yao Guo Xiangqun Chen

Key Laboratory of High Confidence Software Technologies (Ministry of Education)
School of Electronics Engineering and Computer Science, Peking University, Beijing, China

{zhaoxia, yaoguo, cherry}@sei.pku.edu.cn

ABSTRACT
In an interactive embedded system, special task execution patterns
and scheduling constraints exist due to frequent human-computer
interactions. This paper proposes a transaction-based dynamic
voltage scaling (T-DVS) approach that takes into account the
characteristics of interactive transactions. T-DVS scales CPU
performance levels to reduce energy consumption, while
satisfying the constraints of both human-perceptual threshold and
CPU requirement of an interactive transaction. T-DVS considers
CPU requirements of both interactive and background tasks
during a user interaction. It exploits CPU idle time waiting for
user responses to run background task with lower CPU frequency.
Experiments demonstrate that T-DVS can reduce energy
consumption significantly compared to state-of-the-art approaches,
with little sacrifice in user-perceived performance.

Categories and Subject Descriptors
C.3 [Special-purpose and application-based systems]: Real-time
and embedded systems; C.4 [Performance of Systems]: Design
studies; D.4 [Operating system] Process management

 General Terms

Algorithms, Performance, Design, Human Factors

Keywords
Dynamic voltage and frequency scaling, scheduling, interaction

1. INTRODUCTION
Due to the fast development of mobile computing technology,
reducing the power dissipation of the system becomes a primary
design target for portable embedded systems. Dynamic Voltage
Scaling (DVS) has been demonstrated very effective in reducing
power dissipation of running systems.

However, in battery-powered interactive embedded systems, such
as PDA, portal game consoles etc., system responsiveness is also
very important, thus using CPU utilization as the sole metric for
DVS scheduling is not sufficient for an interactive embedded
system. DVS in these systems needs to satisfy the constraints of
user-perceived latency (UPL) as well as reducing system energy
consumption[1, 2] .

Many existing DVS techniques are not suitable for dealing with
interactive embedded applications. For example, the traditional
DVS techniques, such as Fixed-Interval CPU utilization-based
DVS approach[3] (FI-DVS) scales CPU performance level based
on CPU utilization of fixed periods, without considering human
interaction, thus it could not satisfy the interactive performance
constraints of the system. Recent approaches take into account
interactive characteristics, such as the user-perceived latency-
driven voltage scaling approach [4] (UPL-DVS). This approach
scales CPU performance level at the beginning of every
interactive transaction, controlling the user-perceived latency
below the human-perceptual threshold, and achieving more
energy savings than FI-DVS. However, because it keeps the
performance level unchanged until the next interactive transaction,
it could not exploit the idle time during the period of user
response before the next user input, which could provide the
potential of scaling CPU performance level more aggressively.

This paper proposes a transaction-based adaptive dynamic voltage
scaling approach (T-DVS), which introduces transaction as the
basic element to perform a complete interactive action. A
transaction is defined as a complete human-computer interaction
process, which starts from a user input, through system response,
and ends just before the next user input comes. We split a
transaction into two consecutive stages. The first stage spans from
user input to system response, which is referred as the system
response stage. In this stage, the execution time of the interactive
task, which is user-perceived latency (UPL), should not exceed
the human-perceptual threshold[1] . The second stage is from
system response to the next user input, which is referred as the
user response stage. Its length is typically determined by the time
spent by the user to response to system display, which is called
user-response latency (URL).

T-DVS considers the CPU requirement of workloads in both
stages of an interactive transaction when making DVS decisions.
By monitoring execution of tasks and calculating the CPU
requirement of workloads during these two stages, we can predict
the CPU requirement of the upcoming interactive task and
transaction. We scale CPU frequency to satisfy the constraints of
user-perceived latency at the beginning of each interactive
transaction, and scale CPU frequency again after the system
response based on the CPU requirement of the second stage.
Exploiting the idle period during the second stage enables our
approach to reduce energy consumption more aggressively.

Experiments on interactive applications on a Linux platform show
that, in a multi-task interactive environment, T-DVS can achieve
20% energy consumption reduction compared to FI-DVS and 12%
compared to the UPL-DVS approach, with little sacrifice in user
productivity or satisfaction.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ISLPED’09, August 19–21, 2009, San Francisco, California, USA.
Copyright 2009 ACM 978-1-60558-684-7/09/08...$10.00.

The remainder of the paper is organized as follows. Section 2
describes the motivation of our approach. Section 3 presents the
transaction-based adaptive CPU dynamic voltage scaling (T-DVS)
approach. Section 4 describes experimental results. Section 5
reviews related work and we conclude with Section 6.

2. MOTIVATION
First, we use an example to illustrate the motivation of our
proposed approach.

According to psychology studies, during human-computer
interactions, an interactive transaction is the process beginning
from a user input, through system response, to the next user
input[5, 6] , as shown in Figure 1.

Figure 1. An interactive transaction.

As described above, an interactive transaction is composed of two
stages. In the first stage, operating system wakes up some
processes to deal with the requests of interactive events. The
execution time of these processes represents the user-perceived
latency. Ideally, we expect that this period should not exceed the
human-perceptual threshold, which represents the acceptable
user-perceived latency, and is typically between 50 and 100ms [7].
In the second stage, the interactive processes are commonly
waiting for the next user input, and the URL is commonly 500-
1000ms. It is also possible that some background processes are
still running in this stage.

To guarantee user satisfaction, the user-perceived latency should
be kept below the human-perceptual threshold. On the other hand,
from the perspective of power efficiency, idle time during system
response and user response both can be exploited to scale down
the CPU performance level (the ratio between the effective
frequency and the maximum frequency).

Figure 2. Tasks during system response process.

In a multi-task system, both the interactive processes and the
background processes could exist during an interactive transaction.
Consider a racing game, TuxRacer, running on a Dell Latitude
laptop with Fedora Core 3.0 (Linux kernel 2.6.9). There are
multiple processes running concurrently during the interactive
transaction, including eventd, XServer, TuxRacer, gui, hald,
kjounrnald etc., as shown in Figure 2.

All of these processes contributing to the workloads during the
interactive transaction can be classified into two categories. The
first category, named as interactive task, includes the processes
that are directly related with interactive application and system
response, such as TuxRacer; XServer and gui etc. The execution
time of these processes directly affects user-perceived latency.
The second category includes OS services or background

processes that have no direct relations with interaction, such as
kjounrnald, hald, bash etc., named as background task. They are
invoked periodically or non-periodically by the system events,
such as timer interrupt, memory paging event, etc. They should be
completed before the next interactive transaction, so that, they
would not affect the next interactive task execution and user-
perceived latency.

Figure 3(a) shows an example with a 500ms interactive
transaction. In the figure, we identify three milestones as follows.
The start and end of the interactive transaction is denoted as T1
and T3, respectively. T2, which is 50ms after the interaction starts,
represents the separation point of the two stages in a transaction.
(Note that we use 50ms as the human-perceptual threshold
throughout this paper).

Using the FI-DVS approach, we sketch the CPU utilization every
50ms shown as the solid line in Figure 3(a). This approach scales
CPU performance level every 50ms, while keeping the utilization
within an acceptable range [3] . The solid line in Figure 3(b) shows
the CPU performance level scaling based on this approach.

Using the UPL-DVS approach proposed by Yan et. al[4] , we can
get the ratio between UPL and human-perceptual threshold shown
as the thick dashed line in Figure 3(a). (Note that only the first
stage is considered in this approach). This approach scales the
CPU performance level at beginning of the interactive transaction,
while controlling the UPL under the human-perceptual threshold.
It will not scale the CPU performance level during the second
stage, which actually takes much longer than the first stage. The
CPU performance level line is shown as the thick dashed line in
Figure 3(b).

Figure 3 illustrates that, FI-DVS scales CPU performance level
more frequently, without considering the constraints of computer
responsiveness. UPL-DVS scales the CPU performance level at
the beginning of each interactive transaction based on UPL
instead of the CPU utilization, resulting better user satisfaction
and could reduce more energy consumption. However, it does not
exploit the potential opportunities of scaling down CPU
performance level further during the longer period of user
response in the second stage.

We propose a transaction-based DVS approach (T-DVS), which
not only satisfies the constraints of computer responsiveness, but
also exploits the longer period of user response in the second stage
to execute background task at a lower frequency. T-DVS splits a
transaction into two consecutive stages, and calculate the actual
CPU requirements of the interactive task during the first stage,
shown as the dash-dotted line between T1 and T2 in Figure 3a. We
also calculate the CPU performance required by the background
tasks during the second stage, shown as the dash-dotted line
between T2 and T3 in Figure 3(a).

In order to reduce energy consumption while satisfying the
human-perceptual threshold constraints, we scale the CPU
performance level at the beginning of the first stage, which is
shown by the dash-dotted line between T1 and T2 in Figure 3(b).
After the system response, we scale the CPU performance level
based on the CPU utilization of the interactive transaction, shown
as the dash-dotted line between T2 and T3 in Figure 3(b). We can
clearly see that the T-DVS approach could exploit the idle period
during user response and reduce system energy consumption more
efficiently, while running the background tasks with lower
frequency.

System response Next input

User-perceived
latency
<100ms

Interactive transaction

User-response latency

500-1000ms

User input

Idle
eventd
XServer
tuxracer

gui

Other tasks

User input Next inputSystem response

task

time

Interactive
task

Background task

Figure 3. Examples of three DVS approaches

3. TRANSACTION-BASED DVS
Before we describe the T-DVS algorithms used for CPU
performance level scaling, we first need to show how to identify
an interactive transaction and its interactive task through kernel
monitoring, and how to calculate the required execution time of
the interactive task.

3.1 Transaction Identification
As illustrated by Figure 2, during an interactive transaction, the
interactive task and background task are executing concurrently.
However, the interactive task plays more important roles during
the system response process, because its execution time directly
determines the user perceived latency. Therefore, we need to
monitor and identify the interactive task from the background task,
and calculate the execution time of the interactive task under the
effective CPU performance level.

Table 1 System Events Related to Interactive Transaction

Event Description

InterruptEntry(InterruptID) Enter an interruption

SchedSwitch(iID, oID, state) Task scheduling

ProcWakeup(ID,wkdID, state) Task is wakeup

WaitIOStart (taskID) Task waiting IO begin

WaitIOEnd(taskID) Task waiting IO end
A system response process begins from an occurrence of an
interactive event, and ends at the system giving response and
waiting for the next input. As we know, the OS changes system
states by invoking certain OS kernel routines. Therefore, we can
monitor the system routines invocation, and mark them as system
event occurrences. The system events related to interactive

transaction are listed in Table 1. For example, an InterruptEntry()
event invoked by user input indicates a start of an interactive
transaction and the end of the previous interactive transaction as
well. A SchedSwitch() event with the Idle task switched in
indicates that the CPU is idle.

The identification process of an interactive transaction consists of
two steps. First, we collect the information about system runtime
states and test applications using kernel-tracing tools. We then
analyze the traces offline, extracting the sequence of interaction
related system events to gather execution patterns of the
interactive task. Then, we monitor interactive transactions
according to the execution patterns online, marking the processes
belong to the interactive task and collecting them into a task set.
At last, we calculate the execution time of all the processes in the
task set. By monitoring the interruption events, we can also
identify the start and the end of an interactive transaction.

The interactive task execution pattern is comprised of a sequence
of system events. In the TuxRacer example, the system event
sequence of the interactive task is shown as follow:

KeyboardIA@Tuxtracer: InterruptEntry(KeyIRQ),

 SchedSwitch(XServerID, *, *),

 ProcWakeup(XServerID, P:(P in TaskSet)),

 SchedSwitch(P:(P in TaskSet), *,*),

 SchedSwitch(IdleID, P:(P in TaskSet) , waitforIA)

In the above sequence, the execution of the interactive task is
triggered by a keyboard interruption event, followed by a series
SchedSwitch events and ProcWakeup events, and ends with a
SchedSwitch event with Idle task switched in.

We define the initial task-set TSet0 has the process XServer. The
other process belonging to the interactive task will be identified
by the following rule: when the process in the task set wakes up
another process, the waked process is identified and added to the
task set.

Generally, we choose to focus on the current active interactive
application, which is TuxRacer in this case. Therefore, we use two
conditions to identify the start and the end of the interactive task.
We identify the start of the interactive task when the events of
InterruptEntry(), SchedSwitch(Xserver) and SchedSwitch(Tux-
Racer) occur sequentially. Similarly, we identify the end of the
interactive task when the CPU is idle or all processes in the
interactive task set are blocked. Then, we can obtain the actual
execution time of the interactive task by computing the difference
of the end time and the start time of the interactive task.

3.2 Scaling Algorithms
T-DVS scales CPU performance level twice during an interactive
transaction, based on the prediction of the CPU requirement of the
transaction. The first scaling occurs when the system identifies the
start of a transaction, based on the predicted CPU requirements of
the interactive task. The second scaling occurs after the system
response period, based on the CPU requirement of the background
task over the rest of the transaction duration.

We first calculate the actual CPU requirement of the interactive
task within a transaction. Suppose in the ith transaction, the actual
execution time of the interactive task under a certain CPU
performance level pl is T. The actual CPU requirement of the
interactive task is the execution time under the maximum
performance level, noted as ui , which can be calculated as follow:

0 100 200 300 400 500

0 .20

0 .25

0 .30

0 .35

0 .40

0 .45

0 .50

0 .55

0 .60

(a)

C
P

U
 U

til
iz

at
io

n
 o

r
R

e
qu

ire
m

en
t

T ime (ms)

 FIDV S
 UP LDVS
 TDVS

T1 T 2 T3

0 100 200 300 40 0 500

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

Time(ms)

C
P

U
 P

er
fo

rm
a

nc
e

 le
ve

l

(b)

 F IDVS
 UP LDVS
 TDVS

T1 T 2 T3

iu T * pl (1)

In order to predict the CPU requirement of the interactive task in
the next transaction, we performed detailed analysis on a series of
actual CPU requirement samplings of various applications, such
as 3D games, Mozilla, Kbounce etc. We find out that the
Exponential Weighted Moving Average (EWMA) prediction
model [8] could approximate the distribution of the CPU
requirement of these interactive tasks well. According to this
prediction model, the next CPU requirement is the linear
combination of the last actual CPU requirement value and the
past-predicted value, as follow:

ui+1’=k ui+(1-k) ui’.

Where, ui is the actual CPU requirement of the interactive task in
the ith transaction, ui’ is the predicted CPU requirement of the ith

interactive task, and ui+1’ is the predicted (i+1)th CPU
requirement. The parameter k indicates the fraction of the ith
actual CPU requirement contributing to the next prediction, which
can be adapted dynamically according to the application. With
larger k, recent actual values are weighted more heavily than older
values, and that reduces the impact of history CPU requirement on
the prediction; while the smaller k means that the prediction is
more likely the weighted average of the history value, and is
relatively not sensitive to new changes. According to the research
on EWMA model [9] and our experiences on various k values (0.3,
0.5, 0.7), k=0.3 is an appropriate value for most interactive
applications.

In order to satisfy the constraints of the interactive task and save
energy, we should scale the CPU performance level to make the
execution time of the next interactive task just less than the
human-perceptual threshold. Therefore, we use the ratio between
the predicted next CPU requirement and the human-perceptual
threshold to calculate the next performance level required to meet
the threshold. The next CPU performance level is set by the least
performance level of the actual CPU greater than or equal to the
ratio.

When the predicted CPU requirement is larger than the threshold,
it indicates that the maximum CPU performance level is required,
although it was still possible that the task might not finish within
the threshold.

To scale CPU performance level in the second stage, we use CPU
utilization of the second stage as its CPU requirement, which is
the ratio between the CPU busy time and the total time of the
second stage of the interactive transaction. Similar to the
prediction of CPU requirement of the interactive task, the
predicted transaction CPU requirement utans,i+1’ can be calculated
using the following equation:

utans,i+1’=k utans,i+(1-k) utans,i’

Based on the predicted CPU requirement of the transaction, we
scale the CPU performance level to the lowest frequency that
could satisfy the predicted CPU requirement of the background
task during the user response period.

4. Experimental Results
In this section, we present experiment results to evaluate the
effectiveness of our approach, including energy consumption and
computer responsiveness in interactive applications.

We will compare the proposed T-DVS approach with the FI-DVS
approach, which is published in Linux 2.6 kernel in 2006[9] , and
the recently proposed UPL-DVS approach[4] . We take the same
parameters as the published FI-DVS approach, and take the
human perceptual threshold as 50ms, instead of the 100ms in the
published UPL-DVS approach, in order to be comparable with the
50ms interval in FI-DVS.

The traces of system running states and the test applications are
collected using the kernel tracing tools on a Dell D140 (1.7GHZ)
laptop and Fedora Core 3.0 (Linux kernel 2.6.9). The test
applications consist of 3D game TuxRacer, tar, and Mozilla.

Based on the power specifications of Intel XScale
microprocessor[10] , we use normalized power to present energy
consumption of the CPU under different frequencies. The XScale
provides seven performance levels, which are normalized as 0.1,
0.2, 0.3, 0.5, 0.7, 0.8, and 1.

4.1 Energy Consumption
Figure 4 presents the energy consumption comparison of the three
approaches under three different cases. TuxRacer represents a case
with frequent user interaction, while Mozilla represent a case with
infrequent user interaction. A third case represents an interactive
situation with heavy background tasks. In which, the Tar utility
archives the Linux kernel source code simultaneously.

In all three cases, T-DVS performs better compared to the other
two approaches, with an average of 20% additional energy
savings compared to FI-DVS, and 12% better compared to UPL-
DVS.

As expected, T-DVS perform particularly well in the
TuxRacer+Tar case, in which case FI-DVS and UPL-DVS could
not take advantage of the time slack during user interaction to run
background tasks.

T u x R a c e r T u x R a c e r+ T a r M o z il la
0 .0

0 .2

0 .4

0 .6

0 .8

1 .0

E
ne

rg
y

co
ns

um
pt

io
n(

m
J)

 N o D V S
 F I -D V S
 U P L -D V S
 T -D V S

Figure 4. Energy consumption of different approaches.

4.2 Scaling Frequency Distribution
In order to understand why T-DVS could save more energy, we
present the breakdown of CPU frequency scaling distribution
under the three approaches. Here, we only show the case for
TuxRacer and a combination of TuxRacer and Tar utility due to
space restriction.

Figure 5. Distribution of CPU performance levels of TuxRacer

For TuxRacer, the distribution of the CPU time in different
frequencies is shown in Figure 5. We can see that, UPL-DVS
spends more time on the higher performance levels (0.3, 0.5, 0.7
and 0.8), while T-DVS spend more CPU time on the lower levels
of 0.1 and 0.2. The shift of the frequency distribution to lower
values explains the reason why T-DVS achieves more energy
reduction. Based on the frequency distribution, we can estimate
that T-DVS achieves by an average of 12% reduction more than
FI-DVS and 8% energy consumption reduction more than UPL-
DVS.

Figure 6 shows the distribution of CPU frequencies for the
combination of TuxRacer and tar. Compared with FI-DVS and
UPL-DVS, T-DVS spends more CPU time on the lower CPU
performance levels. On lower performance level 0.1 and 0.2,
UPL-DVS spends 41% CPU time; while T-DVS spends 45%. On
higher performance level 0.5, 0.6 and 0.7, UPL-DVS spends 28%,
6%, and 4% respectively, while T-DVS spends 20%, 1% and 2%
respectively. Similarly, based on the frequency distribution, we
can estimate that T-DVS archives by average of 29% energy
consumption reduction with respect to FI-DVS and 11% with
respect to UPL-DVS.

Figure 6. Distribution of CPU performance levels of TuxRacer

andTar

From the experiment results, we can see that, with the same test
applications and workloads, FI-DVS is relatively conservative and
spends more times on higher CPU performance levels. UPL-DVS
is relatively responsive, scaling CPU performance level based on
the CPU requirement of the interactive task. But because it does
not scale it down when workloads reduced during user response
period, some opportunities of energy savings are not exploited. T-
DVS is more aggressive; scaling down the CPU performance
levels further according to the lower CPU requirement of
transaction workloads, and achieves more energy consumption
reduction.

We also notice that, under the single TuxRacer case, the average
CPU utilization is 21%; while under the combination of TuxRacer

and tar case, the average CPU utilization is 38%, which means
heavier workload. The T-DVS approach achieves more energy
efficiency than the other two approaches under the latter case,
which demonstrates that T-DVS can exploit more potential
opportunity of energy reduction under a heavier background
workload.

4.3 Performance Impacts
In order to analyze the impacts of the approaches on computer
responsiveness in interactive applications, we profile the number
of tasks missing deadlines, and the amount of extra execution time
of each deadline-missing task. Then, we calculate the percentage
of tasks missing deadlines and the average extra execution time of
the three approaches. With these values, we can analyze the extent
of the user-perceived latency exceeding the human-perceptual
threshold after applying the respective DVS algorithm. The
results are shown in the Table 2. Note that lower value in three
columns on the right indicates less negative effects on system
responsiveness.

 Table 2. Execution statistics

Approach
Total # of

Interval/
Transaction

of tasks
Missing

Deadline

% of
Tasks over
Deadline

Ratio between
Extra Time

and Deadline

FI-DVS
3641 50 1% 1.74

1740 64 4% 1.42
401 18 4% 1.40

Average 2% 1.62

UPL-
DVS

521 26 5% 1.23
152 7 5% 1.23
23 1 4% 1.11

Average 5% 1.23

T-DVS
521 14 3% 1.23
152 6 4% 1.23
23 2 9% 1.07

Average 3% 1.22

We can see from the results that all the above DVS approaches
causes a small percent of tasks missing their deadlines, which also
indicates that they are only applicable for soft real-time embedded
systems.

The results show that FI-DVS, without considering the interactive
nature of applications, could cause the most severe impact on user
experiences, while T-DVS and UPL-DVS can achieve better user
satisfaction than FI-DVS. Since the performance impact of T-
DVS and UPL-DVS are comparable. It shows that T-DVS could
achieve better energy reduction than UPL-DVS for interactive
applications, without incurring additional performance penalties.

5. RELATED WORK
Weiser[3] first proposed the fixed-interval CPU utilization-based
DVS approach, scaling processor frequency according to fixed-
interval CPU utilization. Many later approaches improved the
prediction algorithm of the CPU utilization [11, 12] . It is efficient
under the cases of stable workloads for general-purpose system,
but cannot ensure the performance constraints of embedded
interactive applications.

In order to satisfy the real-time constraints of real-time systems,
researchers proposed task-based DVS approaches [13-16] . These
approaches focus on typical periodic or aperiodic real-time tasks.
The characteristics of each task must be explicitly specified to the

0

0.1

0.2

0.3

0.4

0.5

0.1 0.2 0.3 0.5 0.7 0.8

TuxRacer FI-DVS UPL-DVS T-DVS

0
0.1
0.2
0.3
0.4
0.5
0.6

0.1 0.2 0.3 0.5 0.7 0.8

TuxRacer + Tar FI-DVS UPL-DVS T-DVS

task scheduler. The approaches scale CPU frequency based on
well-defined task characteristics and performance constraints,
such as the execution time of real-time tasks not exceeding its
deadline, and the schedulability of real-time task set should be
kept. However, these approaches did not take into account the
special characteristics of the interactive applications.

Zhong[1] proposed to utilize user interface information to predict
user delays based on interaction history and combined it with
DPM/DVS for power optimization. Yan[4, 17] proposed a DVS
approach which uses User Perceived Latency in portable
interactive system as the clue of DVS policy making. It focuses on
the system response process during an interactive transaction and
performance constraints of the interactive applications, and
achieves better responsiveness. However, the idle period during
user response and the variety of the CPU requirement of other
non-interactive tasks are exploited inadequately, as mentioned
previously in this paper.

Other research works have been focused on scaling the demand of
applications according to power supply for energy saving. Fei[18]
proposed an application adaptation policy directed by user-defined
goals in an energy-aware framework. Although our work also
considers the user-related interactive requirements within mobile
systems, we scale the system performance level according to
characteristics of human-computer interaction for energy saving,
and could identify CPU requirement of user-related tasks
automatically based on system monitoring, instead of relying user-
specified requirements.

6. CONCULSION
A key issue in power-aware embedded systems is the trade-off
between performance and energy consumption. This paper
proposes a transaction-based DVS approach targeting mobile
interactive systems. The approach distinguishes the interactive
task with performance constraints from the background task,
scaling CPU performance level based on the constraints of the
human-perceptual threshold. At the same time, it executes the
background task during the period of user response with slower
CPU, thus it could reduce energy consumption more aggressively.
The experimental results demonstrate that the approach can
achieve an average of 20% more energy saving compared to the
traditional FI-DVS and 12% more than a recent UPL-DVS
approach.

7. ACKNOWLEGHTMENT
This work was supported by the National High Technology
Development Program of China (863) under Grant No.
2007AA010304 and No. 2008AA01Z133, the National Basic
Research Program of China (973) under Grant No.
2009CB320703, and the Science Fund for Creative Research
Groups of China under Grant No. 60821003.

8. REFERENCES

 [1] L. Zhong, N. K. Jha. Dynamic power optimization targeting
user delays in interactive systems. IEEE Trans on Mobile
Computing, vol. 5, no. 11, pp. 1473-1488, 2006.

 [2] J. R. Lorch. Using User Interface Event Information in
Dynamic Voltage Scaling Algorithms. In 11th International

Workshop on Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems (MASCOTS), pp.
46-55, 2003.

 [3] M. Weiser, B. Welch, A. Demers, et al. Scheduling for
reduced CPU energy. In Proc. 1st Symp.on Operating
Systems Design and Implementation, pp. 13-23, 1994.

 [4] L. Yan, L. Zhong, N. K. Jha. User-perceived latency driven
voltage scaling for interactive applications. In Proceedings of
the 42nd Annual ACM IEEE Design Automation Conference,
pp. 624-627, 2005.

 [5] W. J. Doherty, A. J. Thadani. The Economic Value of Rapid
Response Time. http://www.vm.ibm.com/%20devpages/
jelliott/evrrt.html. 1982-09-01. 1982.

 [6] B. Shneiderman. Designing the User Interface: Strategies for
Effective Human-Computer Interaction. Addison-Wesley, pp.
129-134, 1992.

 [7] S. K. Card, T. P. Moran, A. Newell. The Psychology of
Human-Computer Interaction. Hillsdale, NJ: Lawrence
Erlbaum Associates, pp. 130-140, 1983.

 [8] W. W. S. Wei. Time Series Analysis: Univariate and
Multivariate Methods. MA: Addison-Wesley Publishing
Company, 1989.

 [9] V. Pallipadi, A. Y. Starikovskiy. Ondemand Governor: Past,
Present and Future: Linux Symposium-Volume One.
http://www.linuxsymposium.org/2006. 2006-08-02. 2006.

[10] Intel. Intel PXA270 Processor Electrical, Mechanical, and
Thermal Specification. http://www.datasheetcatalog.com/
datasheets_pdf/P/X/A/2/PXA270.shtml. 2007-12-2. 2005.

[11] T. Pering, T. Burd, R. Brodersen. Voltage scheduling in the
IpARM microprocessor system. In Proceedings of IEEE
International Symposium on Low Power Electronics and
Design, pp. 96-101, 2000.

[12] D. Grunwald, P. Levis, K. Farkas, et al. Policies for Dynamic
Clock Scheduling. In Proceedings of the Fourth Symposium
on Operating Systems Design & Implementation, pp. 73-86,
2000.

[13] F. Yao, A. Demers, S. Shenker. A Scheduling Model for
Reduced CPU Energy. In IEEE Annual Foundations of
Computer Science, pp. 374-382, 1995.

[14] H. M. Deitel, P. J. Deitel, D. R. Choffues. Operating
system(Third Edition). Upper Saddle River,New Jersey:
Prentice Hall, 2004.

[15] W. Yuan, K. Nahrstedta, S. V. Advea, et al. Design and
Evaluation of a Cross-Layer Adaptation Framework for
Mobile Multimedia Systems. In SPIE/ACM Multimedia
Computing and Networking Conference (MMCN), 2003.

[16] H. Wang, Y. Chen, S. Kang, et al. Optimal DVS algorithm
for real-time systems with double voltage scalable processor.
Journal of Tsinghua University(Science and Technology, vol.
45, no. 10, pp. 1405-1408, 2005.

[17] L. Yan, L. Zhong, N. K. Jha. Towards a responsive, yet
power-efficient, operating system: a holistic approach. In
13th IEEE International Symposium on Modeling, Analysis,
and Simulation of Computer and Telecommunication Systems,
pp. 249-257, 2005.

[18] Y. Fei, L. Zhong, N. K. Jha. An energy-aware framework for
dynamic software management in mobile computing systems.
ACM Transactions on Embedded Computing Systems , vol. 7,
no. 3, pp. 1-31, 2004.

